Skip to main content
Log in

Cardiac-induced liver deformation as a measure of liver stiffness using dynamic imaging without magnetization tagging—preclinical proof-of-concept, clinical translation, reproducibility and feasibility in patients with cirrhosis

  • Hepatobiliary
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Purpose

MR elastography and magnetization-tagging use liver stiffness (LS) measurements to diagnose fibrosis but require physical drivers, specialist sequences and post-processing. Here we evaluate non-rigid registration of dynamic two-dimensional cine MRI images to measure cardiac-induced liver deformation (LD) as a measure of LS by (i) assessing preclinical proof-of-concept, (ii) clinical reproducibility and inter-reader variability, (iii) the effects of hepatic hemodynamic changes and (iv) feasibility in patients with cirrhosis.

Methods

Sprague–Dawley rats (n = 21 bile duct ligated (BDL), n = 17 sham-operated controls) and fasted patients with liver cirrhosis (n = 11) and healthy volunteers (HVs, n = 10) underwent spoiled gradient-echo short-axis cardiac cine MRI studies at 9.4 T (rodents) and 3.0 T (humans). LD measurements were obtained from intrahepatic sub-cardiac regions-of-interest close to the diaphragmatic margin. One-week reproducibility and prandial stress induced hemodynamic changes were assessed in healthy volunteers.

Results

Normalized LD was higher in BDL (1.304 ± 0.062) compared with sham-operated rats (1.058 ± 0.045, P = 0.0031). HV seven-day reproducibility Bland–Altman (BA) limits-of-agreement (LoAs) were ± 0.028 a.u. and inter-reader variability BA LoAs were ± 0.030 a.u. Post-prandial LD increases were non-significant (+ 0.0083 ± 0.0076 a.u., P = 0.3028) and uncorrelated with PV flow changes (r = 0.42, p = 0.2219). LD measurements successfully obtained from all patients were not significantly higher in cirrhotics (0.102 ± 0.0099 a.u.) compared with HVs (0.080 ± 0.0063 a.u., P = 0.0847).

Conclusion

Cardiac-induced LD is a conceptually reasonable approach from preclinical studies, measurements demonstrate good reproducibility and inter-reader variability, are less likely to be affected by hepatic hemodynamic changes and are feasible in patients with cirrhosis.

Grahpic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article. Raw data were generated at the UCL Centre for Medical Imaging/UCL Centre for Advanced Biomedical Imaging. Derived data supporting the findings of this study are available from the corresponding author on request.

Code availability

Cardiac cine MRI data were analyzed using GIQuant® (Motilent, London, UK).

References

  1. Sepanlou SG, Safiri S, Bisignano C, et al (2020) The global, regional, and national burden of cirrhosis by cause in 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol Hepatol 5:245–266. doi:https://doi.org/10.1016/S2468-1253(19)30349-8

    Article  Google Scholar 

  2. Pinzani M (2015) Pathophysiology of Liver Fibrosis. Dig Dis 33:492–497. doi:https://doi.org/10.1159/000374096

    Article  PubMed  Google Scholar 

  3. Rockey DC, Caldwell SH, Goodman ZD, et al (2009) Liver biopsy. Hepatology 49:1017–1044. doi:https://doi.org/10.1002/hep.22742

    Article  PubMed  Google Scholar 

  4. Bedossa P, Dargère D, Paradis V (2003) Sampling Variability of Liver Fibrosis in Chronic Hepatitis C. Hepatology 38:1449–1457. doi:https://doi.org/10.1016/j.hep.2003.09.022

    Article  PubMed  Google Scholar 

  5. Chouhan MD, Lythgoe MF, Mookerjee RP, Taylor SA (2016) Vascular assessment of liver disease-towards a new frontier in MRI. Br J Radiol 89:. doi:https://doi.org/10.1259/bjr.20150675

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sandrin L, Fourquet B, Hasquenoph JM, et al (2003) Transient elastography: a new noninvasive method for assessment of hepatic fibrosis. Ultrasound Med Biol 29:1705–1713

    Article  Google Scholar 

  7. Nightingale K (2011) Acoustic Radiation Force Impulse (ARFI) Imaging: a Review. Curr Med Imaging Rev 7:328–339. doi:https://doi.org/10.2174/157340511798038657

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wagner M, Corcuera-Solano I, Lo G, et al (2017) Technical Failure of MR Elastography Examinations of the Liver: Experience from a Large Single-Center Study. Radiology 284:401–412. doi:https://doi.org/10.1148/radiol.2016160863

    Article  PubMed  Google Scholar 

  9. Kennedy P, Wagner M, Castéra L, et al (2018) Quantitative Elastography Methods in Liver Disease: Current Evidence and Future Directions. Radiology 286:738–763. doi:https://doi.org/10.1148/radiol.2018170601

    Article  PubMed  Google Scholar 

  10. Watanabe H, Kanematsu M, Kitagawa T, et al (2010) MR elastography of the liver at 3 T with cine-tagging and bending energy analysis: Preliminary results. Eur Radiol 20:2381–2389. doi:https://doi.org/10.1007/s00330-010-1800-0

    Article  PubMed  Google Scholar 

  11. Chung S, Breton E, Mannelli L, Axel L (2011) Liver stiffness assessment by tagged MRI of cardiac-induced liver motion. Magn Reson Med 65:949–955. doi:https://doi.org/10.1002/mrm.22785

    Article  PubMed  PubMed Central  Google Scholar 

  12. Harouni AA, Gharib AM, Osman NF, et al (2015) Assessment of liver fibrosis using fast strain-encoded MRI driven by inherent cardiac motion. Magn Reson Med 74:106–114. doi:https://doi.org/10.1002/mrm.25379

    Article  PubMed  Google Scholar 

  13. Lefebvre T, Petitclerc L, Hébert M, et al (2020) MRI cine‐tagging of cardiac‐induced motion for noninvasive staging of liver fibrosis. J Magn Reson Imaging 51:1570–1580. doi:https://doi.org/10.1002/jmri.26935

    Article  PubMed  Google Scholar 

  14. Ahmed Y, Hussein RS, Basha TA, et al (2020) Detecting liver fibrosis using a machine learning‐based approach to the quantification of the heart‐induced deformation in tagged MR images. NMR Biomed 33:. doi:https://doi.org/10.1002/nbm.4215

    Article  PubMed  Google Scholar 

  15. Chung S, Kim KE, Park MS, et al (2014) Liver stiffness assessment with tagged MRI of cardiac-induced liver motion in cirrhosis patients. J Magn Reson Imaging 39:1301–1307. doi:https://doi.org/10.1002/jmri.24260

    Article  PubMed  Google Scholar 

  16. Menys A, Taylor SA, Emmanuel A, et al (2013) Global small bowel motility: assessment with dynamic MR imaging. Radiology 269:443–450. doi:https://doi.org/10.1148/radiol.13130151

    Article  PubMed  Google Scholar 

  17. Baki MM, Menys A, Atkinson D, et al (2016) Feasibility of vocal fold abduction and adduction assessment using cine-MRI. Eur Radiol. doi:https://doi.org/10.1007/s00330-016-4341-3

    Article  PubMed  PubMed Central  Google Scholar 

  18. Plumb AA, Menys A, Russo E, et al (2015) Magnetic resonance imaging-quantified small bowel motility is a sensitive marker of response to medical therapy in Crohn’s disease. Aliment Pharmacol Ther 42:343–355. doi:https://doi.org/10.1111/apt.13275

    Article  CAS  PubMed  Google Scholar 

  19. Harry D, Anand R, Holt S, et al (1999) Increased sensitivity to endotoxemia in the bile duct-ligated cirrhotic rat. Hepatology 30:1198–1205. doi:https://doi.org/10.1002/hep.510300515

    Article  CAS  PubMed  Google Scholar 

  20. Davies NA, Hodges SJ, Pitsillides AA, et al (2006) Hepatic guanylate cyclase activity is decreased in a model of cirrhosis: A quantitative cytochemistry study. FEBS Lett 580:2123–2128. doi:https://doi.org/10.1016/j.febslet.2006.02.080

    Article  CAS  PubMed  Google Scholar 

  21. Chouhan MD, Taylor SA, Bainbridge A, et al (2020) Haemodynamic changes in cirrhosis following terlipressin and induction of sepsis—a preclinical study using caval subtraction phase-contrast and cardiac MRI. Eur Radiol. doi:https://doi.org/10.1007/s00330-020-07259-w

    Article  PubMed  PubMed Central  Google Scholar 

  22. Odille F, Menys A, Ahmed A, et al (2012) Quantitative assessment of small bowel motility by nonrigid registration of dynamic MR images. Magn Reson Med 68:783–793. doi:https://doi.org/10.1002/mrm.23298

    Article  PubMed  Google Scholar 

  23. Kuo PC, Alfrey EJ, Li K, et al (1995) Magnetic resonance imaging-derived parameter of portal flow predicts volume-mediated pulmonary hypertension in liver transplantation candidates. Surgery 118:685–692. doi:https://doi.org/10.1016/S0039-6060(05)80036-4

    Article  CAS  PubMed  Google Scholar 

  24. Nedredal GI, Yin M, McKenzie T, et al (2011) Portal hypertension correlates with splenic stiffness as measured with MR elastography. J Magn Reson Imaging 34:79–87. doi:https://doi.org/10.1002/jmri.22610

    Article  PubMed  PubMed Central  Google Scholar 

  25. Yin M, Kolipaka A, Woodrum DA, et al (2013) Hepatic and splenic stiffness augmentation assessed with MR elastography in an in vivo porcine portal hypertension model. J Magn Reson Imaging 38:809–815. doi:https://doi.org/10.1002/jmri.24049

    Article  PubMed  PubMed Central  Google Scholar 

  26. Huang SY, Abdelsalam ME, Harmoush S, et al (2014) Evaluation of liver fibrosis and hepatic venous pressure gradient with MR elastography in a novel swine model of cirrhosis. J Magn Reson Imaging 39:590–597. doi:https://doi.org/10.1002/jmri.24189

    Article  PubMed  Google Scholar 

  27. Serai SD, Obuchowski NA, Venkatesh SK, et al (2017) Repeatability of MR Elastography of Liver: A Meta-Analysis. Radiology 285:92–100. doi:https://doi.org/10.1148/radiol.2017161398

    Article  PubMed  Google Scholar 

  28. Jajamovich GH, Dyvorne H, Donnerhack C, Taouli B (2014) Quantitative liver MRI combining phase contrast imaging, elastography, and DWI: assessment of reproducibility and postprandial effect at 3.0 T. PLoS One 9:e97355. doi:https://doi.org/10.1371/journal.pone.0097355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mannelli L, Wilson GJ, Dubinsky TJ, et al (2012) Assessment of the liver strain among cirrhotic and normal livers using tagged MRI. J Magn Reson Imaging 36:1490–1495. doi:https://doi.org/10.1002/jmri.23743

    Article  PubMed  Google Scholar 

  30. Wiese S, Hove JD, Bendtsen F, et al (2014) Cirrhotic cardiomyopathy: pathogenesis and clinical relevance. Nat Rev Gastroenterol Hepatol 11:177–186. doi:https://doi.org/10.1038/nrgastro.2013.210

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Wellcome Trust Clinical Research Training Fellowship (Grant WT092186). National Institute of Health Research University College London Hospitals Biomedical Research Centre.

Author information

Authors and Affiliations

Authors

Contributions

MDC—guarantor of integrity of the entire study, study concepts and design, literature research, clinical studies, experimental preclinical studies, data analysis, statistical analysis, manuscript preparation, manuscript editing. HEF—study concepts and design, experimental preclinical studies, data analysis, manuscript editing. AB—clinical studies, experimental preclinical studies, data analysis. DA—clinical studies, experimental preclinical studies, data analysis, manuscript editing. SH—statistical analysis, manuscript editing. ND—experimental preclinical studies. MFL—experimental preclinical studies. RPM—clinical studies, experimental preclinical studies, manuscript editing. AM—study concepts and design, experimental preclinical studies, clinical studies, data analysis, manuscript editing. SAT—study concepts and design, manuscript editing.

Corresponding author

Correspondence to Manil D. Chouhan.

Ethics declarations

Conflict of interest

Manil D Chouhan—no relevant conflict of interest or competing interest to declare. Heather E Fitzke—BBBSRC funded work placements with Motilent Ltd in 2018 and 2020 (BB/S508019/1). No other relevant conflict of interest or competing interest to declare. Alan Bainbridge, David Atkinson, Steve Halligan, Nathan Davies, Mark F Lythgoe, Rajeshwar P Mookerjee have no relevant conflict of interest or competing interest to declare. Alex Menys—is the CEO of Motilent. No other relevant conflict of interest or competing interest to declare. Stuart A Taylor—has share options in Motilent and is a consultant at Alimentiv. No other relevant conflict of interest or competing interest to declare.

Ethical approval

Preclinical-approval obtained from the Animal Care Ethical Committee of University College London.

Clinical-Research Ethics Committee (Joint RNOH/IOMS, Reference Number 08/H0724/35) approval was obtained.

Consent to participate

Written consent obtained from all clinical study participants.

Consent for publication

Written consent obtained from all clinical study participants, with implied consent from all authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chouhan, M.D., Fitzke, H.E., Bainbridge, A. et al. Cardiac-induced liver deformation as a measure of liver stiffness using dynamic imaging without magnetization tagging—preclinical proof-of-concept, clinical translation, reproducibility and feasibility in patients with cirrhosis. Abdom Radiol 46, 4660–4670 (2021). https://doi.org/10.1007/s00261-021-03168-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-021-03168-8

Keywords

Navigation