Skip to main content

Advertisement

Log in

Prognostic value of Alzheimer’s biomarkers in mild cognitive impairment: the effect of age at onset

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Objective

The aim of this study is to assess the impact of age at onset on the prognostic value of Alzheimer’s biomarkers in a large sample of patients with mild cognitive impairment (MCI).

Methods

We measured Aβ42, t-tau, hippocampal volume on magnetic resonance imaging (MRI) and cortical metabolism on fluorodeoxyglucose–positron emission tomography (FDG-PET) in 188 MCI patients followed for at least 1 year. We categorised patients into earlier and later onset (EO/LO). Receiver operating characteristic curves and corresponding areas under the curve (AUCs) were performed to assess and compar the biomarker prognostic performances in EO and LO groups. Linear Model was adopted for estimating the time-to-progression in relation with earlier/later onset MCI groups and biomarkers.

Results

In earlier onset patients, all the assessed biomarkers were able to predict cognitive decline (p < 0.05), with FDG-PET showing the best performance. In later onset patients, all biomarkers but t-tau predicted cognitive decline (p < 0.05). Moreover, FDG-PET alone in earlier onset patients showed a higher prognostic value than the one resulting from the combination of all the biomarkers in later onset patients (earlier onset AUC 0.935 vs later onset AUC 0.753, p < 0.001). Finally, FDG-PET showed a different prognostic value between earlier and later onset patients (p = 0.040) in time-to-progression allowing an estimate of the time free from disease.

Discussion

FDG-PET may represent the most universal tool for the establishment of a prognosis in MCI patients and may be used for obtaining an onset-related estimate of the time free from disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dubois B, Feldman HH, Jacova C et al (2014) Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol 13:614–629. https://doi.org/10.1016/S1474-4422(14)70090-0

    Article  PubMed  Google Scholar 

  2. Jack CRJ, Albert MS, Knopman DS et al (2011) Introduction to the recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:257–262. https://doi.org/10.1016/j.jalz.2011.03.004

    Article  PubMed  PubMed Central  Google Scholar 

  3. Duits FH, Martinez-Lage P, Paquet C et al (2016) Performance and complications of lumbar puncture in memory clinics: results of the multicenter lumbar puncture feasibility study. Alzheimers Dement 12:154–163. https://doi.org/10.1016/j.jalz.2015.08.003

    Article  PubMed  Google Scholar 

  4. Frisoni GB, Bocchetta M, Chetelat G et al (2013) Imaging markers for Alzheimer disease: which vs how. Neurology 81:487–500. https://doi.org/10.1212/WNL.0b013e31829d86e8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Molinuevo JL, Blennow K, Dubois B et al (2014) The clinical use of cerebrospinal fluid biomarker testing for Alzheimer’s disease diagnosis: a consensus paper from the Alzheimer’s Biomarkers Standardization Initiative. Alzheimers Dement 10:808–817. https://doi.org/10.1016/j.jalz.2014.03.003

    Article  PubMed  Google Scholar 

  6. Hansson O, Zetterberg H, Buchhave P et al (2006) Association between CSF biomarkers and incipient Alzheimer’s disease in patients with mild cognitive impairment: a follow-up study. Lancet Neurol 5:228–234. https://doi.org/10.1016/S1474-4422(06)70355-6

    Article  CAS  PubMed  Google Scholar 

  7. Mattsson N, Zetterberg H, Hansson O et al (2009) CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment. JAMA 302:385–393. https://doi.org/10.1001/jama.2009.1064

    Article  CAS  PubMed  Google Scholar 

  8. Prestia A, Caroli A, Wade SK et al (2015) Prediction of AD dementia by biomarkers following the NIA-AA and IWG diagnostic criteria in MCI patients from three European memory clinics. Alzheimers Dement 11:1191–1201. https://doi.org/10.1016/j.jalz.2014.12.001

    Article  PubMed  Google Scholar 

  9. Prestia A, Caroli A, Herholz K et al (2013) Diagnostic accuracy of markers for prodromal Alzheimer’s disease in independent clinical series. Alzheimers Dement 9:677–686. https://doi.org/10.1016/j.jalz.2012.09.016

    Article  PubMed  PubMed Central  Google Scholar 

  10. Shaffer JL, Petrella JR, Sheldon FC et al (2013) Predicting cognitive decline in subjects at risk for Alzheimer disease by using combined cerebrospinal fluid, MR imaging, and PET biomarkers. Radiology 266:583–591. https://doi.org/10.1148/radiol.12120010

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yu P, Dean RA, Hall SD et al (2012) Enriching amnestic mild cognitive impairment populations for clinical trials: optimal combination of biomarkers to predict conversion to dementia. J Alzheimers Dis 32:373–385. https://doi.org/10.3233/JAD-2012-120832

    Article  CAS  PubMed  Google Scholar 

  12. Frisoni GB, Pievani M, Testa C et al (2007) The topography of grey matter involvement in early and late onset Alzheimer’s disease. Brain 130:720–730. https://doi.org/10.1093/brain/awl377

    Article  PubMed  Google Scholar 

  13. Moller C, Vrenken H, Jiskoot L et al (2013) Different patterns of gray matter atrophy in early- and late-onset Alzheimer’s disease. Neurobiol Aging 34:2014–2022. https://doi.org/10.1016/j.neurobiolaging.2013.02.013

    Article  PubMed  Google Scholar 

  14. Bouwman FH, Schoonenboom NSM, Verwey NA et al (2009) CSF biomarker levels in early and late onset Alzheimer’s disease. Neurobiol Aging 30:1895–1901. https://doi.org/10.1016/j.neurobiolaging.2008.02.007

    Article  CAS  PubMed  Google Scholar 

  15. Ossenkoppele R, Zwan MD, Tolboom N et al (2012) Amyloid burden and metabolic function in early-onset Alzheimer’s disease: parietal lobe involvement. Brain 135:2115–2125. https://doi.org/10.1093/brain/aws113

    Article  PubMed  Google Scholar 

  16. Schmand B, Eikelenboom P, van Gool WA (2011) Value of neuropsychological tests, neuroimaging, and biomarkers for diagnosing Alzheimer’s disease in younger and older age cohorts. J Am Geriatr Soc 59:1705–1710. https://doi.org/10.1111/j.1532-5415.2011.03539.x

    Article  PubMed  Google Scholar 

  17. Matsunari I, Samuraki M, Chen W-P et al (2007) Comparison of 18F-FDG PET and optimized voxel-based morphometry for detection of Alzheimer’s disease: aging effect on diagnostic performance. J Nucl Med 48:1961–1970. https://doi.org/10.2967/jnumed.107.042820

    Article  PubMed  Google Scholar 

  18. Mattsson N, Rosen E, Hansson O et al (2012) Age and diagnostic performance of Alzheimer disease CSF biomarkers. Neurology 78:468–476. https://doi.org/10.1212/WNL.0b013e3182477eed

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chiaravalloti Agostino, Koch Giacomo, Toniolo Sofia, Belli Lorena, Di Lorenzo Francesco, Gaudenzi Sara, Schillaci Orazio, Bozzali Marco, Giuseppe Sancesario AM (2016) Comparison between early-onset and late-onset Alzheimer’s disease patients with amnestic presentation: CSF and 18-F-FDG PET study. Dement Geriatr Cogn Dis Extra 6:108–119. https://doi.org/10.1159/000441776

    Article  PubMed  PubMed Central  Google Scholar 

  20. Vanhoutte M, Semah F, Rollin Sillaire A et al (2017) 18F-FDG PET hypometabolism patterns reflect clinical heterogeneity in sporadic forms of early-onset Alzheimer’s disease. Neurobiol Aging. https://doi.org/10.1016/j.neurobiolaging.2017.08.009

    Article  PubMed  Google Scholar 

  21. Falgàs N, Tort-Merino A, Balasa M et al (2019) Clinical applicability of diagnostic biomarkers in early-onset cognitive impairment. Eur J Neurol. https://doi.org/10.1111/ene.13945

    Article  PubMed  Google Scholar 

  22. Verclytte S, Lopes R, Lenfant P et al (2016) Cerebral hypoperfusion and hypometabolism detected by arterial spin labeling MRI and FDG-PET in early-onset Alzheimer’s disease. J Neuroimaging. https://doi.org/10.1111/jon.12264

    Article  PubMed  Google Scholar 

  23. Li K, Chan W, Doody RS et al (2017) Prediction of conversion to Alzheimer’s disease with longitudinal measures and time-to-event data. J Alzheimers Dis. https://doi.org/10.3233/JAD-161201

    Article  PubMed  PubMed Central  Google Scholar 

  24. Petersen RC, Smith GE, Waring SC et al (1999) Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 56:303–308

    Article  CAS  Google Scholar 

  25. O’Bryant SE, Humphreys JD, Smith GE et al (2008) Detecting dementia with the mini-mental state examination in highly educated individuals. Arch Neurol 65:963–967. https://doi.org/10.1001/archneur.65.7.963

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hensel A, Angermeyer MC, Riedel-Heller SG (2007) Measuring cognitive change in older adults: reliable change indices for the mini-mental state examination. J Neurol Neurosurg Psychiatry 78:1298–1303. https://doi.org/10.1136/jnnp.2006.109074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. McKhann G, Drachman D, Folstein M et al (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 34:939–944

    Article  CAS  Google Scholar 

  28. Herholz K, Salmon E, Perani D et al (2002) Discrimination between Alzheimer dementia and controls by automated analysis of multicenter FDG PET. Neuroimage 17:302–316

    Article  CAS  Google Scholar 

  29. Orimo H, Ito H, Suzuki T et al (2006) Reviewing the definition of “elderly”. Geriatr Gerontol Int 6:149–158. https://doi.org/10.1111/j.1447-0594.2006.00341.x

    Article  Google Scholar 

  30. Blagosklonny MV (2010) Why human lifespan is rapidly increasing: solving “longevity riddle” with “revealed-slow-aging” hypothesis. Aging (Albany NY). https://doi.org/10.18632/aging.100139

    Article  PubMed Central  Google Scholar 

  31. Jacobs JM, Maaravi Y, Cohen A et al (2012) Changing profile of health and function from age 70 to 85 years. Gerontology. https://doi.org/10.1159/000335238

    Article  PubMed  Google Scholar 

  32. Mendez MF (2017) Early-onset Alzheimer disease. Neurol Clin 35:263–281. https://doi.org/10.1016/j.ncl.2017.01.005

    Article  PubMed  PubMed Central  Google Scholar 

  33. Prestia A, Caroli A, van der Flier WM et al (2013) Prediction of dementia in MCI patients based on core diagnostic markers for Alzheimer disease. Neurology 80:1048–1056. https://doi.org/10.1212/WNL.0b013e3182872830

    Article  CAS  PubMed  Google Scholar 

  34. DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837–845

    Article  CAS  Google Scholar 

  35. Therneau T, Grambsch PM (2000) Modeling survival data: extending the Cox model. Springer, New York

    Book  Google Scholar 

  36. Schmand B, Eikelenboom P, van Gool WA (2012) Value of diagnostic tests to predict conversion to Alzheimer’s disease in young and old patients with amnestic mild cognitive impairment. J Alzheimers Dis 29:641–648. https://doi.org/10.3233/JAD-2012-111703

    Article  PubMed  Google Scholar 

  37. van Rossum IA, Vos SJB, Burns L et al (2012) Injury markers predict time to dementia in subjects with MCI and amyloid pathology. Neurology 79:1809–1816. https://doi.org/10.1212/WNL.0b013e3182704056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Landau SM, Lu M, Joshi AD et al (2013) Comparing positron emission tomography imaging and cerebrospinal fluid measurements of β-amyloid. Ann Neurol 74:826–836. https://doi.org/10.1002/ana.23908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zwan M, van Harten A, Ossenkoppele R et al (2014) Concordance between cerebrospinal fluid biomarkers and [11C]PIB PET in a memory clinic cohort. J Alzheimers Dis 41:801–807. https://doi.org/10.3233/JAD-132561

    Article  CAS  PubMed  Google Scholar 

  40. Caroli A, Prestia A, Chen K et al (2012) Summary metrics to assess Alzheimer disease-related hypometabolic pattern with 18F-FDG PET: head-to-head comparison. J Nucl Med 53:592–600. https://doi.org/10.2967/jnumed.111.094946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Haense C, Herholz K, Jagust WJ, Heiss WD (2009) Performance of FDG PET for detection of Alzheimer’s disease in two independent multicentre samples (NEST-DD and ADNI). Dement Geriatr Cogn Disord 28:259–266. https://doi.org/10.1159/000241879

    Article  CAS  PubMed  Google Scholar 

  42. Herholz K, Westwood S, Haense C, Dunn G (2011) Evaluation of a calibrated (18)F-FDG PET score as a biomarker for progression in Alzheimer disease and mild cognitive impairment. J Nucl Med 52:1218–1226. https://doi.org/10.2967/jnumed.111.090902

    Article  PubMed  Google Scholar 

  43. Frisoni GB, Fox NC, Jack CRJ et al (2010) The clinical use of structural MRI in Alzheimer disease. Nat Rev Neurol 6:67–77. https://doi.org/10.1038/nrneurol.2009.215

    Article  PubMed  PubMed Central  Google Scholar 

  44. Bobinski M, Wegiel J, Wisniewski HM et al (1996) Neurofibrillary pathology—correlation with hippocampal formation atrophy in Alzheimer disease. Neurobiol Aging 17:909–919

    CAS  PubMed  Google Scholar 

  45. Apostolova LG, Zarow C, Biado K et al (2015) Relationship between hippocampal atrophy and neuropathology markers: a 7T MRI validation study of the EADC-ADNI harmonized hippocampal segmentation protocol. Alzheimers Dement 11:139–150. https://doi.org/10.1016/j.jalz.2015.01.001

    Article  PubMed  PubMed Central  Google Scholar 

  46. den Heijer T, van der Lijn F, Koudstaal PJ et al (2010) A 10-year follow-up of hippocampal volume on magnetic resonance imaging in early dementia and cognitive decline. Brain 133:1163–1172. https://doi.org/10.1093/brain/awq048

    Article  Google Scholar 

  47. Palasí A, Gutiérrez-Iglesias B, Alegret M et al (2015) Differentiated clinical presentation of early and late-onset Alzheimer’s disease: is 65 years of age providing a reliable threshold? J Neurol 262:1238–1246. https://doi.org/10.1007/s00415-015-7698-3

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Data used in this article were partially collected by Translational Outpatient Memory Clinic—TOMC—working group at IRCCS Centro San Giovanni di Dio Fatebenefratelli in Brescia, Italy. Contributors to the TOMC, involved in data collection, are: G Amicucci, S Archetti, L Benussi, G Binetti, L Bocchio-Chiavetto, C Bonvicini, E Canu, F Caobelli, E Cavedo, E Chittò, M Cotelli, M Gennarelli, S Galluzzi, C Geroldi, R Ghidoni, R Giubbini, UP Guerra, G Kuffenschin, G Lussignoli, D Moretti, B Paghera, M Parapini, C Porteri, M Romano, S Rosini, I Villa, R Zanardini, O Zanetti. FB is supported by the NIHR UCLH biomedical research centre. Part of the data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (http://adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

Funding

EU data collection and sharing: The work was supported by the Swedish Research Council (project 05817), the Strategic Research Program in Neuroscience at Karolinska Institutet, the Swedish Brain Power. This work was also supported by the grants: sottoprogetto finalizzato Strategico 2006: “Strumenti e procedure diagnostiche per le demenze utilizzabili nella clinica ai fini della diagnosi precoce e differenziale, della individuazione delle forme a rapida o lenta progressione e delle forme con risposta ottimale alle attuali terapie”; Programma Strategico 2006, Convenzione 71; Programma Strategico 2007, Convenzione PS39, Ricerca Corrente Italian Ministry of Health. Some of the costs related to patient assessment and imaging and biomarker detection were funded thanks to an ad hoc grant from the Fitness e Solidarieta‘2006 and 2007 campaigns. The analyses of MRI data presented in the paper have been performed thanks to the neuGRID platform, which has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 283562. Alzheimer’s Disease Neuroimaging Initiative (ADNI) data: Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; BioClinica, Inc.; Biogen Idec Inc.; Bristol-Myers Squibb Company; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; GE Healthcare; Innogenetics, N.V.; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Medpace, Inc.; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Synarc Inc.; and Takeda Pharmaceutical Company. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (http://www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Clarissa Ferrari.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest to report.

Ethical standards

This study was approved by the ethics committee of each participating center and all participants were enrolled after written informed consent was obtained.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 557 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altomare, D., Ferrari, C., Caroli, A. et al. Prognostic value of Alzheimer’s biomarkers in mild cognitive impairment: the effect of age at onset. J Neurol 266, 2535–2545 (2019). https://doi.org/10.1007/s00415-019-09441-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-019-09441-7

Keywords

Navigation