Skip to main content

Advertisement

Log in

AI MSK clinical applications: cartilage and osteoarthritis

  • Review Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

The advancements of artificial intelligence (AI) for osteoarthritis (OA) applications have been rapid in recent years, particularly innovations of deep learning for image classification, lesion detection, cartilage segmentation, and prediction modeling of future knee OA development. This review article focuses on AI applications in OA research, first describing machine learning (ML) techniques and workflow, followed by how these algorithms are used for OA classification tasks through imaging and non-imaging-based ML models. Deep learning applications for OA research, including analysis of both radiographs for automatic detection of OA severity, and MR images for detection of cartilage/meniscus lesions and cartilage segmentation for automatic T2 quantification will be described. In addition, information on ML models that identify individuals at high risk of OA development will be provided. The future vision of machine learning applications in imaging of OA and cartilage hinges on implementation of AI for optimizing imaging protocols, quantitative assessment of cartilage, and automated analysis of disease burden yielding a faster and more efficient workflow for a radiologist with a higher level of reproducibility and precision. It may also provide risk assessment tools for individual patients, which is an integral part of precision medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Murray CJ, Vos T, Lozano R, Naghavi M, Flaxman AD, Michaud C, et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2197–223.

    Article  PubMed  Google Scholar 

  2. Murphy L, Helmick CG. The impact of osteoarthritis in the United States: a population-health perspective. Am J Nurs. 2012;112(3 Suppl 1):S13–9.

    Article  PubMed  Google Scholar 

  3. Weinstein AM, Rome BN, Reichmann WM, Collins JE, Burbine SA, Thornhill TS, et al. Estimating the burden of total knee replacement in the United States. J Bone Joint Surg Am. 2013;95(5):385–92.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Center ME-bP. Total knee replacement. Minneapolis: Agency for Healthcare and Research Quality; 2003.

  5. Ghouri A, Conaghan PG. Update on novel pharmacological therapies for osteoarthritis. Ther Adv Musculoskelet Dis. 2019;11:1759720X19864492. https://doi.org/10.1177/1759720X19864492.

  6. Dell’Isola A, Allan R, Smith SL, Marreiros SS, Steultjens M. Identification of clinical phenotypes in knee osteoarthritis: a systematic review of the literature. BMC Musculoskelet Disord. 2016;17(1):425.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Waarsing JH, Bierma-Zeinstra SM, Weinans H. Distinct subtypes of knee osteoarthritis: data from the Osteoarthritis Initiative. Rheumatology (Oxford). 2015;54(9):1650–8.

    Article  Google Scholar 

  8. Deveza LA, Melo L, Yamato TP, Mills K, Ravi V, Hunter DJ. Knee osteoarthritis phenotypes and their relevance for outcomes: a systematic review. Osteoarthritis Cartilage. 2017;25(12):1926–41.

    Article  CAS  PubMed  Google Scholar 

  9. Roddy E, Doherty M. Changing life-styles and osteoarthritis: what is the evidence? Best Pract Res Clin Rheumatol. 2006;20(1):81–97.

    Article  PubMed  Google Scholar 

  10. Cooper C, Snow S, McAlindon TE, Kellingray S, Stuart B, Coggon D, et al. Risk factors for the incidence and progression of radiographic knee osteoarthritis. Arthritis Rheum. 2000;43(5):995–1000.

    Article  CAS  PubMed  Google Scholar 

  11. Musumeci G, Aiello FC, Szychlinska MA, Di Rosa M, Castrogiovanni P, Mobasheri A. Osteoarthritis in the XXIst century: risk factors and behaviours that influence disease onset and progression. Int J Mol Sci. 2015;16(3):6093–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sharma L, Nevitt M, Hochberg M, Guermazi A, Roemer FW, Crema M, et al. Clinical significance of worsening versus stable preradiographic MRI lesions in a cohort study of persons at higher risk for knee osteoarthritis. Ann Rheum Dis. 2016;75(9):1630–6.

    Article  PubMed  Google Scholar 

  13. Baum T, Joseph GB, Arulanandan A, Nardo L, Virayavanich W, Carballido-Gamio J, et al. Association of magnetic resonance imaging-based knee cartilage T2 measurements and focal knee lesions with knee pain: data from the Osteoarthritis Initiative. Arthritis Care Res. 2012;64(2):248–55.

    Article  Google Scholar 

  14. Joseph GB, Baum T, Alizai H, Carballido-Gamio J, Nardo L, Virayavanich W, et al. Baseline mean and heterogeneity of MR cartilage T2 are associated with morphologic degeneration of cartilage, meniscus, and bone marrow over 3 years–data from the Osteoarthritis Initiative. Osteoarthr Cartil. 2012;20(7):727–35.

    Article  CAS  Google Scholar 

  15. Cabitza F, Locoro A, Banfi G. Machine learning in orthopedics: a literature review. Front Bioeng Biotechnol. 2018;6:75.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kokkotis C, Moustakidis S, Papageorgiou E, Giakas G, Tsaopoulos DE. Machine learning in knee osteoarthritis: a review. Osteoarthritis and Cartilage Open. 2020;2(3):100069.

  17. Hirschmann A, Cyriac J, Stieltjes B, Kober T, Richiardi J, Omoumi P. Artificial intelligence in musculoskeletal imaging: review of current literature, challenges, and trends. Semin Musculoskelet Radiol. 2019;23(3):304–11.

    Article  PubMed  Google Scholar 

  18. Joseph GB, McCulloch CE, Nevitt MC, Neumann J, Gersing AS, Kretzschmar M, et al. Tool for osteoarthritis risk prediction (TOARP) over 8 years using baseline clinical data, X-ray, and MRI: data from the osteoarthritis initiative. J Magn Reson Imaging. 2018;47(6):1517–26.

    Article  PubMed  Google Scholar 

  19. Norman B, Pedoia V, Noworolski A, Link TM, Majumdar S. Applying densely connected convolutional neural networks for staging osteoarthritis severity from plain radiographs. J Digit Imaging. 2019;32(3):471–7.

    Article  PubMed  Google Scholar 

  20. Furche T, Gottlob G, Libkin L, Orsi G, Paton NW. Data wrangling for big data: challenges and opportunities. InEDBT. 2016;16:473–8.

  21. Rahmn AU. What is data cleaning? How to process data for analytics and machine learning modeling? : toward data science; 2019 Available from: https://towardsdatascience.com/what-is-data-cleaning-how-to-process-data-for-analytics-and-machine-learning-modeling-c2afcf4fbf45.

  22. Jerez JM, Molina I, García-Laencina PJ, Alba E, Ribelles N, Martín M, et al. Missing data imputation using statistical and machine learning methods in a real breast cancer problem. Artif Intell Med. 2010;50(2):105–15.

    Article  PubMed  Google Scholar 

  23. Reddy GT, Reddy MPK, Lakshmanna K, Kaluri R, Rajput DS, Srivastava G, et al. Analysis of dimensionality reduction techniques on big data. IEEE Access. 2020;8:54776–88.

    Article  Google Scholar 

  24. Jamshidi A, Pelletier JP, Martel-Pelletier J. Machine-learning-based patient-specific prediction models for knee osteoarthritis. Nat Rev Rheumatol. 2019;15(1):49–60.

    Article  PubMed  Google Scholar 

  25. Guo X, Yin Y, Dong C, Yang G, Zhou G. On the class imbalance problem. In: 2008 Fourth international conference on natural computation. IEEE; 2008. Vol. 4, pp. 192–201.

  26. Chlap P, Min H, Vandenberg N, Dowling J, Holloway L, Haworth A. A review of medical image data augmentation techniques for deep learning applications. J Med Imaging Radiat Oncol. 2021;65(5):545–63.

    Article  PubMed  Google Scholar 

  27. Hugle M, Omoumi P, van Laar JM, Boedecker J, Hugle T. Applied machine learning and artificial intelligence in rheumatology. Rheumatol Adv Pract. 2020;4(1):rkaa005.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Webb GI, Keogh E, Miikkulainen R. Naïve Bayes. Encyclopedia of machine learning. 2010;15:713-4.

  29. Singh A, Thakur N, Sharma A, editors. A review of supervised machine learning algorithms. 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom); 2016 16–18 March 2016.

  30. Kherif F, Latypova A. Chapter 12 - Principal component analysis. In: Mechelli A, Vieira S, editors. Machine Learning. Academic Press; 2020. p. 209–25.

    Chapter  Google Scholar 

  31. Kokkotis C, Moustakidis S, Papageorgiou E, Giakas G, Tsaopoulos DE. Machine learning in knee osteoarthritis: a review. Osteoarthr Cartil Open. 2020;2(3):100069.

    Article  Google Scholar 

  32. Grootendorst M. Validating your machine learning model, going beyond k-fold cross-validation 2019 Available from: https://towardsdatascience.com/validating-your-machine-learning-model-25b4c8643fb7.

  33. Narkhede S. Understanding AUC-ROC curve. Towards data science. 2018;26. https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5.

  34. Maroco J, Silva D, Rodrigues A, Guerreiro M, Santana I, de Mendonça A. Data mining methods in the prediction of dementia: a real-data comparison of the accuracy, sensitivity and specificity of linear discriminant analysis, logistic regression, neural networks, support vector machines, classification trees and random forests. BMC Res Notes. 2011;4(1):299.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Powers DM. Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. arXiv preprint arXiv:201016061. 2020.

  36. Ping Shung K. Accuracy, precision, recall or F1? https://towardsdatascience.com/accuracy-precision-recall-or-f1-331fb37c5cb9 [Internet]. 2018; 2021.

  37. Dice LR. Measures of the amount of ecologic association between species. Ecology. 1945;26(3):297–302.

    Article  Google Scholar 

  38. Laber EB, Murphy SA, editors. Small sample inference for generalization error in classification using the CUD bound. Uncertainty in artificial intelligence: proceedings of the conference Conference on Uncertainty in Artificial Intelligence; 2008: NIH Public Access.

  39. Stead WW. Clinical implications and challenges of artificial intelligence and deep learning. JAMA. 2018;320(11):1107–8.

    Article  PubMed  Google Scholar 

  40. Kerkhof HJ, Bierma-Zeinstra SM, Arden NK, Metrustry S, Castano-Betancourt M, Hart DJ, et al. Prediction model for knee osteoarthritis incidence, including clinical, genetic and biochemical risk factors. Ann Rheum Dis. 2014;73(12):2116–21.

    Article  CAS  PubMed  Google Scholar 

  41. Ashinsky BG, Bouhrara M, Coletta CE, Lehallier B, Urish KL, Lin PC, et al. Predicting early symptomatic osteoarthritis in the human knee using machine learning classification of magnetic resonance images from the osteoarthritis initiative. J Orthop Res. 2017;35(10):2243–50.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Štajduhar I, Mamula M, Miletić D, Ünal G. Semi-automated detection of anterior cruciate ligament injury from MRI. Comput Methods Programs Biomed. 2017;140:151–64.

    Article  PubMed  Google Scholar 

  43. Lazzarini N, Runhaar J, Bay-Jensen AC, Thudium CS, Bierma-Zeinstra SMA, Henrotin Y, et al. A machine learning approach for the identification of new biomarkers for knee osteoarthritis development in overweight and obese women. Osteoarthr Cartil. 2017;25(12):2014–21.

    Article  CAS  Google Scholar 

  44. Halilaj E, Le Y, Hicks JL, Hastie TJ, Delp SL. Modeling and predicting osteoarthritis progression: data from the osteoarthritis initiative. Osteoarthr Cartil. 2018;26(12):1643–50.

    Article  CAS  Google Scholar 

  45. Liu F, Zhou Z, Samsonov A, Blankenbaker D, Larison W, Kanarek A, et al. Deep learning approach for evaluating knee MR images: achieving high diagnostic performance for cartilage lesion detection. Radiology. 2018;289(1):160–9.

    Article  PubMed  Google Scholar 

  46. Tiulpin A, Thevenot J, Rahtu E, Lehenkari P, Saarakkala S. Automatic knee osteoarthritis diagnosis from plain radiographs: a deep learning-based approach. Sci Rep. 2018;8(1):1727.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Bien N, Rajpurkar P, Ball RL, Irvin J, Park A, Jones E, et al. Deep-learning-assisted diagnosis for knee magnetic resonance imaging: development and retrospective validation of MRNet. PLoS Med. 2018;15(11):e1002699.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Du Y, Almajalid R, Shan J, Zhang M. A novel method to predict knee osteoarthritis progression on MRI using machine learning methods. IEEE Trans Nanobioscience. 2018;17(3):228–36.

    Article  PubMed  Google Scholar 

  49. Antony J. Automatic quantification of radiographic knee osteoarthritis severity and associated diagnostic features using deep convolutional neural networks (Doctoral dissertation, Dublin City University). 2018. http://doras.dcu.ie/22154/.

  50. Pedoia V, Norman B, Mehany SN, Bucknor MD, Link TM, Majumdar S. 3D convolutional neural networks for detection and severity staging of meniscus and PFJ cartilage morphological degenerative changes in osteoarthritis and anterior cruciate ligament subjects. J Magn Reson Imaging. 2019;49(2):400–10.

    Article  PubMed  Google Scholar 

  51. Nelson AE, Fang F, Arbeeva L, Cleveland RJ, Schwartz TA, Callahan LF, et al. A machine learning approach to knee osteoarthritis phenotyping: data from the FNIH Biomarkers Consortium. Osteoarthr Cartil. 2019;27(7):994–1001.

    Article  CAS  Google Scholar 

  52. Brahim A, Jennane R, Riad R, Janvier T, Khedher L, Toumi H, et al. A decision support tool for early detection of knee OsteoArthritis using X-ray imaging and machine learning: data from the OsteoArthritis Initiative. Comput Med Imaging Graph. 2019;73:11–8.

    Article  PubMed  Google Scholar 

  53. Roblot V, Giret Y, Bou Antoun M, Morillot C, Chassin X, Cotten A, et al. Artificial intelligence to diagnose meniscus tears on MRI. Diagn Interv Imaging. 2019;100(4):243–9.

    Article  CAS  PubMed  Google Scholar 

  54. Couteaux V, Si-Mohamed S, Nempont O, Lefevre T, Popoff A, Pizaine G, et al. Automatic knee meniscus tear detection and orientation classification with Mask-RCNN. Diagn Interv Imaging. 2019;100(4):235–42.

    Article  CAS  PubMed  Google Scholar 

  55. Abedin J, Antony J, McGuinness K, Moran K, O’Connor NE, Rebholz-Schuhmann D, et al. Predicting knee osteoarthritis severity: comparative modeling based on patient’s data and plain X-ray images. Sci Rep. 2019;9(1):5761.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Chang PD, Wong TT, Rasiej MJ. Deep learning for detection of complete anterior cruciate ligament tear. J Digit Imaging. 2019;32(6):980–6.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Pedoia V, Lee J, Norman B, Link TM, Majumdar S. Diagnosing osteoarthritis from T2 maps using deep learning: an analysis of the entire Osteoarthritis Initiative baseline cohort. Osteoarthritis Cartilage. 2019;27(7):1002–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tiulpin A, Klein S, Bierma-Zeinstra SMA, Thevenot J, Rahtu E, Meurs JV, et al. Multimodal machine learning-based knee osteoarthritis progression prediction from plain radiographs and clinical data. Sci Rep. 2019;9(1):20038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jamshidi A, Leclercq M, Labbe A, Pelletier JP, Abram F, Droit A, et al. Identification of the most important features of knee osteoarthritis structural progressors using machine learning methods. Ther Adv Musculoskelet Dis. 2020;12:1759720X20933468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Leung K, Zhang B, Tan J, Shen Y, Geras KJ, Babb JS, et al. Prediction of total knee replacement and diagnosis of osteoarthritis by using deep learning on knee radiographs: data from the Osteoarthritis Initiative. Radiology. 2020;296(3):584–93.

    Article  PubMed  Google Scholar 

  61. Widera P, Welsing PMJ, Ladel C, Loughlin J, Lafeber F, Petit Dop F, et al. Multi-classifier prediction of knee osteoarthritis progression from incomplete imbalanced longitudinal data. Sci Rep. 2020;10(1):8427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Alexos A, Moustakidis S, Kokkotis C, Tsaopoulos D. Physical activity as a risk factor in the progression of osteoarthritis: a machine learning perspective. In: International Conference on Learning and Intelligent Optimization. Cham: Springer; 2020. pp. 16–26.

  63. Thomas KA, Kidziński Ł, Halilaj E, Fleming SL, Venkataraman GR, Oei EH, et al. Automated classification of radiographic knee osteoarthritis severity using deep neural networks. Radiol Artif Intell. 2020;2(2):e190065.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Kwon SB, Ku Y, Han HU, Lee MC, Kim HC, Ro DH. A machine learning-based diagnostic model associated with knee osteoarthritis severity. Sci Rep. 2020;10(1):15743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Guan B, Liu F, Haj-Mirzaian A, Demehri S, Samsonov A, Neogi T, et al. Deep learning risk assessment models for predicting progression of radiographic medial joint space loss over a 48-MONTH follow-up period. Osteoarthr Cartil. 2020;28(4):428–37.

    Article  CAS  Google Scholar 

  66. Guan B, Liu F, Matthew P, Mirzaian AH, Demehri S, Neogi T, et al. Deep learning approach to predict pain progression in knee osteoarthritis. Osteoarthr Cartil. 2020;28:S316.

    Article  Google Scholar 

  67. Tolpadi AA, Lee JJ, Pedoia V, Majumdar S. Deep learning predicts total knee replacement from magnetic resonance images. Sci Rep. 2020;10(1):6371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Razmjoo A, Caliva F, Lee J, Liu F, Joseph GB, Link TM, et al. T2 analysis of the entire osteoarthritis initiative dataset. J Orthop Res. 2021;39(1):74–85.

    Article  PubMed  Google Scholar 

  69. Joseph GB, Mcculloch CE, Nevitt MC, Link TM, JH. S, editors. Machine learning for predicting knee osteoarthritis progression over 8 years using combined MR imaging features, demographics, and clinical factors: data from the Osteoarthritis Initiative World Congress on Osteoarthritis; 2021; Virtual due to Covid 19.

  70. Gan H-S, Ramlee MH, Wahab AA, Lee Y-S, Shimizu A. From classical to deep learning: review on cartilage and bone segmentation techniques in knee osteoarthritis research. Artif Intell Rev. 2021;54(4):2445–94.

    Article  Google Scholar 

  71. Kellgren J, Lawrence J. Radiologic assessment of osteoarthritis. Ann Rheum Dis. 1957;16:494–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Xia Y. Magic-angle effect in magnetic resonance imaging of articular cartilage: a review. Invest Radiol. 2000;35(10):602–21.

    Article  CAS  PubMed  Google Scholar 

  73. Joseph GB, McCulloch CE, Nevitt MC, Gersing AS, Schwaiger BJ, Kretzschmar M, et al. Medial femur T2 Z-scores predict the probability of knee structural worsening over 4–8 years: data from the osteoarthritis initiative. J Magn Reson Imaging. 2017;46(4):1128–36.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Li X, Ma C, Link T, Castillo D, Blumenkrantz G, Lozano J, et al. In vivo T1rho and T2 mapping of articular cartilage in osteoarthritis of the knee using 3 Tesla MRI. Osteoarthr Cartil. 2007;15(7):789–97.

    Article  CAS  Google Scholar 

  75. Stehling C, Liebl H, Krug R, Lane NE, Nevitt MC, Lynch J, et al. Patellar cartilage: T2 values and morphologic abnormalities at 3.0-T MR imaging in relation to physical activity in asymptomatic subjects from the osteoarthritis initiative. Radiology. 2010;254(2):509–20.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Mosher TJ, Smith HE, Collins C, Liu Y, Hancy J, Dardzinski BJ, et al. Change in knee cartilage T2 at MR imaging after running: a feasibility study. Radiology. 2005;234(1):245–9.

    Article  PubMed  Google Scholar 

  77. Serebrakian AT, Poulos T, Liebl H, Joseph GB, Lai A, Nevitt MC, et al. Weight loss over 48 months is associated with reduced progression of cartilage T2 relaxation time values: data from the osteoarthritis initiative. J Magn Reson Imaging. 2015;41(5):1272–80.

    Article  PubMed  Google Scholar 

  78. Ferrero G, Sconfienza LM, Fiz F, Fabbro E, Corazza A, Dettore D, et al. Effect of intra-articular injection of intermediate-weight hyaluronic acid on hip and knee cartilage: in-vivo evaluation using T2 mapping. Eur Radiol. 2018;28(6):2345–55.

    Article  PubMed  Google Scholar 

  79. Welsch GH, Mamisch TC, Zak L, Blanke M, Olk A, Marlovits S, et al. Evaluation of cartilage repair tissue after matrix-associated autologous chondrocyte transplantation using a hyaluronic-based or a collagen-based scaffold with morphological MOCART scoring and biochemical T2 mapping: preliminary results. Am J Sports Med. 2010;38(5):934–42.

    Article  PubMed  Google Scholar 

  80. Harris S. What’s new for machine learning in medical imaging: predictions for 2019 and beyond. Signify Research. 2018:13. https://s3-eu-west-2.amazonaws.com/signifyresearch/app/uploads/2018/10/16101114/Signify_AI-in-Medical-Imaging-White-Paper.pdf.

  81. Gall R. Machine learning explainability vs interpretability: two concepts that could help restore trust in AI 2018 Available from: https://www.kdnuggets.com/2018/12/machine-learning-explainability-interpretability-ai.html. Accessed Aug 2021.

  82. Onose E. Explainability and auditability in ML: definitions, techniques, and tools 2021 Available from: https://neptune.ai/blog/explainability-auditability-ml-definitions-techniques-tools. Accessed Aug 2021.

  83. Shrikumar A, Greenside P, Kundaje A. Learning important features through propagating activation differences. In: International Conference on Machine Learning. PMLR; 2017. pp. 3145–53.

  84. Springenberg JT, Dosovitskiy A, Brox T, Riedmiller M. Striving for simplicity: the all convolutional net. arXiv preprint arXiv:14126806. 2014.

  85. Linardatos P, Papastefanopoulos V, Kotsiantis S. Explainable AI: a review of machine learning interpretability methods. Entropy. 2021;23(1):18.

  86. Torrey L, Shavlik J. Transfer learning. Handbook of research on machine learning applications. 2009. https://doi.org/10.4018/978-1-60566-766-9.ch011.

  87. Torrey L, Shavlik J, Olivas ES, Guerrero JM, Sober MM, Benedito JM, Lopez AS. Handbook of research on machine learning applications and trends. Hershey: Information Science Reference; 2010. pp. 242–64.

  88. Tiulpin A, Saarakkala S. Automatic grading of individual knee osteoarthritis features in plain radiographs using deep convolutional neural networks. Diagnostics. 2020;10(11):932.

  89. Brownlee J. A gentle introduction to generative adversarial networks (GANs) 2019 Available from: https://machinelearningmastery.com/what-are-generative-adversarial-networks-gans/. Accessed Aug 2021.

  90. Gaj S, Yang M, Nakamura K, Li X. Automated cartilage and meniscus segmentation of knee MRI with conditional generative adversarial networks. Magn Reson Med. 2020;84(1):437–49.

    Article  PubMed  Google Scholar 

  91. Oneto L, Navarin N, Sperduti A, Anguita D. Recent trends in learning from data: tutorials from the INNS Big Data and Deep Learning Conference (INNSBDDL2019) (Studies in Computational Intelligence) Springer; 2020.

  92. Moustakidis S, Papandrianos NI, Christodolou E, Papageorgiou E, Tsaopoulos D. Dense neural networks in knee osteoarthritis classification: a study on accuracy and fairness. Neural Computing and Applications. 2020.

Download references

Funding

This study was funded by NIH R01-AR064771 and NIH R01-AR078917.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabby B. Joseph.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Summary statement:

This review article focuses on machine learning (ML) applications for osteoarthritis (OA), with an emphasis on techniques and workflow, followed by applications of deep learning, classical ML, and ensemble ML models for OA and cartilage classification tasks.

Important concepts:

▪ The advancements of artificial intelligence for osteoarthritis applications have been rapid in recent years, particularly innovations of deep learning for image classification, lesion detection, and cartilage segmentation.

▪ Deep learning is a catalyst that can enable cartilage T2 quantification as a short add-on to a routine clinical MR protocol, complementing standard clinical sequences for morphological assessment by providing information on localized cartilage biochemical composition.

▪ The future vision of machine learning applications in clinical radiology hinges on implementation of artificial intelligence for optimizing image protocols, clinical assessment of disease burden, and automatic reporting yielding a faster and more efficient workflow for a radiologist, and a higher level of reproducibility and precision.

▪ By integrating a wide variety of data, from genetics and biochemical serum markers to imaging and clinical factors for a comprehensive assessment of future OA prediction, AI can be used to improve disease prevention as well as identify patients eligible for drug-development clinical trials.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joseph, G.B., McCulloch, C.E., Sohn, J.H. et al. AI MSK clinical applications: cartilage and osteoarthritis. Skeletal Radiol 51, 331–343 (2022). https://doi.org/10.1007/s00256-021-03909-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-021-03909-2

Keywords

Navigation