Skip to main content
Log in

The effect of Sichuan pepper on gut microbiota in mice fed a high-sucrose and low-dietary fibre diet

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Sichuan pepper (Zanthoxylum bungeanum, HJ), a spice widely used in China, has antioxidative, anti-inflammatory, antibacterial, and anti-obesity properties. In this study, to confirm the value of HJ as a functional food, the in vitro antioxidant and bile acid-lowering capacities, as well as the effects on caecal microbiota, were compared with those of cumin (Cuminum cyminum, CM) and coriander (Coriandrum sativum, CR) seeds in Institute of Cancer Research (ICR) mice fed a high-sucrose and low-dietary fibre diet. The total phenolic content, superoxide anion radical-scavenging capacity, and Fe-reducing power of the HJ aqueous solution were higher than those of CM and CR (p < 0.05). The bile acid (taurocholic, glycocholic, and deoxycholic acids)-lowering capacity of the HJ suspension was also higher than those of CM and CR. Compared with mice fed a control diet (no fibre, NF), caecal Lactobacillus gasseri- and Muribaculum intestinale-like bacteria were higher in mice fed a diet containing 5% (w/w) of CM, CR, or HJ for 14 days. Bifidobacterium pseudolongum-, Lactobacillus murinus/animalis-, and Faecalibaculum rodentium-like bacteria were significantly increased, while Desulfovibrio-like bacteria were significantly decreased in the HJ group. In addition, CM and HJ may benefit specific metabolic functions of gut microbiota, such as starch, sucrose, and tyrosine metabolism. The tumour necrosis factor (TNF-α) concentration in the spleen tissue of ICR mice was decreased by the intake of spices. However, there were no changes in interleukin-2 (IL-2) and IL-10 levels in HJ fed mice. These results suggested that HJ has potential as a functional food related to gut microbiota.

Key points

• Bididobacterium and Faecalibaculum in mice gut microbiota are increased by Sichuan pepper (HJ).

• Desulfovibrionaceae, an inflammatory LPS producer, in mice gut microbiota is decreased by HJ.

• HJ decreases pro-inflammatory TNF both in murine spleen tissue and in vitro macrophages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed in this study are available from the NCBI Sequence Read Archive (SRA) under accession number PRJNA862656.

References

  • Anilakumar KR, Khanum F, Bawa AS (2010) Effect of coriander seed powder (CSP) on 1, 2-dimethyl hydrazine-induced changes in antioxidant enzyme system and lipid peroxide formation in rats. J Dietary Supplements 7:9–20

    Article  CAS  Google Scholar 

  • Barone M, D’Amico F, Rampelli S, Brigidi P, Turroni P (2022) Age-related diseases, therapies and gut microbiome: a new frontier for healthy aging. Mech Ageing Dev 206:111711

    Article  CAS  PubMed  Google Scholar 

  • Bettaieb Rebey I, Bourgou S, Ben Slimen Debez I, Jabri Karoui I, Hamrouni Sellami I, Msaada K, Marzouk B (2012) Effects of extraction solvents and provenances on phenolic contents and antioxidant activities of cumin (Cuminum cyminum L.) seeds. Food Bioprocess Technol 5:2827–2836

    Article  CAS  Google Scholar 

  • Chen ML, Takeda K, Sundrud MS (2019) Emerging roles of bile acids in mucosal immunity and inflammation. Mucosal Immunol 12:851–861

    Article  CAS  PubMed  Google Scholar 

  • Elufioye TO, Habtemariam S, Adejare A (2020) Chemistry and pharmacology of alkylamides from natural origin. Rev Bras 30:622–640

    CAS  Google Scholar 

  • Gagandeep DS, Mendiz E, Rao AR, Kale RK (2003) Chemopreventive effects of Cuminum cyminum in chemically induced forestomach and uterine cervix tumors in murine model systems. Nutr Cancer 47:171–180

    Article  CAS  PubMed  Google Scholar 

  • Handa N, Kuda T, Yamamoto M, Takahashi H, Kimura B (2022) In vitro antioxidant, anti-glycation, and bile acid-lowering capacity of chickpea milk fermented with Lactiplantibacillus pentosus Himuka-SU5 and Lactococcus lactis subsp. lactis Amami-SU1. Process Biochem 120:15–21

    Article  CAS  Google Scholar 

  • Harada M, Kuda T, Nakamura S, Lee G, Takahashi H, Kimura B (2021) In vitro antioxidant and immunomodulation capacities of low-molecular weight-alginate- and laminaran-responsible gut indigenous bacteria LWT Food Sci 151:112127

  • Hovland A, Retterstøl K, Mollnes TE, Halvorsen B, Aukrust P, Lappegård KT (2020) Anti-inflammatory effects of non-statin low-density lipoprotein cholesterol-lowering drugs: an unused potential? Scand Cardiovas J 54:274–279

    Article  CAS  Google Scholar 

  • Hu J, Deng F, Zhao B, Lin Z, Sun Q, Yan X, Wu M, Qiu S, Chen Y, Yan Z, Luo S, Zhao J, Liu W, Li C, Liu KM (2022) Lactobacillus murinus alleviate intestinal ischemia/reperfusion injury through promoting the release of interleukin-10 from M2 macrophages via Toll-like receptor 2 signaling. Microbiome 10:4917

    Article  Google Scholar 

  • Huang K, Du B, Xu B (2018) Alterations in physicochemical properties and bile acid binding capacities of dietary fibers upon ultrafine grinding. Powder Technol 326:146–150

    Article  CAS  Google Scholar 

  • Ivane NMA, Haruna SA, Zekrumah M, Elysé FKR, Hassan MO, Hashim SB, Di Z (2022) Composition, mechanisms of tingling paresthesia, and health benefits of Sichuan pepper: a review of recent progress. Trends Food Sci Technol 126:1–12

    Article  CAS  Google Scholar 

  • Ji Y, Li S, Ho C (2019) Chemical composition, sensory properties and application of Sichuan pepper (Zanthoxylum genus). Food Sci Human Wellness 8:115–125

    Article  Google Scholar 

  • Jia W, Wei M, Rajani C, Zheng X (2021) Targeting the alternative bile acid synthetic pathway for metabolic diseases. Protein Cell 12:411–425

    Article  CAS  PubMed  Google Scholar 

  • Kaga Y, Kuda T, Taniguchi M, Yamaguchi Y, Takenaka H, Takahashi H, Kimura B (2021) The effects of fermentation with lactic acid bacteria on the antioxidant and anti-glycation properties of edible cyanobacteria and microalgae. LWT-Food Sci Technol 135:110029

    Article  CAS  Google Scholar 

  • Kang N, Yuan R, Huang L, Liu Z, Huang D, Huang L, Gao H, Liu Y, Xu Q, Yang S (2019) Atypical nitrogen-containing flavonoid in the fruits of cumin (Cuminum cyminum L.) with anti-inflammatory activity. J Agric Food Chem 67:8339–8347

    Article  CAS  PubMed  Google Scholar 

  • Kim BR, Shin J, Guevarra RB, Lee JH, Kim DW, Seol KH, Isaacson RE (2017) Deciphering diversity indices for a better understanding of microbial communities. J Microbiol Biotechnol 27:2089–2093

    Article  PubMed  Google Scholar 

  • Li T, Chiang JYL (2014) Bile acid signaling in metabolic disease and drug therapy. Pharmacol Rev 66:948–983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu J, Li J, Yin J, Li C, Zhang S, Guo J, Duan J (2021) Fructooligosaccharide decreases the production of uremic toxin precursor through modulating gut microbes mediated tyrosine metabolism pathway. Future Foods 4:100069

    Article  CAS  Google Scholar 

  • Ma G, Chen Y (2020) Polyphenol supplementation benefits human health via gut microbiota: a systematic review via meta-analysis. J Funct Foods 66:103829

    Article  CAS  Google Scholar 

  • Msaada K, Jemia MB, Salem N, Bachrouch O, Sriti J, Tammar S, Marzouk B (2017) Antioxidant activity of methanolic extracts from three coriander (Coriandrum sativum L.) fruit varieties. Arab J Chem 10:S3176–S3183

    Article  CAS  Google Scholar 

  • Nguyen CC, Duboc D, Rainteau D, Sokol H, Humbert L, Seksik P, Bellino A, Abdoul H, Bouazza N, Treluyer J (2021) Circulating bile acids concentration is predictive of coronary artery disease in human. Sci Rep 11:1–10

    Google Scholar 

  • Nie C, Li Y, Qian H, Ying H, Wang L (2022) Advanced glycation end products in food and their effects on intestinal tract. Crit Rev Food Sci Nutr 62:3103–3115

    Article  CAS  PubMed  Google Scholar 

  • Nowotny K, Jung T, Höhn A, Weber D, Grune T (2015) Advanced glycation end products and oxidative stress in type 2 diabetes mellitus. Biomolecules 5:194–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ouyang W, O’Gura A (2019) IL-10 family cytokines IL-10 and IL-22: from basic science to clinical translation. Immunity 50:871–891

    Article  CAS  PubMed  Google Scholar 

  • Poncheewin W, Hermes GD, Van Dam JC, Koehorst JJ, Smidt H, Schaap PJ (2020) NG-Tax 2.0: A semantic framework for high-throughput amplicon analysis. Front Genet 10:1366

    Article  PubMed  PubMed Central  Google Scholar 

  • Prachayasittikul V, Prachayasittikul S, Ruchirawat S, Prachayasittikul V (2018) Coriander (Coriandrum sativum): a promising functional food toward the well-being. Food Res Int 105:305–323

    Article  CAS  PubMed  Google Scholar 

  • Reagan-Shaw S, Nihal M, Ahmad N (2008) Dose translation from animal to human studies revisited. FASEBJ 22(3):659–561

    Article  CAS  Google Scholar 

  • Reeves PG, Nielsen FH, Fahey GC Jr (1993) AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123:1939–1951

    Article  CAS  PubMed  Google Scholar 

  • Sharifi-Rad M, Anil Kumar NV, Zucca P, Varoni EM, Dini L, Panzarini E, Rajkovic J, Fokou PVT, Azzini E, Peluso I, Misha AP, Nigam M, El Rayess Y, Beyrouthy M, Polito L, Iriti M, Martins N, Martorell M, Docea AO, Setzer WN, Calina D, Cho WC, Sharifi-Rad J (2020) Lifestyle, oxidative stress, and antioxidants: Back and forth in the pathophysiology of chronic diseases. Front Physiol 11:694

    Article  PubMed  PubMed Central  Google Scholar 

  • Sies H, Belousov VV, Chandel NS, Davies MJ, Jones DP, Mann GE, Murphy MP, Yamamoto M, Winterbourn C (2022) Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat Rev Mol Cell Biol 23:499–515

    Article  CAS  PubMed  Google Scholar 

  • Singh N, Yaav SS, Kumar S, Narashiman B (2021) A review on traditional uses, phytochemistry, pharmacology, and clinical research of dietary spice Cuminum cyminum L. Phytother Res 35:5007–5030

    Article  PubMed  Google Scholar 

  • Siow H, Choi S, Gan C (2016) Structure–activity studies of protease activating, lipase inhibiting, bile acid binding and cholesterol-lowering effects of pre-screened cumin seed bioactive peptides. J Funct Foods 27:600–611

    Article  CAS  Google Scholar 

  • Spencer SP, Fragiadakis GK, Sonnenburg JL (2019) Pursuing human-relevant gut microbiota-immune interactions. Immunity 51:225–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun X, Zhang D, Zhao L, Shi B, Xiao J, Liu X, Zou X (2020) Antagonistic interaction of phenols and alkaloids in Sichuan pepper (Zanthoxylum bungeanum) pericarp. Ind Crops Prod 152:112551

    Article  CAS  Google Scholar 

  • Takei M, Kuda T, Fukunaga M, Toyama A, Goto M, Takahashi H, Kimura B (2019) Effects of edible algae on caecal microbiomes of ICR mice fed a high-sucrose and low–dietary fibre diet. J Appl Phycol 31:3969–3978

    Article  CAS  Google Scholar 

  • van Dongen KC, Linkens AM, Wetzels SM, Wouters K, Vanmierlo T, van de Waarenburg MP, Scheijen JLJM, de Vos WM, Belzer C, Schalkwijk CG (2021) Dietary advanced glycation endproducts (AGEs) increase their concentration in plasma and tissues, result in inflammation and modulate gut microbial composition in mice; evidence for reversibility. Food Res Int 147:110547

    Article  PubMed  Google Scholar 

  • Vincenzi A, Goettert MI, de Souza CFV (2021) An evaluation of the effects of probiotics on tumoral necrosis factor (TNF-α) signaling and gene expression. Cytokine Growth Factor Rev 57:27–38

    Article  CAS  PubMed  Google Scholar 

  • Viuda-Martos M, Ruiz-Navajas Y, Fernández-López J, Pérez-Álvarez JA (2010) Spices as functional foods. Crit Rev Food Sci Nutr 51:13–28

    Article  Google Scholar 

  • Wang X, Liu Y, Wang Y, Dong X, Wang Y, Yang X, Honglei Y, Li T (2022) Protective effect of coriander (Coriandrum sativum L.) on high-fructose and high-salt diet-induced hypertension: relevant to improvement of renal and intestinal function. J Agric Food Chem 70:3730–3744

    Article  CAS  PubMed  Google Scholar 

  • Wu T, Shen M, Yu Q, Chen Y, Chen X, Yang J, Huang L, Guo X, Xie J (2021) Cyclocarya paliurus polysaccharide improves metabolic function of gut microbiota by regulating short-chain fatty acids and gut microbiota composition. Food Res Int 141:110119

    Article  CAS  PubMed  Google Scholar 

  • Wypuch TP, Pattaroni C, Perdijk O, Yap C, Trompette A, Anderson D, Creek DJ, Harris NL, Marsland BJ (2021) Microbial metabolism of L-tyrosine protects against allergic airway inflammation. Nat Immunol 22:279–286

    Article  Google Scholar 

  • Xia Y, Kuda T, Toyama A, Goto M, Fukunaga M, Takahashi H, Kimura B (2019) Detection and isolation of bacteria affected by dietary cumin, coriander, turmeric, and red chili pepper in the caecum of ICR mice. J Funct Foods 61:103467

    Article  CAS  Google Scholar 

  • Xiang L, Liu Y, Xie C, Li X, Yu Y, Ye M, Chen S (2016) The chemical and genetic characteristics of Szechuan pepper (Zanthoxylum bungeanum and Z armatum) cultivars and their suitable habitat. Frontiers in Plant Sci 7:467

    Article  Google Scholar 

  • Yamazaki E, Inagaki M, Kurita O, Inoue T (2007) Antioxidant activity of Japanese pepper (Zanthoxylum piperitum DC) fruit. Food chemistry 100(1):171–177

    Article  CAS  Google Scholar 

  • Yang S, Lian G (2020) ROS and diseases: Role in metabolism and energy supply. Mol Cell Biochem 467:1–12

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Guo J, Yuan J (2008) In vitro antioxidant properties of rutin. LWT-Food Sci Technol 41(6):1060–1066

    Article  CAS  Google Scholar 

  • Yardeni T, Tanes CE, Bittinger K, Mattei LM, Schaefer PM, Singh LN, Wu GD, MurdockWallace DDC (2019) Host mitochondria influence gut microbiome diversity: A role for ROS. Sci Signaling 12:3159

    Article  Google Scholar 

  • Yu Y, Ren X, Cao L, Liang Q, Xiao M, Cheng J, Nan S, Zhu C, Kong Q, Fu X, Mou H (2022) Complet - genome sequence and in vitro probiotic characteristics analysis of Bifidobacterium pseudolongum YY-26. J Appl Microbiol 133:1–19

    Article  Google Scholar 

  • Yuan R, Liu Z, Zhao J, Wang Q, Zuo A, Huang L, Gao H, Xu Q, Khan IA, Yang S (2020) Novel compounds in fruits of coriander (Coşkuner & Karababa) with anti-inflammatory activity. J Funct Foods 73:104145

    Article  CAS  Google Scholar 

  • Yuan Y, Kolios AGA, Liu Y, Zhang B, Li H, Tsokos GC, Zhang X (2022) Therapeutic potential of interleukin-2 in autoimmune diseases. Trends in Mol Med 28:596–612

    Article  CAS  Google Scholar 

  • Zagato E, Pozzi C, Bertocchi A, Schioppa T, Saccheri F, Guglietta S, Fosso B, Melocchi L, Nizzoli G, Troisi J, Marzano M, Oresta B, Spadoni I, Atarashi K, Carloni S, Arioli S, Fornasa G, Asnicar F, Segata N, Guglielmetti S, Honda K, Pesole G, Vermi W, Penna G, Rescigno M (2020) Endogenous murine microbiota member Faecalibaculum rodentium and its human homologue protect from intestinal tumour growth. Nat Microbiol 5:511–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhai S, Qin S, Li L, Zhu L, Zou Z, Wang L (2019) Dietary butyrate suppresses inflammation through modulating gut microbiota in high-fat diet-fed mice. FEMS Microbiol Lett 366:fnz153

  • Zhang D, Liu X, Yang Z, Shi J, Zhao L, Battino M, Zou X (2021a) Interactions between phenols and alkylamides of Sichuan pepper (Zanthoxylum genus) in α-glucosidase inhibition: A structural mechanism analysis. J Agric Food Chem 69(20):5583–5598

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Sun X, Battino M, Wei X, Shi J, Zhao L, Liu S, Xiao J, Shi B, Zou X (2021b) A comparative overview on chili pepper (Capsicum genus) and Sichuan pepper (Zanthoxylum genus): From pungent spices to pharma-foods. Trends in Food Sci Technol 117:148–162

    Article  CAS  Google Scholar 

  • Zmora N, Suez J, Elinav E (2019) You are what you eat: diet, health and the gut microbiota. Nat Rev Gastroenterol Hepatol 16:35–56

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Editage (https://www.editage.com) for English language editing.

Funding

This work was partially supported by the Yamazaki Spice Promotion Foundation, Tokyo, Japan.

Author information

Authors and Affiliations

Authors

Contributions

YX, TK, and HT designed the research. YX, MY, and TY were responsible for the execution of the study, data collection, and analysis. YX and AN analysed and interpreted the data. YX and TK played major roles in drafting, writing, and revising this manuscript. All authors have reviewed and agreed to the final manuscript.

Corresponding author

Correspondence to Takashi Kuda.

Ethics declarations

Ethics approval

Animal experiments were performed in accordance with the “Fundamental Guidelines for Proper Conduct of Animal Experiments and Related Activities in Academic Research Institutions” under the jurisdiction of the Ministry of Education, Culture, Sports, Science and Technology, Japan. The study protocol was approved by the Animal Experiment Committee of Tokyo University of Marine Science and Technology (Approval No. R3-1).

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 239 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, Y., Kuda, T., Yamamoto, M. et al. The effect of Sichuan pepper on gut microbiota in mice fed a high-sucrose and low-dietary fibre diet. Appl Microbiol Biotechnol 107, 2627–2638 (2023). https://doi.org/10.1007/s00253-023-12457-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-023-12457-9

Keywords

Navigation