Skip to main content

Advertisement

Log in

Diagnostic performance of molecular imaging methods in predicting the progression from mild cognitive impairment to dementia: an updated systematic review

  • Review Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Epidemiological and logistical reasons are slowing the clinical validation of the molecular imaging biomarkers in the initial stages of neurocognitive disorders. We provide an updated systematic review of the recent advances (2017–2022), highlighting methodological shortcomings.

Methods

Studies reporting the diagnostic accuracy values of the molecular imaging techniques (i.e., amyloid-, tau-, [18F]FDG-PETs, DaT-SPECT, and cardiac [123I]-MIBG scintigraphy) in predicting progression from mild cognitive impairment (MCI) to dementia were selected according to the Preferred Reporting Items for a Systematic Review and Meta-Analysis (PRISMA) method and evaluated with the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. Main eligibility criteria were as follows: (1) ≥ 50 subjects with MCI, (2) follow-up ≥ 3 years, (3) gold standard: progression to dementia or diagnosis on pathology, and (4) measures of prospective accuracy.

Results

Sensitivity (SE) and specificity (SP) in predicting progression to dementia, mainly to Alzheimer’s dementia were 43–100% and 63–94% for [18F]FDG-PET and 64–94% and 48–93% for amyloid-PET. Longitudinal studies were lacking for less common disorders (Dementia with Lewy bodies-DLB and Frontotemporal lobe degeneration-FTLD) and for tau-PET, DaT-SPECT, and [123I]-MIBG scintigraphy. Therefore, the accuracy values from cross-sectional studies in a smaller sample of subjects (n > 20, also including mild dementia stage) were chosen as surrogate outcomes. DaT-SPECT showed 47–100% SE and 71–100% SP in differentiating Lewy body disease (LBD) from non-LBD conditions; tau-PET: 88% SE and 100% SP in differentiating DLB from Posterior Cortical Atrophy. [123I]-MIBG scintigraphy differentiated LBD from non-LBD conditions with 47–100% SE and 71–100% SP.

Conclusion

Molecular imaging has a moderate-to-good accuracy in predicting the progression of MCI to Alzheimer’s dementia. Longitudinal studies are sparse in non-AD conditions, requiring additional efforts in these settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are all included in the present manuscript and in the supplementary materials.

References

  1. Frisoni GB, Festari C, Massa F, Cotta Ramusino M, Orini S, Aarsland D, et al. European inter-societal recommendations for the biomarker-based diagnosis of neurocognitive disorders. Accepted for publication in Lancet Neurol.

  2. Herholz K. PET studies in dementia. Ann Nucl Med. 2003;17:79–89.

    Article  PubMed  Google Scholar 

  3. Zimmer ER, Parent MJ, Souza DG, Leuzy A, Lecrux C, Kim H, et al. [18F]FDG PET signal is driven by astroglial glutamate transport. Nat Neurosci. 2017;20:393–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nobili F, Arbizu J, Bouwman F, Drzezga A, Agosta F, Nestor P, et al. EANM-EAN recommendations for the use of brain 18 F-Fluorodeoxyglucose Positron Emission Tomography (FDG-PET) in neurodegenerative cognitive impairment and dementia: Delphi consensus. Eur J Neurol. 2018;25:1201–17.

    Article  CAS  PubMed  Google Scholar 

  5. Johnson KA, Minoshima S, Bohnen NI, Donohoe KJ, Foster NL, Herscovitch P, et al. Appropriate use criteria for amyloid PET: a report of the Amyloid Imaging Task Force, the Society of Nuclear Medicine and Molecular Imaging, and the Alzheimer’s Association. Alzheimer’s Dement. 2013;54:476–90.

    CAS  Google Scholar 

  6. Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 2011;7:270–9.

    Article  Google Scholar 

  7. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 2011;7:263–9.

    Article  Google Scholar 

  8. Jack CR, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA Research framework: toward a biological definition of Alzheimer’s disease. Alzheimer’s Dement. 2018;14:535–62.

    Article  Google Scholar 

  9. Schöll M, Maass A, Mattsson N, Ashton NJ, Blennow K, Zetterberg H, et al. Biomarkers for tau pathology. Mol Cell Neurosci. 2019;97:18–33.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kägi G, Bhatia KP, Tolosa E. The role of DAT-SPECT in movement disorders. J Neurol Neurosurg Psychiatry. 2010;81:5–12.

    Article  PubMed  Google Scholar 

  11. Rascol O, Schelosky L. 123 I-metaiodobenzylguanidine scintigraphy in Parkinson’s disease and related disorders. Mov Disord. 2009;24:S732–41.

    Article  PubMed  Google Scholar 

  12. Garibotto V, Herholz K, Boccardi M, Picco A, Varrone A, Nordberg A, et al. Clinical validity of brain fluorodeoxyglucose positron emission tomography as a biomarker for Alzheimer’s disease in the context of a structured 5-phase development framework. Neurobiol Aging. 2017;52:183–95.

    Article  CAS  PubMed  Google Scholar 

  13. Chiotis K, Saint-Aubert L, Boccardi M, Gietl A, Picco A, Varrone A, et al. Clinical validity of increased cortical uptake of amyloid ligands on PET as a biomarker for Alzheimer’s disease in the context of a structured 5-phase development framework. Neurobiol Aging. 2017;52:214–27.

    Article  CAS  PubMed  Google Scholar 

  14. Sonni I, Ratib O, Boccardi M, Picco A, Herholz K, Nobili F, et al. Clinical validity of presynaptic dopaminergic imaging with 123I-ioflupane and noradrenergic imaging with 123I-MIBG in the differential diagnosis between Alzheimer’s disease and Dementia with Lewy bodies in the context of a structured 5-phase development framework. Neurobiol Aging. 2017;52:228–42.

    Article  CAS  PubMed  Google Scholar 

  15. Wolters EE, Dodich A, Boccardi M, Corre J, Drzezga A, Hansson O, et al. Clinical validity of increased cortical uptake of [18F]flortaucipir on PET as a biomarker for Alzheimer’s disease in the context of a structured 5-phase biomarker development framework. Eur J Nucl Med Mol Imaging. 2021;48:2097–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Frisoni GB, Jack CR, Winblad B. Alzheimer’s disease biomarker development: a call to funding bodies. Neurobiol Aging. 2017;52:117–8.

    Article  PubMed  Google Scholar 

  17. Cotta Ramusino M, Perini G, Altomare D, Barbarino P, Weidner W, Salvini Porro G, et al. Outcomes of clinical utility in amyloid-PET studies: state of art and future perspectives. Eur J Nucl Med Mol Imaging. 2021;48:2157–68.

    Article  PubMed  PubMed Central  Google Scholar 

  18. McKeith IG, Ferman TJ, Thomas AJ, Blanc F, Boeve BF, Fujishiro H, et al. Research criteria for the diagnosis of prodromal Dementia with Lewy bodies. Neurology. 2020;94:743–55.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Taragano FE, Allegri RF, Lyketsos C. Mild behavioral impairment: a prodromal stage of dementia. Dement Neuropsychol. 2008;2:256–60.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Rogalski EJ, Mesulam MM. Clinical trajectories and biological features of Primary Progressive Aphasia (PPA). Curr Alzheimer Res. 2009;6:331–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372: n71.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Shea BJ, Reeves BC, Wells G, Thuku M, Hamel C, Moran J, et al. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ. 2017;358:j4008. https://doi.org/10.1136/bmj.j4008.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Boccardi M, Festari C, Altomare D, Gandolfo F, Orini S, Nobili F, et al. Assessing FDG-PET diagnostic accuracy studies to develop recommendations for clinical use in dementia. Eur J Nucl Med Mol Imaging. 2018;45:1470–86.

    Article  CAS  PubMed  Google Scholar 

  24. Whiting PF, Rutjes AWS, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011;155:529–36.

    Article  PubMed  Google Scholar 

  25. Pagani M, Giuliani A, Öberg J, De Carli F, Morbelli S, Girtler N, et al. Progressive disintegration of brain networking from normal aging to Alzheimer disease: analysis of independent components of 18F-FDG PET data. J Nucl Med. 2017;58:1132–9.

    Article  PubMed  Google Scholar 

  26. Pagani M, Nobili F, Morbelli S, Arnaldi D, Giuliani A, Öberg J, et al. Early identification of MCI converting to AD: a FDG PET study. Eur J Nucl Med Mol Imaging. 2017;44:2042–52.

    Article  CAS  PubMed  Google Scholar 

  27. Popuri K, Balachandar R, Alpert K, Lu D, Bhalla M, Mackenzie IR, et al. Development and validation of a novel dementia of Alzheimer’s type (DAT) score based on metabolism FDG-PET imaging. Neuroimage Clin. 2018;18:802–13.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Meles SK, Pagani M, Arnaldi D, De Carli F, Dessi B, Morbelli S, et al. The Alzheimer’s disease metabolic brain pattern in mild cognitive impairment. J Cereb Blood Flow Metab. 2017;37:3643–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Caminiti SP, Sala A, Iaccarino L, Beretta L, Pilotto A, Gianolli L, et al. Brain glucose metabolism in Lewy body dementia: implications for diagnostic criteria. Alzheimers Res Ther. 2019;11:20.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tripathi M, Tripathi M, Parida GK, Kumar R, Dwivedi S, Nehra A, et al. Biomarker-based prediction of progression to dementia: F-18 FDG-PET in amnestic MCI. Neurol India. 2019;67:1310–7.

    Article  PubMed  Google Scholar 

  31. Santangelo R, Masserini F, Agosta F, Sala A, Caminiti SP, Cecchetti G, et al. CSF p-tau/Aβ42 ratio and brain FDG-PET may reliably detect MCI “imminent” converters to AD. Eur J Nucl Med Mol Imaging. 2020;47:3152–64.

    Article  CAS  PubMed  Google Scholar 

  32. Gupta Y, Kim JI, Kim BC, Kwon GR. Classification and graphical analysis of Alzheimer’s disease and its prodromal stage using multimodal features from structural, diffusion, and functional neuroimaging data and the APOE genotype. Front Aging Neurosci. 2020;12:238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lowe VJ, Lundt ES, Albertson SM, Przybelski SA, Senjem ML, Parisi JE, et al. Neuroimaging correlates with neuropathologic schemes in neurodegenerative disease. Alzheimers Dement. 2019;15:927–39.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Liu K, Chen K, Yao L, Guo X. Prediction of mild cognitive impairment conversion using a combination of independent component analysis and the Cox model. Front Hum Neurosci. 2017;11:33. https://doi.org/10.3389/fnhum.2017.00033.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Katako A, Shelton P, Goertzen AL, Levin D, Bybel B, Aljuaid M, et al. Machine learning identified an Alzheimer’s disease-related FDG-PET pattern which is also expressed in Lewy body dementia and Parkinson’s disease dementia. Sci Rep. 2018;8(1):13236. https://doi.org/10.1038/s41598-018-31653-6.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Iaccarino L, Sala A, Perani D, Alzheimer’s Disease Neuroimaging Initiative. Predicting long-term clinical stability in amyloid-positive subjects by FDG-PET. Ann Clin Transl Neurol. 2019;6(6):1113–20. https://doi.org/10.1002/acn3.782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Teng L, Li Y, Zhao Y, Hu T, Zhang Z, Yao Z, et al. Predicting MCI progression with FDG-PET and cognitive scores: a longitudinal study. BMC Neurol. 2020;20(1):148. https://doi.org/10.1186/s12883-020-01728-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Huang Y, Xu J, Zhou Y, Tong T, Zhuang X, Alzheimer’s Disease Neuroimaging Initiative (ADNI). Diagnosis of Alzheimer’s disease via multi-modality 3D convolutional neural network. Front Neurosci. 2019;13:509. https://doi.org/10.3389/fnins.2019.00509.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Yee E, Popuri K, Beg MF, Alzheimer’s Disease Neuroimaging Initiative. Quantifying brain metabolism from FDG-PET images into a probability of Alzheimer’s dementia score. Hum Brain Mapp. 2020;41(1):5–16. https://doi.org/10.1002/hbm.24783.

    Article  PubMed  Google Scholar 

  40. Blum D, Liepelt-Scarfone I, Berg D, Gasser T, la Fougère C, Reimold M, Alzheimer’s Disease Neuroimaging Initiative. Controls-based denoising, a new approach for medical image analysis, improves prediction of conversion to Alzheimer’s disease with FDG-PET. Eur J Nucl Med Mol Imaging. 2019;46(11):2370–9. https://doi.org/10.1007/s00259-019-04400-w.

    Article  PubMed  Google Scholar 

  41. Lu D, Popuri K, Ding GW, Balachandar R, Beg MF, Alzheimer’s Disease Neuroimaging Initiative. Multiscale deep neural network based analysis of FDG-PET images for the early diagnosis of Alzheimer’s disease. Med Image Anal. 2018;46:26–34. https://doi.org/10.1016/j.media.2018.02.002.

    Article  PubMed  Google Scholar 

  42. Altomare D, Ferrari C, Caroli A, Galluzzi S, Prestia A, van der Flier WM, et al. Prognostic value of Alzheimer’s biomarkers in mild cognitive impairment: the effect of age at onset. J Neurol. 2019;266(10):2535–45. https://doi.org/10.1007/s00415-019-09441-7.

    Article  CAS  PubMed  Google Scholar 

  43. Choi H, Jin KH, Alzheimer’s Disease Neuroimaging Initiative. Predicting cognitive decline with deep learning of brain metabolism and amyloid imaging. Behav Brain Res. 2018;344:103–9. https://doi.org/10.1016/j.bbr.2018.02.017.

    Article  CAS  PubMed  Google Scholar 

  44. Ben Bouallègue F, Mariano-Goulart D, Payoux P, Alzheimer’s Disease Neuroimaging Initiative (ADNI). Joint Assessment of quantitative 18F-Florbetapir and 18F-FDG regional uptake using baseline data from the ADNI. J Alzheimers Dis. 2018;62(1):399–408. https://doi.org/10.3233/JAD-170833.

    Article  CAS  PubMed  Google Scholar 

  45. Inui Y, Ito K, Kato T, SEAD-J Study Group. Longer-term investigation of the value of 18F-FDG-PET and magnetic resonance imaging for predicting the conversion of mild cognitive impairment to Alzheimer’s disease: a multicenter study. J Alzheimers Dis. 2017;60(3):877–87. https://doi.org/10.3233/JAD-170395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pan X, Phan TL, Adel M, Fossati C, Gaidon T, Wojak J, et al. Multi-view separable pyramid network for AD prediction at MCI stage by 18F-FDG brain PET imaging. IEEE Trans Med Imaging. 2021;40(1):81–92. https://doi.org/10.1109/TMI.2020.3022591.

    Article  PubMed  Google Scholar 

  47. Wang M, Yan Z, Xiao SY, Zuo C, Jiang J. A novel metabolic connectome method to predict progression to mild cognitive impairment. Behav Neurol. 2020;2020:2825037. https://doi.org/10.1155/2020/2825037.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zhou P, Zeng R, Yu L, Feng Y, Chen C, Li F, et al. Deep-learning radiomics for discrimination conversion of Alzheimer’s disease in patients with mild cognitive impairment: a study based on 18F-FDG PET imaging. Front Aging Neurosci. 2021;13:764872. https://doi.org/10.3389/fnagi.2021.764872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tondo G, Carli G, Santangelo R, Mattoli MV, Presotto L, Filippi M, et al. Biomarker-based stability in limbic-predominant amnestic mild cognitive impairment. Eur J Neurol. 2021;28(4):1123–33. https://doi.org/10.1111/ene.14639.

    Article  PubMed  Google Scholar 

  50. Kang SW, Jeon S, Lee YG, Park M, Baik K, Jung JH, et al. Implication of metabolic and dopamine transporter PET in Dementia with Lewy bodies. Sci Rep. 2021;11(1):14394. https://doi.org/10.1038/s41598-021-93442-y.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  51. Etminani K, Soliman A, Davidsson A, Chang JR, Martínez-Sanchis B, Byttner S, et al. A 3D deep learning model to predict the diagnosis of Dementia with Lewy bodies, Alzheimer’s disease, and mild cognitive impairment using brain 18F-FDG PET. Eur J Nucl Med Mol Imaging. 2022;49(2):563–84. https://doi.org/10.1007/s00259-021-05483-0.

    Article  CAS  PubMed  Google Scholar 

  52. Gupta V, Verma R, Ranjan R, Belho ES, Seniaray N, Dinand V, et al. Metabolic imaging patterns in posterior cortical atrophy and Lewy body dementia. Nucl Med Commun. 2019;40(12):1275–82. https://doi.org/10.1097/MNM.0000000000001102.

    Article  CAS  PubMed  Google Scholar 

  53. Gjerum L, Frederiksen KS, Henriksen OM, Law I, Anderberg L, Andersen BB, et al. A visual rating scale for cingulate island sign on 18F-FDG-PET to differentiate Dementia with Lewy bodies and Alzheimer’s disease. J Neurol Sci. 2020;410:116645. https://doi.org/10.1016/j.jns.2019.116645.

    Article  CAS  PubMed  Google Scholar 

  54. Iizuka T, Kameyama M. Spatial metabolic profiles to discriminate Dementia with Lewy bodies from Alzheimer disease. J Neurol. 2020;267(7):1960–9. https://doi.org/10.1007/s00415-020-09790-8.

    Article  PubMed  Google Scholar 

  55. Nazem A, Tang CC, Spetsieris P, Dresel C, Gordon ML, Diehl-Schmid J, et al. A multivariate metabolic imaging marker for behavioral variant Frontotemporal Dementia. Alzheimers Dement (Amst). 2018;10:583–94. https://doi.org/10.1016/j.dadm.2018.07.009.

    Article  PubMed  Google Scholar 

  56. Krudop WA, Dols A, Kerssens CJ, Eikelenboom P, Prins ND, Möller C, et al. The pitfall of behavioral variant Frontotemporal Dementia mimics despite multidisciplinary application of the FTDC criteria. J Alzheimers Dis. 2017;60(3):959–75. https://doi.org/10.3233/JAD-170608.

    Article  PubMed  Google Scholar 

  57. Ford JN, Sweeney EM, Skafida M, Glynn S, Amoashiy M, Lange DJ, et al. Heuristic scoring method utilizing FDG-PET statistical parametric mapping in the evaluation of suspected Alzheimer disease and frontotemporal lobar degeneration. Am J Nucl Med Mol Imaging. 2021;11(4):313–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Beyer L, Brendel M, Scheiwein F, Sauerbeck J, Hosakawa C, Alberts I, et al. Improved risk stratification for progression from mild cognitive impairment to Alzheimer’s disease with a multi-analytical evaluation of amyloid-β positron emission tomography. J Alzheimers Dis. 2020;74:101–12.

    Article  CAS  PubMed  Google Scholar 

  59. Wolk DA, Sadowsky C, Safirstein B, Rinne JO, Duara R, Perry R, et al. Use of flutemetamol F 18-labeled positron emission tomography and other biomarkers to assess risk of clinical progression in patients with amnestic mild cognitive impairment. JAMA Neurol. 2018;75:1114–23.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Tan RH, Kril JJ, Yang Y, Tom N, Hodges JR, Villemagne VL, et al. Assessment of amyloid β in pathologically confirmed Frontotemporal Dementia syndromes. Alzheimers Dement (Amst). 2017;9:10–20.

    Article  PubMed  Google Scholar 

  61. Ghirelli A, Tosakulwong N, Weigand SD, Clark HM, Ali F, Botha H, et al. Sensitivity-specificity of tau and amyloid β positron emission tomography in frontotemporal lobar degeneration. Ann Neurol. 2020;88:1009–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kantarci K, Lowe VJ, Chen Q, Przybelski SA, Lesnick TG, Schwarz CG, et al. β-amyloid PET and neuropathology in Dementia with Lewy bodies. Neurology. 2020;94:e282–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Miyagawa T, Przybelski SA, Maltais D, Min HK, Jordan L, Lesnick TG, et al. The value of multimodal imaging with 123I-FP-CIT SPECT in differential diagnosis of Dementia with Lewy bodies and Alzheimer’s disease dementia. Neurobiol Aging. 2021;99:11–8.

    Article  CAS  PubMed  Google Scholar 

  64. Blazhenets G, Ma Y, Sörensen A, Schiller F, Rücker G, Eidelberg D, et al. Predictive value of 18F-Florbetapir and 18F-FDG PET for conversion from mild cognitive impairment to Alzheimer dementia. J Nucl Med. 2020;61(4):597–603. https://doi.org/10.2967/jnumed.119.230797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ben Bouallègue F, Mariano-Goulart D, Payoux P, Alzheimer’s Disease Neuroimaging Initiative (ADNI). Comparison of CSF markers and semi-quantitative amyloid PET in Alzheimer’s disease diagnosis and in cognitive impairment prognosis using the ADNI-2 database. Alzheimers Res Ther. 2017;9(1):32. https://doi.org/10.1186/s13195-017-0260-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Popescu SG, Whittington A, Gunn RN, Matthews PM, Glocker B, Sharp DJ, et al. Nonlinear biomarker interactions in conversion from mild cognitive impairment to Alzheimer’s disease. Hum Brain Mapp. 2020;41(15):4406–18. https://doi.org/10.1002/hbm.25133.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Yoo HS, Chung SJ, Kim SJ, Oh JS, Kim JS, Ye BS, et al. The role of 18F-FP-CIT PET in differentiation of progressive supranuclear palsy and Frontotemporal Dementia in the early stage. Eur J Nucl Med Mol Imaging. 2018;45:1585–95.

    Article  PubMed  Google Scholar 

  68. Maltais DD, Jordan LG, Min HK, Miyagawa T, Przybelski SA, Lesnick TG, et al. Confirmation of 123I-FP-CIT SPECT quantification methods in Dementia with Lewy bodies and other neurodegenerative disorders. J Nucl Med. 2020;61:1628–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nicastro N, Garibotto V, Allali G, Assal F, Burkhard PR. Added value of combined semi-quantitative and visual [123I]FP-CIT SPECT analyses for the diagnosis of Dementia with Lewy bodies. Clin Nucl Med. 2017;42:e96–102.

    Article  PubMed  Google Scholar 

  70. Inagawa Y, Kanetaka H, Tsugawa A, Sakurai S, Serisawa S, Shimizu S, et al. Efficacy of olfactory and pareidolia tests compared with that of indicative biomarkers in diagnosis of Dementia with Lewy bodies. Front Neurol. 2020;11:540291.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Sakamoto F, Shiraishi S, Ogasawara K, Tsuda N, Nakagawa M, Tomiguchi S, et al. A diagnostic strategy for Lewy body disease using DAT-SPECT, MIBG and combined index. Ann Nucl Med. 2020;34:415–23.

    Article  CAS  PubMed  Google Scholar 

  72. Thomas AJ, Donaghy P, Roberts G, Colloby SJ, Barnett NA, Petrides G, et al. Diagnostic accuracy of dopaminergic imaging in prodromal Dementia with Lewy bodies. Psychol Med. 2019;49(3):396–402. https://doi.org/10.1017/S0033291718000995.

    Article  PubMed  Google Scholar 

  73. Shimizu S, Kanetaka H, Hirao K, Fukasawa R, Namioka N, Hatanaka H, et al. Neuroimaging for diagnosing Dementia with Lewy bodies: what is the best neuroimaging technique in discriminating Dementia with Lewy bodies from Alzheimer’s disease? Geriatr Gerontol Int. 2017;17(5):819–24. https://doi.org/10.1111/ggi.12794.

    Article  PubMed  Google Scholar 

  74. Miyagawa T, Przybelski SA, Maltais D, Min HK, Jordan L, Lesnick TG, et al. The value of multimodal imaging with 123I-FP-CIT SPECT in differential diagnosis of Dementia with Lewy bodies and Alzheimer’s disease dementia. Neurobiol Aging. 2021;99:11–8. https://doi.org/10.1016/j.neurobiolaging.2020.12.009.

    Article  CAS  PubMed  Google Scholar 

  75. Roberts G, Donaghy PC, Lloyd J, Durcan R, Petrides G, Colloby SJ, et al. Accuracy of dopaminergic imaging as a biomarker for mild cognitive impairment with Lewy bodies. Br J Psychiatry. 2021;218(5):276–82. https://doi.org/10.1192/bjp.2020.234.

    Article  PubMed  Google Scholar 

  76. Lloyd JJ, Petrides G, Donaghy PC, Colloby SJ, Attems J, O’Brien JT, et al. A new visual rating scale for ioflupane imaging in Lewy body disease. Neuroimage Clin. 2018;20:823–9. https://doi.org/10.1016/j.nicl.2018.09.012.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Nicastro N, Burkhard PR, Garibotto V. Scan without evidence of dopaminergic deficit (SWEDD) in degenerative Parkinsonism and Dementia with Lewy bodies: a prospective study. J Neurol Sci. 2018;385:17–21. https://doi.org/10.1016/j.jns.2017.11.039.

    Article  PubMed  Google Scholar 

  78. Nedelska Z, Josephs KA, Graff-Radford J, Przybelski SA, Lesnick TG, Boeve BF, et al. 18 F-AV-1451 uptake differs between Dementia with Lewy bodies and posterior cortical atrophy. Mov Disord. 2019;34:344–52.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Manabe Y, Inui Y, Toyama H, Kosaka K. 123I-metaiodobenzylguanidine myocardial scintigraphy with early images alone is useful for the differential diagnosis of Dementia with Lewy bodies. Psychiatry Res Neuroimaging. 2017;261:75–9. https://doi.org/10.1016/j.pscychresns.2016.12.011.

    Article  PubMed  Google Scholar 

  80. Sakamoto F, Shiraishi S, Tsuda N, Hashimoto M, Tomiguchi S, Ikeda M, et al. Diagnosis of Dementia with Lewy bodies: can 123I-IMP and 123I-MIBG scintigraphy yield new core features? Br J Radiol. 2017;90(1070):20160156. https://doi.org/10.1259/bjr.20160156.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Nobili F, Festari C, Altomare D, Agosta F, Orini S, Van Laere K, et al. Automated assessment of FDG-PET for differential diagnosis in patients with neurodegenerative disorders. Eur J Nucl Med Mol Imaging. 2018;45:1557–66.

    Article  CAS  PubMed  Google Scholar 

  82. Rabinovici GD, Rosen HJ, Alkalay A, Kornak J, Furst AJ, Agarwal N, et al. Amyloid vs FDG-PET in the differential diagnosis of AD and FTLD. Neurology. 2011;77:2034–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Arbizu J, Festari C, Altomare D, Walker Z, Bouwman F, Rivolta J, et al. Clinical utility of FDG-PET for the differential diagnosis in MCI. Eur J Nucl Med Mol Imaging. 2018;45:1497–508.

    Article  CAS  PubMed  Google Scholar 

  84. Landau SM, Thomas BA, Thurfjell L, Schmidt M, Margolin R, Mintun M, et al. Amyloid PET imaging in Alzheimer’s disease: a comparison of three radiotracers. Eur J Nucl Med Mol Imaging. 2014;41:1398–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cecchin D, Barthel H, Poggiali D, Cagnin A, Tiepolt S, Zucchetta P, et al. A new integrated dual time-point amyloid PET/MRI data analysis method. Eur J Nucl Med Mol Imaging. 2017;44:2060–72.

    Article  CAS  PubMed  Google Scholar 

  86. Boccalini C, Peretti DE, Ribaldi F, Scheffler M, Stampacchia S, Tomczyk S, et al. Early-phase 18F-florbetapir and 18F-flutemetamol images as proxies of brain metabolism in a memory clinic setting. J Nucl Med. 2022;64:266–73.

    Article  PubMed  Google Scholar 

  87. Lanfranchi F, Arnaldi D, Miceli A, Mattioli P, D’Amico F, Raffa S, et al. Different z-score cut-offs for striatal binding ratio (SBR) of DaT SPECT are needed to support the diagnosis of Parkinson’s disease (PD) and Dementia with Lewy bodies (DLB). Eur J Nucl Med Mol Imaging. 2023;50:1090–102.

    Article  PubMed  Google Scholar 

  88. Ossenkoppele R, Smith R, Mattsson-Carlgren N, Groot C, Leuzy A, Strandberg O, et al. Accuracy of tau positron emission tomography as a prognostic marker in preclinical and prodromal Alzheimer disease: a head-to-head comparison against amyloid positron emission tomography and magnetic resonance imaging. JAMA Neurol. 2021;78:961–71.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The literature review was performed in the context of the European Intersocietal Consensus for the diagnosis of MCI and mild dementia [20] to assist the expert panel in determining the priority of biomarkers in the clinical workup of neurocognitive disorders. Co-authors SM and VG are the representatives of the European Association of Nuclear Medicine (EANM) for that effort. We thank EANM for the conceptual contribution to this work.

Funding

This work was supported by an unrestricted grant from F. Hoffmann-La Roche Ltd., Biogen International GmbH, Eisai Europe Limited, Life Molecular Imaging GmbH, and OM Pharma Suisse SA. Funders had no role in data collection, data analysis, and discussion of the results. FM is supported by NEXTGENERATIONEU (NGEU) and funded by the Ministry of University and Research (MUR), National Recovery and Resilience Plan (NRRP), project MNESYS (PE0000006) – A Multiscale integrated approach to the study of the nervous system in health and disease (DN. 1553 11.10.2022). MCR was supported by the Italian Ministry of Health “Ricerca Corrente 2022-2024” granted to IRCCS Mondino Foundation.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Matteo Cotta Ramusino, Federico Massa, Cristina Festari, Federica Gandolfo, Valentina Nicolosi, and Stefania Orini. The first draft of the manuscript was written by Matteo Cotta Ramusino, Federico Massa, and Cristina Festari, and all authors commented on previous versions of the manuscript. Giovanni Frisoni, Flavio Nobili, Silvia Morbelli, and Valentina Garibotto revised the final draft critically for important intellectual content. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Matteo Cotta Ramusino.

Ethics declarations

Ethics approval

This is a systematic literature review and therefore no ethical approval is required.

Competing interests

SM received speaker honoraria from GE Healthcare, Life Molecular Imaging, and Eli Lilly. VG received speaker honoraria (through her institution) from GE Healthcare, Siemens Healthineers, and Novo Nordisk. CF has acquired research support (for the institution) from the Italian Ministry of Health (RC).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cotta Ramusino, M., Massa, F., Festari, C. et al. Diagnostic performance of molecular imaging methods in predicting the progression from mild cognitive impairment to dementia: an updated systematic review. Eur J Nucl Med Mol Imaging (2024). https://doi.org/10.1007/s00259-024-06631-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00259-024-06631-y

Keywords

Navigation