Skip to main content
Log in

The expanding landscape of diffusion-weighted MRI in prostate cancer

  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

The added value of diffusion-weighted magnetic resonance imaging (DW-MRI) for the detection, localization, and staging of primary prostate cancer has been extensively reported in original studies and meta-analyses. More recently, DW-MRI and related techniques have been used to noninvasively assess prostate cancer aggressiveness and estimate its biological behavior. The present article aims to summarize the potential applications of DW-MRI for noninvasive optimization of pretherapeutic risk assessment, patient management decisions, and evaluation of treatment response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Barentsz JO, Richenberg J, Clements R, et al. (2012) ESUR prostate MR guidelines 2012. Eur Radiol 22(4):746–757

    Article  PubMed  PubMed Central  Google Scholar 

  2. Eberhardt SC, Carter S, Casalino DD, et al. (2013) ACR appropriateness criteria prostate cancer–pretreatment detection, staging, and surveillance. J Am Coll Radiol 10(2):83–92

    Article  PubMed  Google Scholar 

  3. Tan CH, Wei W, Johnson V, Kundra V (2012) Diffusion-weighted MRI in the detection of prostate cancer: meta-analysis. AJR Am J Roentgenol 199(4):822–829

    Article  PubMed  PubMed Central  Google Scholar 

  4. Jie C, Rongbo L, Ping T (2014) The value of diffusion-weighted imaging in the detection of prostate cancer: a meta-analysis. Eur Radiol 24(8):1929–1941

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wu LM, Xu JR, Ye YQ, Lu Q, Hu JN (2012) The clinical value of diffusion-weighted imaging in combination with T2-weighted imaging in diagnosing prostate carcinoma: a systematic review and meta-analysis. AJR Am J Roentgenol 199(1):103–110

    Article  PubMed  Google Scholar 

  6. Tan CH, Hobbs BP, Wei W, Kundra V (2015) Dynamic contrast-enhanced MRI for the detection of prostate cancer: meta-analysis. AJR Am J Roentgenol 204(4):W439–W448

    Article  PubMed  Google Scholar 

  7. Medved M, Soylu-Boy FN, Karademir I, et al. (2014) High-resolution diffusion-weighted imaging of the prostate. AJR Am J Roentgenol 203(1):85–90

    Article  PubMed  Google Scholar 

  8. Nguyen C, Sharif-Afshar AR, Fan Z, et al. (2015) 3D high-resolution diffusion-weighted MRI at 3T: preliminary application in prostate cancer patients undergoing active surveillance protocol for low-risk prostate cancer. Magn Reson Med 11(10):25609

    Google Scholar 

  9. Jahn JL, Giovannucci EL, Stampfer MJ (2015) The high prevalence of undiagnosed prostate cancer at autopsy: implications for epidemiology and treatment of prostate cancer in the prostate-specific Antigen-era. Int J Cancer 137(12):2795–2802

    Article  CAS  PubMed  Google Scholar 

  10. NCI (2015) Surveillance, epidemiology, and end results program. http://seer.cancer.gov/statfacts/html/prost.html. Accessed 01 June 2015

  11. Epstein JI, Allsbrook WC Jr, Amin MB, Egevad LL (2005) The 2005 International Society of Urological Pathology (ISUP) consensus conference on gleason grading of prostatic carcinoma. Am J Surg Pathol 29(9):1228–1242

    Article  PubMed  Google Scholar 

  12. Pierorazio PM, Walsh PC, Partin AW, Epstein JI (2013) Prognostic Gleason grade grouping: data based on the modified Gleason scoring system. BJU Int 111(5):753–760

    Article  PubMed  PubMed Central  Google Scholar 

  13. Cohen MS, Hanley RS, Kurteva T, et al. (2008) Comparing the Gleason prostate biopsy and Gleason prostatectomy grading system: the Lahey Clinic Medical Center experience and an international meta-analysis. Eur Urol 54(2):371–381

    Article  PubMed  Google Scholar 

  14. Itou Y, Nakanishi K, Narumi Y, Nishizawa Y, Tsukuma H (2011) Clinical utility of apparent diffusion coefficient (ADC) values in patients with prostate cancer: can ADC values contribute to assess the aggressiveness of prostate cancer? J Magn Reson Imaging 33(1):167–172

    Article  PubMed  Google Scholar 

  15. Verma S, Rajesh A, Morales H, et al. (2011) Assessment of aggressiveness of prostate cancer: correlation of apparent diffusion coefficient with histologic grade after radical prostatectomy. AJR Am J Roentgenol 196(2):374–381

    Article  PubMed  Google Scholar 

  16. Hambrock T, Somford DM, Huisman HJ, et al. (2011) Relationship between apparent diffusion coefficients at 3.0-T MR imaging and gleason grade in peripheral zone prostate cancer. Radiology 259(2):453–461

    Article  PubMed  Google Scholar 

  17. Vargas HA, Akin O, Franiel T, et al. (2011) Diffusion-weighted endorectal MR imaging at 3 T for prostate cancer: tumor detection and assessment of aggressiveness. Radiology 259(3):775–784

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bittencourt LK, Barentsz JO, de Miranda LC, Gasparetto EL (2012) Prostate MRI: diffusion-weighted imaging at 1.5T correlates better with prostatectomy Gleason Grades than TRUS-guided biopsies in peripheral zone tumours. Eur Radiol 22(2):468–475

    Article  PubMed  Google Scholar 

  19. Oto A, Yang C, Kayhan A, et al. (2011) Diffusion-weighted and dynamic contrast-enhanced MRI of prostate cancer: correlation of quantitative MR parameters with Gleason score and tumor angiogenesis. AJR Am J Roentgenol 197(6):1382–1390

    Article  PubMed  Google Scholar 

  20. Jung SI, Donati OF, Vargas HA, et al. (2013) Transition zone prostate cancer: incremental value of diffusion-weighted endorectal MR imaging in tumor detection and assessment of aggressiveness. Radiology 269(2):493–503

    Article  PubMed  Google Scholar 

  21. Somford DM, Hambrock T, Hulsbergen-van de Kaa CA, et al. (2012) Initial experience with identifying high-grade prostate cancer using diffusion-weighted MR imaging (DWI) in patients with a Gleason score ≤ = 3 + 3 = 6 upon schematic TRUS-guided biopsy: a radical prostatectomy correlated series. Invest Radiol 47(3):153–158

    PubMed  Google Scholar 

  22. Donati OF, Mazaheri Y, Afaq A, et al. (2014) Prostate cancer aggressiveness: assessment with whole-lesion histogram analysis of the apparent diffusion coefficient. Radiology 271(1):143–152

    Article  PubMed  Google Scholar 

  23. Peng Y, Jiang Y, Antic T, et al. (2014) Validation of quantitative analysis of multiparametric prostate MR images for prostate cancer detection and aggressiveness assessment: a cross-imager study. Radiology 271(2):461–471

    Article  PubMed  Google Scholar 

  24. Borren A, Moman MR, Groenendaal G, et al. (2013) Why prostate tumour delineation based on apparent diffusion coefficient is challenging: an exploration of the tissue microanatomy. Acta Oncol 52(8):1629–1636

    Article  PubMed  Google Scholar 

  25. Gibbs P, Liney GP, Pickles MD, et al. (2009) Correlation of ADC and T2 measurements with cell density in prostate cancer at 3.0 Tesla. Invest Radiol 44(9):572–576

    Article  PubMed  Google Scholar 

  26. Bae H, Yoshida S, Matsuoka Y, et al. (2014) Apparent diffusion coefficient value as a biomarker reflecting morphological and biological features of prostate cancer. Int Urol Nephrol 46(3):555–561

    Article  CAS  PubMed  Google Scholar 

  27. Sadinski M, Medved M, Karademir I, et al. (2015) Short-term reproducibility of apparent diffusion coefficient estimated from diffusion-weighted MRI of the prostate. Abdom Imaging 25:25

    Google Scholar 

  28. Peng Y, Jiang Y, Antic T, et al. (2014) Apparent diffusion coefficient for prostate cancer imaging: impact of B values. AJR Am J Roentgenol 202(3):W247–W253

    Article  PubMed  Google Scholar 

  29. Thormer G, Otto J, Reiss-Zimmermann M, et al. (2012) Diagnostic value of ADC in patients with prostate cancer: influence of the choice of b values. Eur Radiol 22(8):1820–1828

    Article  PubMed  Google Scholar 

  30. Mazaheri Y, Vargas HA, Nyman G, et al. (2013) Diffusion-weighted MRI of the prostate at 3.0 T: comparison of endorectal coil (ERC) MRI and phased-array coil (PAC) MRI-The impact of SNR on ADC measurement. Eur J Radiol 82(10):e515–e520

    Article  PubMed  Google Scholar 

  31. Wibmer A, Hricak H, Gondo T, et al. (2015) Haralick texture analysis of prostate MRI: utility for differentiating non-cancerous prostate from prostate cancer and differentiating prostate cancers with different Gleason scores. Eur Radiol 21:21

    Google Scholar 

  32. Rosenkrantz AB, Triolo MJ, Melamed J, et al. (2015) Whole-lesion apparent diffusion coefficient metrics as a marker of percentage Gleason 4 component within Gleason 7 prostate cancer at radical prostatectomy. J Magn Reson Imaging 41(3):708–714

    Article  PubMed  PubMed Central  Google Scholar 

  33. Vargas HA, Lawrence EM, Mazaheri Y, Sala E (2015) Updates in advanced diffusion-weighted magnetic resonance imaging techniques in the evaluation of prostate cancer. World J Radiol 7(8):184–188

    Article  PubMed  PubMed Central  Google Scholar 

  34. Dopfert J, Lemke A, Weidner A, Schad LR (2011) Investigation of prostate cancer using diffusion-weighted intravoxel incoherent motion imaging. Magn Reson Imaging 29(8):1053–1058. doi:10.1016/j.mri.2011.06.001

    Article  PubMed  Google Scholar 

  35. Shinmoto H, Tamura C, Soga S, et al. (2012) An intravoxel incoherent motion diffusion-weighted imaging study of prostate cancer. AJR Am J Roentgenol 199(4):W496–W500. doi:10.2214/ajr.11.8347

    Article  PubMed  Google Scholar 

  36. Zhang YD, Wang Q, Wu CJ, et al. (2015) The histogram analysis of diffusion-weighted intravoxel incoherent motion (IVIM) imaging for differentiating the gleason grade of prostate cancer. Eur Radiol 25(4):994–1004

    Article  PubMed  Google Scholar 

  37. Steven AJ, Zhuo J, Melhem ER (2014) Diffusion kurtosis imaging: an emerging technique for evaluating the microstructural environment of the brain. AJR Am J Roentgenol 202(1):W26–W33

    Article  PubMed  Google Scholar 

  38. Quentin M, Pentang G, Schimmoller L, et al. (2014) Feasibility of diffusional kurtosis tensor imaging in prostate MRI for the assessment of prostate cancer: preliminary results. Magn Reson Imaging 32(7):880–885. doi:10.1016/j.mri.2014.04.005

    Article  PubMed  Google Scholar 

  39. Rosenkrantz AB, Sigmund EE, Johnson G, et al. (2012) Prostate cancer: feasibility and preliminary experience of a diffusional kurtosis model for detection and assessment of aggressiveness of peripheral zone cancer. Radiology 264(1):126–135. doi:10.1148/radiol.12112290

    Article  PubMed  Google Scholar 

  40. Suo S, Chen X, Wu L, et al. (2014) Non-Gaussian water diffusion kurtosis imaging of prostate cancer. Magn Reson Imaging 32(5):421–427. doi:10.1016/j.mri.2014.01.015

    Article  PubMed  Google Scholar 

  41. Wang Q, Li H, Yan X, et al. (2015) Histogram analysis of diffusion kurtosis magnetic resonance imaging in differentiation of pathologic Gleason grade of prostate cancer. Urol Oncol 33(8):337 e315–337 e324

    Article  Google Scholar 

  42. Li C, Chen M, Li S, et al. (2014) Detection of prostate cancer in peripheral zone: comparison of MR diffusion tensor imaging, quantitative dynamic contrast-enhanced MRI, and the two techniques combined at 3.0 T. Acta Radiol 55(2):239–247. doi:10.1177/0284185113494978

    Article  PubMed  Google Scholar 

  43. Roethke MC, Kuder TA, Kuru TH, et al. (2015) Evaluation of diffusion kurtosis imaging versus standard diffusion imaging for detection and grading of peripheral zone prostate cancer. Invest Radiol 50(8):483–489

    Article  CAS  PubMed  Google Scholar 

  44. Rosenkrantz AB, Padhani AR, Chenevert TL, et al. (2015) Body diffusion kurtosis imaging: basic principles, applications, and considerations for clinical practice. J Magn Reson Imaging 42(5):1190–1202

    Article  PubMed  Google Scholar 

  45. Hambrock T, Hoeks C, Hulsbergen-van de Kaa C, et al. (2012) Prospective assessment of prostate cancer aggressiveness using 3-T diffusion-weighted magnetic resonance imaging-guided biopsies versus a systematic 10-core transrectal ultrasound prostate biopsy cohort. Eur Urol 61(1):177–184

    Article  PubMed  Google Scholar 

  46. Zhang J, Xiu J, Dong Y, et al. (2014) Magnetic resonance imaging directed biopsy improves the prediction of prostate cancer aggressiveness compared with a 12-core transrectal ultrasound guided prostate biopsy. Mol Med Rep 9(5):1989–1997

    CAS  PubMed  Google Scholar 

  47. Somford DM, Hoeks CM, Hulsbergen-van de Kaa CA, et al. (2013) Evaluation of diffusion-weighted MR imaging at inclusion in an active surveillance protocol for low-risk prostate cancer. Invest Radiol 48(3):152–157

    Article  PubMed  Google Scholar 

  48. Mitsuzuka K, Koga H, Sugimoto M, et al. (2015) Current use of active surveillance for localized prostate cancer: a nationwide survey in Japan. Int J Urol 10(10):12813

    Google Scholar 

  49. Preston MA, Feldman AS, Coen JJ, et al. (2015) Active surveillance for low-risk prostate cancer: need for intervention and survival at 10 years. Urol Oncol 6(15):00194–00195

    Google Scholar 

  50. van As NJ, de Souza NM, Riches SF, et al. (2009) A study of diffusion-weighted magnetic resonance imaging in men with untreated localised prostate cancer on active surveillance. Eur Urol 56(6):981–987

    Article  PubMed  Google Scholar 

  51. Giles SL, Morgan VA, Riches SF, et al. (2011) Apparent diffusion coefficient as a predictive biomarker of prostate cancer progression: value of fast and slow diffusion components. AJR Am J Roentgenol 196(3):586–591

    Article  PubMed  Google Scholar 

  52. Flavell RR, Westphalen AC, Liang C, et al. (2014) Abnormal findings on multiparametric prostate magnetic resonance imaging predict subsequent biopsy upgrade in patients with low risk prostate cancer managed with active surveillance. Abdom Imaging 39(5):1027–1035

    Article  PubMed  PubMed Central  Google Scholar 

  53. Jeong CW, Park YH, Hwang SI, et al. (2014) The role of 3-tesla diffusion-weighted magnetic resonance imaging in selecting prostate cancer patients for active surveillance. Prostate Int 2(4):169–175

    Article  PubMed  PubMed Central  Google Scholar 

  54. Morgan VA, Riches SF, Thomas K, et al. (2011) Diffusion-weighted magnetic resonance imaging for monitoring prostate cancer progression in patients managed by active surveillance. Br J Radiol 84(997):31–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lee DH, Koo KC, Lee SH, et al. (2013) Tumor lesion diameter on diffusion weighted magnetic resonance imaging could help predict insignificant prostate cancer in patients eligible for active surveillance: preliminary analysis. J Urol 190(4):1213–1217

    Article  PubMed  Google Scholar 

  56. Rosenkrantz AB, Prabhu V, Sigmund EE, et al. (2013) Utility of diffusional kurtosis imaging as a marker of adverse pathologic outcomes among prostate cancer active surveillance candidates undergoing radical prostatectomy. AJR Am J Roentgenol 201(4):840–846

    Article  PubMed  Google Scholar 

  57. Park SY, Kim CK, Park BK, Lee HM, Lee KS (2011) Prediction of biochemical recurrence following radical prostatectomy in men with prostate cancer by diffusion-weighted magnetic resonance imaging: initial results. Eur Radiol 21(5):1111–1118

    Article  PubMed  Google Scholar 

  58. Matsuoka Y, Numao N, Saito K, et al. (2014) Candidate selection for quadrant-based focal ablation through a combination of diffusion-weighted magnetic resonance imaging and prostate biopsy. BJU Int 14(10):12901

    Google Scholar 

  59. Cornud F, Khoury G, Bouazza N, et al. (2014) Tumor target volume for focal therapy of prostate cancer-does multiparametric magnetic resonance imaging allow for a reliable estimation? J Urol 191(5):1272–1279

    Article  CAS  PubMed  Google Scholar 

  60. Nemoto K, Tateishi T, Ishidate T (2010) Changes in diffusion-weighted images for visualizing prostate cancer during antiandrogen therapy: preliminary results. Urol Int 85(4):421–426

    Article  CAS  PubMed  Google Scholar 

  61. Kim AY, Kim CK, Park SY, Park BK (2014) Diffusion-weighted imaging to evaluate for changes from androgen deprivation therapy in prostate cancer. AJR Am J Roentgenol 203(6):W645–W650

    Article  PubMed  Google Scholar 

  62. Hotker AM, Mazaheri Y, Zheng J, et al. (2015) Prostate Cancer: assessing the effects of androgen-deprivation therapy using quantitative diffusion-weighted and dynamic contrast-enhanced MRI. Eur Radiol 29:29

    Google Scholar 

  63. Reischauer C, Froehlich JM, Koh DM, et al. (2010) Bone metastases from prostate cancer: assessing treatment response by using diffusion-weighted imaging and functional diffusion maps-initial observations. Radiology 257(2):523–531

    Article  PubMed  Google Scholar 

  64. Eisenhauer EA, Therasse P, Bogaerts J, et al. (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45(2):228–247

    Article  CAS  PubMed  Google Scholar 

  65. Baker LC, Boult JK, Walker-Samuel S, et al. (2012) The HIF-pathway inhibitor NSC-134754 induces metabolic changes and anti-tumour activity while maintaining vascular function. Br J Cancer 106(10):1638–1647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wang H, Fei B (2010) Diffusion-weighted MRI for monitoring tumor response to photodynamic therapy. J Magn Reson Imaging 32(2):409–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Graham TJ, Box G, Tunariu N, et al. (2014) Preclinical evaluation of imaging biomarkers for prostate cancer bone metastasis and response to cabozantinib. J Natl Cancer Inst 106(4):dju033

    Article  PubMed  Google Scholar 

  68. Blackledge MD, Collins DJ, Tunariu N, et al. (2014) Assessment of treatment response by total tumor volume and global apparent diffusion coefficient using diffusion-weighted MRI in patients with metastatic bone disease: a feasibility study. PLoS One 9(4):e91779

    Article  PubMed  PubMed Central  Google Scholar 

  69. Park SY, Kim CK, Park BK, et al. (2012) Early changes in apparent diffusion coefficient from diffusion-weighted MR imaging during radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys 83(2):749–755

    Article  PubMed  Google Scholar 

  70. Decker G, Murtz P, Gieseke J, et al. (2014) Intensity-modulated radiotherapy of the prostate: dynamic ADC monitoring by DWI at 3.0 T. Radiother Oncol 113(1):115–120

    Article  PubMed  Google Scholar 

  71. Song I, Kim CK, Park BK, Park W (2010) Assessment of response to radiotherapy for prostate cancer: value of diffusion-weighted MRI at 3 T. AJR Am J Roentgenol 194(6):W477–W482

    Article  PubMed  Google Scholar 

  72. Liu L, Wu N, Ouyang H, Dai JR, Wang WH (2014) Diffusion-weighted MRI in early assessment of tumour response to radiotherapy in high-risk prostate cancer. Br J Radiol 87(1043):20140359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Viswanath S, Toth R, Rusu M, et al. (2013) Quantitative evaluation of treatment related changes on multi-parametric MRI after laser interstitial thermal therapy of prostate cancer. Proc SPIE Int Soc Opt Eng 8671:86711F

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hebert Alberto Vargas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wibmer, A.G., Sala, E., Hricak, H. et al. The expanding landscape of diffusion-weighted MRI in prostate cancer. Abdom Radiol 41, 854–861 (2016). https://doi.org/10.1007/s00261-016-0646-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-016-0646-6

Keywords

Navigation