Skip to main content

Advertisement

Log in

Deep learning applications in osteoarthritis imaging

  • Review Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Deep learning (DL) is one of the most exciting new areas in medical imaging. This article will provide a review of current applications of DL in osteoarthritis (OA) imaging, including methods used for cartilage lesion detection, OA diagnosis, cartilage segmentation, and OA risk assessment. DL techniques have been shown to have similar diagnostic performance as human readers for detecting and grading cartilage lesions within the knee on MRI. A variety of DL methods have been developed for detecting and grading the severity of knee OA and various features of knee OA on X-rays using standardized classification systems with diagnostic performance similar to human readers. Multiple DL approaches have been described for fully automated segmentation of cartilage and other knee tissues and have achieved higher segmentation accuracy than currently used methods with substantial reductions in segmentation times. Various DL models analyzing baseline X-rays and MRI have been developed for OA risk assessment. These models have shown high diagnostic performance for predicting a wide variety of OA outcomes, including the incidence and progression of radiographic knee OA, the presence and progression of knee pain, and future total knee replacement. The preliminary results of DL applications in OA imaging have been encouraging. However, many DL techniques require further technical refinement to maximize diagnostic performance. Furthermore, the generalizability of DL approaches needs to be further investigated in prospective studies using large image datasets acquired at different institutions with different imaging hardware before they can be implemented in clinical practice and research studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Erickson BJ, Korfiatis P, Akkus Z, Kline TL. Machine learning for medical imaging. Radiographics. 2017;37(2):505–15.

    Article  PubMed  Google Scholar 

  2. Binvignat M, Pedoia V, Butte AJ, Louati K, Klatzmann D, Berenbaum F, et al. Use of machine learning in osteoarthritis research: a systematic literature review. Rmd Open. 2022;8(1):e001998.

  3. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44.

    Article  CAS  PubMed  Google Scholar 

  4. Bedson J, Jordan K, Croft P. The prevalence and history of knee osteoarthritis in general practice: a case-control study. Fam Pract. 2005;22(1):103–8.

    Article  PubMed  Google Scholar 

  5. Chea P, Mandell JC. Current applications and future directions of deep learning in musculoskeletal radiology. Skeletal Radiol. 2020;49(2):183–97.

    Article  PubMed  Google Scholar 

  6. Goodfellow I , Bengio Y, Courville A. Deep learning. The MIT Press; 2016. p. 800. http://www.deeplearningbook.org.

  7. Quatman CE, Hettrich CM, Schmitt LC, Spindler KP. The clinical utility and diagnostic performance of magnetic resonance imaging for identification of early and advanced knee osteoarthritis: a systematic review. Am J Sports Med. 2011;39(7):1557–68.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Menashe L, Hirko K, Losina E, Kloppenburg M, Zhang W, Li L, et al. The diagnostic performance of MRI in osteoarthritis: a systematic review and meta-analysis. Osteoarthritis Cartilage. 2012;20(1):13–21.

    Article  CAS  PubMed  Google Scholar 

  9. Liu F, Zhou Z, Samsonov A, Blankenbaker D, Larison W, Kanarek A, et al. Deep learning approach for evaluating knee MR images: achieving high diagnostic performance for cartilage lesion detection. Radiology. 2018;289(1):160–9.

    Article  PubMed  Google Scholar 

  10. Pedoia V, Norman B, Mehany SN, Bucknor MD, Link TM, Majumdar S. 3D convolutional neural networks for detection and severity staging of meniscus and PFJ cartilage morphological degenerative changes in osteoarthritis and anterior cruciate ligament subjects. J Magn Reson Imaging. 2019;49(2):400–10.

    Article  PubMed  Google Scholar 

  11. Astuto B, Flament I, Namiri NK, Shah R, Bharadwaj U, Link TM, et al. Automatic deep learning-assisted detection and grading of abnormalities in knee MRI studies. Radiol Artif Intell. 2021;3(3):e200165.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kellgren JH, Lawrence JS. Radiological assessment of osteo-arthrosis. Ann Rheum Dis. 1957;16(4):494–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Altman RD, Gold GE. Atlas of individual radiographic features in osteoarthritis, revised. Osteoarthritis Cartilage. 2007;15(Suppl A):A1-56.

    Article  PubMed  Google Scholar 

  14. Gossec L, Jordan JM, Mazzuca SA, Lam MA, Suarez-Almazor ME, Renner JB, et al. Comparative evaluation of three semi-quantitative radiographic grading techniques for knee osteoarthritis in terms of validity and reproducibility in 1759 X-rays: report of the OARSI-OMERACT task force. Osteoarthritis Cartilage. 2008;16(7):742–8.

    Article  CAS  PubMed  Google Scholar 

  15. Sheehy L, Culham E, McLean L, Niu J, Lynch J, Segal NA, et al. Validity and sensitivity to change of three scales for the radiographic assessment of knee osteoarthritis using images from the Multicenter Osteoarthritis Study (MOST). Osteoarthritis Cartilage. 2015;23(9):1491–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Culvenor AG, Engen CN, Oiestad BE, Engebretsen L, Risberg MA. Defining the presence of radiographic knee osteoarthritis: a comparison between the Kellgren and Lawrence system and OARSI atlas criteria. Knee Surg Sports Traumatol Arthrosc. 2015;23(12):3532–9.

    Article  PubMed  Google Scholar 

  17. Antony J, McGuinness K, O'Connor NE, Moran K. Quantifying radiographic knee osteoarthritis severity using deep convolutional neural networks. In: 2016 23rd International Conference on Pattern Recognition (Icpr). 2016. https://doi.org/10.48550/arXiv.1609.02469.

  18. Norman B, Pedoia V, Noworolski A, Link TM, Majumdar S. Applying densely connected convolutional neural networks for staging osteoarthritis severity from plain radiographs. J Digit Imaging. 2019;32(3):471–7.

    Article  PubMed  Google Scholar 

  19. Tiulpin A, Thevenot J, Rahtu E, Lehenkari P, Saarakkala S. Automatic knee osteoarthritis diagnosis from plain radiographs: a deep learning-based approach. Sci Rep. 2018;8(1):1727.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Thomas KA, Kidzinski L, Halilaj E, Fleming SL, Venkataraman GR, Oei EHG, et al. Automated classification of radiographic knee osteoarthritis severity using deep neural networks. Radiol Artif Intell. 2020;2(2):e190065.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Swiecicki A, Li N, O’Donnell J, Said N, Yang J, Mather RC, et al. Deep learning-based algorithm for assessment of knee osteoarthritis severity in radiographs matches performance of radiologists. Comput Biol Med. 2021;133:104334.

    Article  PubMed  Google Scholar 

  22. Kim DH, Lee KJ, Choi D, Lee JI, Choi HG, Lee YS. Can additional patient information improve the diagnostic performance of deep learning for the interpretation of knee osteoarthritis severity. J Clin Med. 2020;9(10):3341. https://doi.org/10.3390/jcm9103341.

  23. Tiulpin A, Saarakkala S. Automatic grading of individual knee osteoarthritis features in plain radiographs using deep convolutional neural networks. Diagnostics (Basel). 2020;10(11):932. https://doi.org/10.3390/diagnostics10110932.

  24. Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage. 2006;31(3):1116–28.

    Article  PubMed  Google Scholar 

  25. Fripp J, Crozier S, Warfield SK, Ourselin S. Automatic segmentation and quantitative analysis of the articular cartilages from magnetic resonance images of the knee. IEEE Trans Med Imaging. 2010;29(1):55–64.

    Article  PubMed  Google Scholar 

  26. Tamez-Pena JG, Farber J, Gonzalez PC, Schreyer E, Schneider E, Totterman S. Unsupervised segmentation and quantification of anatomical knee features: data from the Osteoarthritis Initiative. IEEE Trans Biomed Eng. 2012;59(4):1177–86.

    Article  PubMed  Google Scholar 

  27. Prasoon A, Petersen K, Igel C, Lauze F, Dam E, Nielsen M. Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network. Med Image Comput Comput Assist Interv. 2013;16(Pt 2):246–53.

    PubMed  Google Scholar 

  28. Liu F, Zhou Z, Jang H, Samsonov A, Zhao G, Kijowski R. Deep convolutional neural network and 3D deformable approach for tissue segmentation in musculoskeletal magnetic resonance imaging. Magn Reson Med. 2018;79(4):2379–91.

    Article  PubMed  Google Scholar 

  29. Zhou Z, Zhao G, Kijowski R, Liu F. Deep convolutional neural network for segmentation of knee joint anatomy. Magn Reson Med. 2018;80(6):2759–70.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ambellan F, Tack A, Ehlke M, Zachow S. Automated segmentation of knee bone and cartilage combining statistical shape knowledge and convolutional neural networks: data from the Osteoarthritis Initiative. Med Image Anal. 2019;52:109–18.

    Article  PubMed  Google Scholar 

  31. Norman B, Pedoia V, Majumdar S. Use of 2D U-Net convolutional neural networks for automated cartilage and meniscus segmentation of knee MR imaging data to determine relaxometry and morphometry. Radiology. 2018;288(1):177–85.

    Article  PubMed  Google Scholar 

  32. Gaj S, Yang M, Nakamura K, Li X. Automated cartilage and meniscus segmentation of knee MRI with conditional generative adversarial networks. Magn Reson Med. 2020;84(1):437–49.

    Article  PubMed  Google Scholar 

  33. Yang M, Colak C, Chundru KK, Gaj S, Nanavati A, Jones MH, et al. Automated knee cartilage segmentation for heterogeneous clinical MRI using generative adversarial networks with transfer learning. Quant Imaging Med Surg. 2022;12(5):2620–33.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kessler DA, MacKay JW, Crowe VA, Henson FMD, Graves MJ, Gilbert FJ, et al. The optimisation of deep neural networks for segmenting multiple knee joint tissues from MRIs. Comput Med Imaging Graph. 2020;86:101793.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Panfilov E, Tiulpin A, Nieminen MT, Saarakkala S, Casula V. Deep learning-based segmentation of knee MRI for fully automatic subregional morphological assessment of cartilage tissues: data from the osteoarthritis initiative. J Orthop Res. 2022;40(5):1113–24.

    Article  PubMed  Google Scholar 

  36. Wirth W, Eckstein F, Kemnitz J, Baumgartner CF, Konukoglu E, Fuerst D, et al. Accuracy and longitudinal reproducibility of quantitative femorotibial cartilage measures derived from automated U-Net-based segmentation of two different MRI contrasts: data from the osteoarthritis initiative healthy reference cohort. MAGMA. 2021;34(3):337–54.

    Article  PubMed  Google Scholar 

  37. Eckstein F, Chaudhari AS, Fuerst D, Gaisberger M, Kemnitz J, Baumgartner CF, et al. Detection of differences in longitudinal cartilage thickness loss using a deep-learning automated segmentation algorithm: data from the Foundation for the National Institutes of Health Biomarkers Study of the Osteoarthritis Initiative. Arthritis Care Res (Hoboken). 2022;74(6):929–36.

    Article  PubMed  Google Scholar 

  38. Chen H, Zhao N, Tan T, Kang Y, Sun C, Xie G, et al. Knee bone and cartilage segmentation based on a 3D deep neural network using adversarial loss for prior shape constraint. Front Med (Lausanne). 2022;9:792900.

    Article  PubMed  Google Scholar 

  39. Desai AD, Caliva F, Iriondo C, Mortazi A, Jambawalikar S, Bagci U, et al. The International workshop on osteoarthritis imaging knee MRI segmentation challenge: a multi-institute evaluation and analysis framework on a standardized dataset. Radiol Artif Intell. 2021;3(3):e200078.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Christensen R, Astrup A, Bliddal H. Weight loss: the treatment of choice for knee osteoarthritis? A randomized trial. Osteoarthr Cartil / OARS, Osteoarthr Res Soc. 2005;13(1):20–7.

    Article  CAS  Google Scholar 

  41. Messier SP, Loeser RF, Miller GD, Morgan TM, Rejeski WJ, Sevick MA, et al. Exercise and dietary weight loss in overweight and obese older adults with knee osteoarthritis: the Arthritis, Diet, and Activity Promotion Trial. Arthritis Rheum. 2004;50(5):1501–10.

    Article  PubMed  Google Scholar 

  42. Christensen R, Bartels EM, Astrup A, Bliddal H. Effect of weight reduction in obese patients diagnosed with knee osteoarthritis: a systematic review and meta-analysis. Ann Rheum Dis. 2007;66(4):433–9.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ettinger WH Jr, Burns R, Messier SP, Applegate W, Rejeski WJ, Morgan T, et al. A randomized trial comparing aerobic exercise and resistance exercise with a health education program in older adults with knee osteoarthritis. The Fitness Arthritis and Seniors Trial (FAST). JAMA: J Am Med Assoc. 1997;277(1):25–31.

    Article  Google Scholar 

  44. Roddy E, Zhang W, Doherty M. Aerobic walking or strengthening exercise for osteoarthritis of the knee? A systematic review. Ann Rheum Dis. 2005;64(4):544–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Roddy E, Zhang W, Doherty M, Arden NK, Barlow J, Birrell F, et al. Evidence-based recommendations for the role of exercise in the management of osteoarthritis of the hip or knee–the MOVE consensus. Rheumatology (Oxford). 2005;44(1):67–73.

    Article  CAS  PubMed  Google Scholar 

  46. Brosseau L, MacLeay L, Robinson V, Wells G, Tugwell P. Intensity of exercise for the treatment of osteoarthritis. Cochrane Database Syst Rev. 2003;(2):CD004259. https://doi.org/10.1002/14651858.CD004259.

  47. Deyle GD, Henderson NE, Matekel RL, Ryder MG, Garber MB, Allison SC. Effectiveness of manual physical therapy and exercise in osteoarthritis of the knee. A randomized, controlled trial. Ann Intern Med. 2000;132(3):173–81.

    Article  CAS  PubMed  Google Scholar 

  48. Fransen M, McConnell S. Land-based exercise for osteoarthritis of the knee: a metaanalysis of randomized controlled trials. J Rheumatol. 2009;36(6):1109–17.

    Article  PubMed  Google Scholar 

  49. Fransen M, Crosbie J, Edmonds J. Physical therapy is effective for patients with osteoarthritis of the knee: a randomized controlled clinical trial. J Rheumatol. 2001;28(1):156–64.

    CAS  PubMed  Google Scholar 

  50. Bang MD, Deyle GD. Comparison of supervised exercise with and without manual physical therapy for patients with shoulder impingement syndrome. J Orthop Sports Phys Ther. 2000;30(3):126–37.

    Article  CAS  PubMed  Google Scholar 

  51. Felson DT, Hodgson R. Identifying and treating preclinical and early osteoarthritis. Rheum Dis Clin North Am. 2014;40(4):699–710.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Eckstein F, Burstein D, Link TM. Quantitative MRI of cartilage and bone: degenerative changes in osteoarthritis. NMR Biomed. 2006;19(7):822–54.

    Article  PubMed  Google Scholar 

  53. Hunter DJ, Niu J, Zhang Y, Totterman S, Tamez J, Dabrowski C, et al. Change in cartilage morphometry: a sample of the progression cohort of the Osteoarthritis Initiative. Ann Rheum Dis. 2009;68(3):349–56.

    Article  CAS  PubMed  Google Scholar 

  54. Hunter DJ, Conaghan PG, Peterfy CG, Bloch D, Guermazi A, Woodworth T, et al. Responsiveness, effect size, and smallest detectable difference of magnetic resonance imaging in knee osteoarthritis. Osteoarthr Cartil / OARS, Osteoarthr Res Soc. 2006;14(Suppl A):A112-115.

    Article  Google Scholar 

  55. Reichmann WM, Maillefert JF, Hunter DJ, Katz JN, Conaghan PG, Losina E. Responsiveness to change and reliability of measurement of radiographic joint space width in osteoarthritis of the knee: a systematic review. Osteoarthr Cartil. 2011;19(5):550–6.

    Article  CAS  Google Scholar 

  56. Pelletier JP, Martel-Pelletier J, Raynauld JP. Most recent developments in strategies to reduce the progression of structural changes in osteoarthritis: today and tomorrow. Arthritis Res Ther. 2006;8(2):206.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Pelletier JP, Martel-Pelletier J. DMOAD developments: present and future. Bull NYU Hosp Jt Dis. 2007;65(3):242–8.

    PubMed  Google Scholar 

  58. Qvist P, Bay-Jensen AC, Christiansen C, Dam EB, Pastoureau P, Karsdal MA. The disease modifying osteoarthritis drug (DMOAD): is it in the horizon? Pharmacol Res : Off J Ital Pharmacol Soc. 2008;58(1):1–7.

    Article  CAS  Google Scholar 

  59. Hellio Le Graverand-Gastineau MP. OA clinical trials: current targets and trials for OA. Choosing molecular targets: what have we learned and where we are headed? Osteoarthr Cartil / OARS, Osteoarthr Res Soc. 2009;17(11):1393–401.

    Article  Google Scholar 

  60. Hunter DJ, Hellio Le Graverand-Gastineau MP. How close are we to having structure-modifying drugs available? Rheum Dis Clin North Am. 2008;(3):789–802. https://doi.org/10.1016/j.rdc.2008.05.003.

  61. Hunter DJ. Risk stratification for knee osteoarthritis progression: a narrative review. Osteoarthr Cartil. 2009;17(11):1402–7.

    Article  CAS  Google Scholar 

  62. Hunter DJ, Nevitt M, Losina E, Kraus V. Biomarkers for osteoarthritis: current position and steps towards further validation. Best Pract Res Clin Rheumatol. 2014;28(1):61–71.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Felson D, Niu J, Sack B, Aliabadi P, McCullough C, Nevitt MC. Progression of osteoarthritis as a state of inertia. Ann Rheum Dis. 2013;72(6):924–9.

    Article  PubMed  Google Scholar 

  64. Leyland KM, Hart DJ, Javaid MK, Judge A, Kiran A, Soni A, et al. The natural history of radiographic knee osteoarthritis: a fourteen-year population-based cohort study. Arthritis Rheum. 2012;64(7):2243–51.

    Article  CAS  PubMed  Google Scholar 

  65. Oak SR, Ghodadra A, Winalski CS, Miniaci A, Jones MH. Radiographic joint space width is correlated with 4-year clinical outcomes in patients with knee osteoarthritis: data from the osteoarthritis initiative. Osteoarthr Cartil. 2013;21(9):1185–90.

    Article  CAS  Google Scholar 

  66. Tanamas S, Hanna FS, Cicuttini FM, Wluka AE, Berry P, Urquhart DM. Does knee malalignment increase the risk of development and progression of knee osteoarthritis? A systematic review. Arthritis Rheum. 2009;61(4):459–67.

    Article  PubMed  Google Scholar 

  67. Collins JE, Losina E, Nevitt MC, Roemer FW, Guermazi A, Lynch JA, et al. Semiquantitative imaging biomarkers of knee osteoarthritis progression: data from the Foundation for the National Institutes of Health Osteoarthritis Biomarkers Consortium. Arthritis Rheumatol. 2016;68(10):2422–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Roemer FW, Kwoh CK, Hannon MJ, Green SM, Jakicic JM, Boudreau R, et al. Risk factors for magnetic resonance imaging-detected patellofemoral and tibiofemoral cartilage loss during a six-month period: the joints on glucosamine study. Arthritis Rheum. 2012;64(6):1888–98.

    Article  PubMed  Google Scholar 

  69. Roemer FW, Guermazi A, Felson DT, Niu J, Nevitt MC, Crema MD, et al. Presence of MRI-detected joint effusion and synovitis increases the risk of cartilage loss in knees without osteoarthritis at 30-month follow-up: the MOST study. Ann Rheum Dis. 2011;70(10):1804–9.

    Article  PubMed  Google Scholar 

  70. Ayral X, Pickering EH, Woodworth TG, Mackillop N, Dougados M. Synovitis: a potential predictive factor of structural progression of medial tibiofemoral knee osteoarthritis – results of a 1 year longitudinal arthroscopic study in 422 patients. Osteoarthr Cartil / OARS, Osteoarthr Res Soc. 2005;13(5):361–7.

    Article  CAS  Google Scholar 

  71. Atukorala I, Kwoh CK, Guermazi A, Roemer FW, Boudreau RM, Hannon MJ, et al. Synovitis in knee osteoarthritis: a precursor of disease? Ann Rheum Dis. 2016;75(2):390–5.

    Article  CAS  PubMed  Google Scholar 

  72. Crema MD, Guermazi A, Li L, Nogueira-Barbosa MH, Marra MD, Roemer FW, et al. The association of prevalent medial meniscal pathology with cartilage loss in the medial tibiofemoral compartment over a 2-year period. Osteoarthr Cartil / OARS, Osteoarthr Res Soc. 2010;18(3):336–43.

    Article  CAS  Google Scholar 

  73. Chang A, Moisio K, Chmiel JS, Eckstein F, Guermazi A, Almagor O, et al. Subregional effects of meniscal tears on cartilage loss over 2 years in knee osteoarthritis. Ann Rheum Dis. 2011;70(1):74–9.

    Article  PubMed  Google Scholar 

  74. Wluka AE, Hanna F, Davies-Tuck M, Wang Y, Bell RJ, Davis SR, et al. Bone marrow lesions predict increase in knee cartilage defects and loss of cartilage volume in middle-aged women without knee pain over 2 years. Ann Rheum Dis. 2009;68(6):850–5.

    Article  CAS  PubMed  Google Scholar 

  75. Wluka AE, Wang Y, Davies-Tuck M, English DR, Giles GG, Cicuttini FM. Bone marrow lesions predict progression of cartilage defects and loss of cartilage volume in healthy middle-aged adults without knee pain over 2 yrs. Rheumatology. 2008;47(9):1392–6.

    Article  CAS  PubMed  Google Scholar 

  76. Dore D, Martens A, Quinn S, Ding C, Winzenberg T, Zhai G, et al. Bone marrow lesions predict site-specific cartilage defect development and volume loss: a prospective study in older adults. Arthritis Res Ther. 2010;12(6):R222.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Scher C, Craig J, Nelson F. Bone marrow edema in the knee in osteoarthrosis and association with total knee arthroplasty within a three-year follow-up. Skeletal Radiol. 2008;37(7):609–17.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Han W, Aitken D, Zhu Z, Halliday A, Wang X, Antony B, et al. Signal intensity alteration in the infrapatellar fat pad at baseline for the prediction of knee symptoms and structure in older adults: a cohort study. Ann Rheum Dis. 2016;75(10):1783–8.

    Article  PubMed  Google Scholar 

  79. Tiulpin A, Klein S, Bierma-Zeinstra SMA, Thevenot J, Rahtu E, Meurs JV, et al. Multimodal machine learning-based knee osteoarthritis progression prediction from plain radiographs and clinical data. Sci Rep. 2019;9(1):20038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Guan B, Liu F, Haj-Mirzaian A, Demehri S, Samsonov A, Neogi T, et al. Deep learning risk assessment models for predicting progression of radiographic medial joint space loss over a 48-month follow-up period. Osteoarthritis Cartilage. 2020;28(4):428–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Schiratti JB, Dubois R, Herent P, Cahane D, Dachary J, Clozel T, et al. A deep learning method for predicting knee osteoarthritis radiographic progression from MRI. Arthritis Res Ther. 2021;23(1):262.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Leung K, Zhang B, Tan J, Shen Y, Geras KJ, Babb JS, et al. Prediction of total knee replacement and diagnosis of osteoarthritis by using deep learning on knee radiographs: data from the osteoarthritis initiative. Radiology. 2020;296(3):584–93.

    Article  PubMed  Google Scholar 

  83. Tolpadi AA, Lee JJ, Pedoia V, Majumdar S. Deep learning predicts total knee replacement from magnetic resonance images. Sci Rep. 2020;10(1):6371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wang T, Leung K, Cho K, Change G, Deniz C. Total knee replacement prediction using structural MRIs and 3D convolutional neural networks. In International Conference on Medical Imaging and Deep Learning- Extended Abstract Track; 2019;79.

  85. Guan B, Liu F, Mizaian AH, Demehri S, Samsonov A, Guermazi A, et al. Deep learning approach to predict pain progression in knee osteoarthritis. Skeletal Radiol. 2022;51(2):363–73.

    Article  PubMed  Google Scholar 

  86. Chang GH, Felson DT, Qiu S, Guermazi A, Capellini TD, Kolachalama VB. Assessment of knee pain from MR imaging using a convolutional Siamese network. Eur Radiol. 2020;30(6):3538–48.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Lee J, Liu F, Majumdar S, Pedoia V. An ensemble clinical and MRI deep learning model predicts 8-year knee pain trajectory: data from the osteoarthritis initiative. Osteoarthr Imaging. 2021;1:1000003.

    Article  Google Scholar 

  88. Pedoia V, Lee J, Norman B, Link TM, Majumdar S. Diagnosing osteoarthritis from T2 maps using deep learning: an analysis of the entire Osteoarthritis initiative baseline cohort. Osteoarthr Cartil. 2019;27(7):1002–10.

    Article  CAS  Google Scholar 

  89. Allen-Zhu Z, Li Y. Towards understanding ensemble, knowledge distillation and self-distillation in deep learning. 2020. https://doi.org/10.48550/arXiv.2012.09816

  90. Zhou T, Ruan S, Guo Y, Canu S. A multi-modality fusion network based on attention mechanism for brain tumor segmentation. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI). 2020. pp. 377–380.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Kijowski.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key points

• Deep learning techniques have similar diagnostic performance as human readers for detecting and grading cartilage lesions within the knee on MRI.

• Deep learning methods can detect and grade the severity of knee osteoarthritis and features of knee osteoarthritis on X-rays with similar diagnostic performance as human readers.

•Deep learning approaches for full-automated segmentation of cartilage and other knee tissue can achieve higher segmentation accuracy than currently used methods with substantial reductions in segmentation times.

•Deep learning models have high diagnostic performance for predicting osteoarthritis outcomes, including the incidence and progression of radiographic knee osteoarthritis, the presence and progression of knee pain, and future total knee replacement.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kijowski, R., Fritz, J. & Deniz, C.M. Deep learning applications in osteoarthritis imaging. Skeletal Radiol 52, 2225–2238 (2023). https://doi.org/10.1007/s00256-023-04296-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-023-04296-6

Keywords

Navigation