Skip to main content
Log in

Effects of edible algae on caecal microbiomes of ICR mice fed a high-sucrose and low–dietary fibre diet

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

To clarify the presence of algal-susceptible indigenous bacteria (SIB) in the gut, ICR mice were fed high-sucrose (50% w/w) diets containing either no fibre (NF), 5% brown alga “arame”, Eisenia bicyclis; 5% red alga “tsunomata”, Chondrus ocellatus; 5% (w/w) green alga “hitoegusa”, Monostroma nitidum; or 5% (w/w) cyanobacterium “blue-green alga”, Aphanizomenon flos-aquae for 14 days. Faecal frequency and weight were the highest in mice fed M. nitidum. Plasma cholesterol was the lowest in the mice fed C. ocellatus. The caecal microbiome was examined by 16S rDNA (V4) amplicon sequencing. Principal component analysis of operational taxonomical units (OTUs) revealed that the edible algae altered the microbiome. An increase in abundance levels of OTUs by E. bicyclis (Bacteroides acidifaciens-, Bacteroides intestinalis-, Bifidobacterium pseudolongum-like), C. ocellatus (Bacteroides vulgatus- and Escherichia coli-like), M. nitidum (Faecalibaculum rodentium- and Muribaculum sp.-like), and A. flos-aquae (Muribaculum sp.) was detected. Abundance of Lactobacillus johnsonii was the lowest in mice fed the algal diets. Bacteria that increased in numbers were identified as algal SIBs. SIBs might have different effects on host health depending on the food material consumed. From the algal SIBs, B. pseudolongum, B. vulgatus, F. rodentium, and L. johnsonii were isolated using blood-liver agar and identified with the 16S rDNA BLAST search. Future studies should be focused on isolation of other SIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • An C, Yazaki T, Takahashi H, Kuda T, Kimura B (2013a) Diet-induced changes in alginate- and laminaran-fermenting bacterial levels in the caecal contents of rats. J Funct Foods 5:389–394

    CAS  Google Scholar 

  • An C, Kuda T, Yazaki T, Takahashi H, Kimura B (2013b) FLX pyrosequencing analysis of the effects of the brown-algal fermentable polysaccharides alginate and laminaran on rat caecal microbiotas. Appl Environ Microbiol 79:860–866

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bao J, Tang Q, Chen Y (2017) Individual nursing care for the elderly among China's aging population. BioSci Trends 11:694–696

    PubMed  Google Scholar 

  • Berri M, Slugocki C, Olivier M, Helloin E, Jacques I, Salmon H, Demais H, Le Goff M, Collen PN (2016) Marine-sulfated polysaccharides extract of Ulva armoricana green algae exhibits an antimicrobial activity and stimulates cytokine expression by intestinal epithelial cells. J Appl Phycol 28:2999–3008

    Google Scholar 

  • Cabinet Office Japan, Annual Report on the Aging Society. (2018) https://www8.cao.go.jp/kourei/english/annualreport/2018/2018pdf_e.html

  • Chang D, Rhee M, Ahn S, Bang B, Oh JE, Lee HK, Kim BC (2015) Faecalibaculum rodentium gen. nov., sp. nov., isolated from the faeces of a laboratory mouse. Antonie Van Leeuwenhoek 108:1309–1318

    CAS  PubMed  Google Scholar 

  • Charoensiddhi S, Conlon MA, Vuaran MS, Franco CMM, Zhang W (2017) Polysaccharide and phlorotannin-enriched extracts of the brown seaweed Ecklonia radiata influence human gut microbiota and fermentation in vitro. J Appl Phycol 29:2407–2416

    CAS  Google Scholar 

  • Chung WS, Walker AW, Louis P, Parkhill J, Vermeiren J, Bosscher D, Duncan SH, Flint HJ (2016) Modulation of the human gut microbiota by dietary fibres occurs at the species level. BMC Biol 14:3

    PubMed  PubMed Central  Google Scholar 

  • David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:559–563

    CAS  PubMed  Google Scholar 

  • Deehan EC, Walter J (2016) The fiber gap and the disappearing gut microbiome: implications for human nutrition. Trends Endocrinol Metab 27:239–242

    CAS  PubMed  Google Scholar 

  • Delgado GTCD, Tamashiro WMSC (2018) Role of prebiotics in regulation of microbiota and prevention of obesity. Food Res Int 113:183–188

    Google Scholar 

  • Eda M, Kuda T, Kataoka M, Takahashi H, Kimura B (2016) Anti-glycation properties of the aqueous extract solutions of dried algae products harvested and made in the Miura Peninsula, Japan, and effect of lactic acid fermentation on the properties. J Appl Phycol 28:3617–3624

    Google Scholar 

  • Fujii T, Kuda T, Saheki K, Okuzumi M (1992) Fermentation of water-soluble polysaccharides of brown algae by human intestinal bacteria in vitro. Nippon Suisan Gakkaishi 58:147–152

    Google Scholar 

  • Gafan GP, Lucas VS, Roberts GJ, Petrie A, Wilson M, Spratt DA (2005) Statistical analyses of complex denaturing gradient gel electrophoresis profiles. J Clin Microbiol 43:3971–3978

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hirano S, Yokota S, Eda M, Kuda T, Shikano A, Tkahashi H, Kimura B (2017) Effect of Lactobacillus plantarum Tennozu-SU2 on Salmonella typhimurium infection in human enterocyte-like HT-29-Luc cells and BALB/c mice. Probiotics Antimicro Prot 9:64–70

    CAS  Google Scholar 

  • Hirota K, Inagaki S, Hamada R, Ishihara K, Miyake Y (2014) Evaluation of a rapid oral bacteria quantification system using dielectrophoresis and the impedance measurement. Biocontrol Sci 19:45–49

    PubMed  Google Scholar 

  • Houghton D, Hardy T, Stewaart C, Errington L, Day CP, Trenell ML, Avery L (2018) Systematic review assessing the effectiveness of dietary intervention on gut microbiota in adults with type 2 diabetes. Diabetol 61:1700–1711

    CAS  Google Scholar 

  • Htun NC, Suga H, Imai S, Shimizu A, Takimoto H (2017) Food intake patterns and cardiovascular risk factors in Japanese adults: analyses from the 2012 National Health and nutrition survey, Japan. Nutr J 16:61

    PubMed  PubMed Central  Google Scholar 

  • Jovel J, Patterson J, Wang W, Hotte N, O’Keefe S, Mitchel T, Perry T, Kao D, Mason AL, Madsen KL, Wong GK (2016) Characterization of the gut microbiome using 16S or shotgun metagenomics. Front Microbiol 7:459

    PubMed  PubMed Central  Google Scholar 

  • Kato K, Odamaki T, Mitsuyama E, Sugahara H, Xiao J, Osawa R (2017) Age-related changes in the composition of gut Bifidobacterium species. Curr Microbiol 74:987–995

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ke X, Walker A, Haange S, Lagkouvardos I, Liu Y, Schmitt-Kopplin P, von Bergen M, Jehmlich N, He X, Clavel X, Cheung PCK (2019) Synbiotic-driven improvement of metabolic disturbances is associated with changes in the gut microbiome in diet-induced obese mice. Mol Metab 22:96–109

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kido Y (2015) The issue of nutrition in an aging society. J Nutr Sci Vitaminol 61:S176–S177

    CAS  PubMed  Google Scholar 

  • Kuda T, Goto H, Yokoyama M, Fujii T (1998) Fermentable dietary fiber in dried products of brown algae and their effects on cecal microflora and levels of plasma lipid in rats. Fisheries Sci 64:582–588

    CAS  Google Scholar 

  • Kuda T, Ikemori T (2009) Minerals, polysaccharides and antioxidant properties of aqueous solutions obtained from macroalgal beach-casts in the Noto Peninsula, Ishikawa, Japan. Food Chem 112:575–581

    CAS  Google Scholar 

  • Kuda T, Kunii T, Goto H, Suzuki T, Yano T (2007) Varieties of antioxidant and antibacterial properties of Ecklonia stolonifera and Ecklonia kurome products harvested and processed in the Noto peninsula, Japan. Food Chem 103:900–905

    CAS  Google Scholar 

  • Kuda T, Yano T, Matsuda N, Nishizawa M (2005) Inhibitory effects of laminaran and low molecular alginate against the putrefactive compounds produced by intestinal microflora in vitro and in rats. Food Chem 91:745–749

    CAS  Google Scholar 

  • Kuda T, Yokota Y, Haraguchi Y, Takahashi H, Kimura B (2019) Susceptibility of gut indigenous lactic acid bacteria in BALB/c mice to oral administered Lactobacillus plantarum. Int J Food Sci Nutr 70:53–62

    CAS  PubMed  Google Scholar 

  • Kuda T, Yokota Y, Shikano A, Takei M, Takahashi H, Kimura B (2017) Dietary and lifestyle disease indices and caecal microbiota in high fat diet, dietary fibre free diet, or DSS induced IBD models in ICR mice. J Funct Foods 35:605–614

    Google Scholar 

  • Lagkouvardos I, Lesker TR, Hitch TC, Gálvez EJ, Smit N, Neuhaus K, Wang J, Baines JF, Abt B, Stecher B, Overmann J, Strowig T, Clavel T (2019) Sequence and cultivation study of Muribaculaceae reveals novel species, host preference, and functional potential of this yet undescribed family. Microbiome 7:28

    PubMed  PubMed Central  Google Scholar 

  • Lee H, Oh S, Cho H, Cho H, Kang Y (2016) Prevalence and socio-economic burden of heart failure in an aging society of South Korea. BMC Cardiovasc Disord 16:215

    PubMed  PubMed Central  Google Scholar 

  • Lim S, Chang D, Ahn S, Kim B (2016) Whole genome sequencing of “Faecalibaculum rodentium” ALO17, isolated from C57BL/6J laboratory mouse feces. Gut Pathogen 8:3

    Google Scholar 

  • Mao W, Fang F, Li H, Qi X, Sun H, Chen Y, Guo S (2008) Heparinoid-active two sulfated polysaccharides isolated from marine green algae Monostroma nitidum. Carbohydr Polym 74:834–839

    CAS  Google Scholar 

  • Marchesi JR, Adams DH, Fava F, Hermes GDA, Hirschfield GM, Hold G, Quraishi MN, Kinross J, Smidt H, Tuohy KM, Thomas LV, Zoetendal EG, Hart A (2016) The gut microbiota and host health: a new clinical frontier. Gut 65:330–339

    PubMed  Google Scholar 

  • Mitsuoka T (2014) Establishment of intestinal bacteriology. Biosci Microb Food Health 33:99–116

    Google Scholar 

  • Nakata T, Kyoui D, Takahashi H, Kimura B, Kuda T (2016) Inhibitory effects of laminaran and alginate on production of putrefactive compounds from soy protein by intestinal microbiota in vitro and in rats. Carbohydr Polym 143:61–69

    CAS  PubMed  Google Scholar 

  • Nakata T, Kyoui D, Takahashi H, Kimura B, Kuda T (2017) Inhibitory effects of soybean oligosaccharides and water-soluble soybean fibre on formation of putrefactive compounds from soy protein by gut microbiota. Int J Biol Macromol 97:173–180

    CAS  PubMed  Google Scholar 

  • Park Y, Lee J, Oh JH, Shin A, Kim J (2016) Dietary patterns and colorectal cancer risk in a Korean population. Medicine 95:25

    Google Scholar 

  • Salyers AA, Vercellotti JR, West SEH, Wilkins TD (1977) Fermentation of mucin and plant polysaccharides by strains of Bacteroides from the human colon. Appl Environ Microbiol 33:319–322

    CAS  PubMed  PubMed Central  Google Scholar 

  • Santeramo FG, Carlucci D, De Devitiis B, Seccia A, Stasi A, Viscecchia R, Nardone G (2018) Emerging trends in European food, diets and food industry. Food Res Int 104:39–47

    CAS  PubMed  Google Scholar 

  • Sasajima N, Ogasawara T, Takemura N, Fujiwara R, Watanabe J, Sonoyama K (2010) Role of intestinal Bifidobacterial pseudolongum in dietary fructo-oligosaccharide inhibition of 2,4-dinitrofluorobenzene-induced contact hypersensitivity in mice. Br J Nutr 103:539–548

    CAS  PubMed  Google Scholar 

  • Shang Q, Jiang H, Cai C, Hao J, Li G, Yu G (2018) Gut microbiota fermentation of marine polysaccharides and its effects on intestinal ecology: an overview. Carbohydr Polym 179:173–185

    CAS  PubMed  Google Scholar 

  • Shibayama J, Kuda T, Shikano A, Fukunaga M, Takahashi H, Kimura B, Ishizaki S (2018) Effects of rice bran and fermented rice bran suspensions on caecal microbiota in dextran sodium sulphate-induced inflammatory bowel disease model mice. Food Biosci 25:8–14

    CAS  Google Scholar 

  • Shikano A, Kuda T, Shinayama J, Toyama A, Yuka I, Takahashi H, Kimura B (2019) Effects of Lactobacillus plantarum Uruma-SU4 fermented green loofah on plasma lipid levels and gut microbiome of high-fat diet fed mice. Food Res Int 121:817–824

    CAS  PubMed  Google Scholar 

  • Sinclair L, Osman OA, Bertilsson S, Eiler A (2015) Microbial community composition and diversity via 16S rRNA gene amplicons: evaluating the Illumina platform. PLoS One 10:e0116955

    PubMed  PubMed Central  Google Scholar 

  • Sugawara S, Kushida M, Iwagaki Y, Asano M, Yamamoto K, Tomata Y, Tsuji I, Tsuduki T (2018) The 1975 type Japanese diet improves lipid metabolic parameters in younger adults: a randomized controlled trial. J Oleo Sci 67:599–607

    CAS  PubMed  Google Scholar 

  • Takei M, Kuda T, Eda M, Shikano A, Takahashi H, Kimura B (2017) Antioxidant and fermentation properties of aqueous solutions of dried algal products from the Boso Peninsula, Japan. Food Biosci 19:85–91

    CAS  Google Scholar 

  • Taniguchi M, Kuda T, Shibayama J, Sasaki T, Michihata T, Takahashi H, Kimura B (2019) In vitro antioxidant, anti-glycation and immunomodulation activities of fermented blue-green algae Aphanizomenon flos-aquae. Mol Biol Rep 46:1775–1786

    CAS  PubMed  Google Scholar 

  • Tilg H, Kaser A (2011) Gut microbiome, obesity, and metabolic dysfunction. J Clin Invest 121:2126–2132

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van de Verde F (2008) Structure and function of hybrid carrageenans. Food Hydrocoll 22:727–734

    Google Scholar 

  • Wang S, Huang M, You X, Zhao J, Chen L, Wang L (2018) Gut microbiota mediates the antiobesity effect of calorie restriction in mice. Sci Rep 8:13037

    PubMed  PubMed Central  Google Scholar 

  • Wells ML, Potin P, Craigie JS, Raven JA, Merchant SS, Helliwell KE, Smith AG, Camire ME, Brawley SH (2017) Algae as nutritional and functional food sources: revisiting our understanding. J Appl Phycol 29:949–982

    CAS  PubMed  Google Scholar 

  • Winglee K, Howard AG, Sha W, Gharaibeh RZ, Liu J, Jin D, Fodor AA, Gordon-Larsen P (2017) Recent urbanization in China is correlated with a Westernized microbiome encoding increased virulence and antibiotic resistance genes. Microbiome 5:121

    PubMed  PubMed Central  Google Scholar 

  • Yang C, Lai S, Chen Y, Liu D, Liu B, Ai C, Wan X, Gao L, Chen X, Zhao C (2019) Anti-diabetic effect of oligosaccharides from seaweed Sargassum confusum via JNK-IRS1/PI3K signalling pathways and regulation of gut microbiota. Food Chem Toxicol 131:110562

    CAS  PubMed  Google Scholar 

  • Yang JY, Lee YS, Lee SH, Ryu S, Fukuda S, Hase K, Yang CS, Lim HS, Kim MS, Kim HM, Ahn SH, Kwon BE, Ko HJ, Kweon MN (2017) Gut commensal Bacteroides acidifaciens prevents obesity and improves insulin sensitivity in mice. Mucosal Immunol 10:104–116

    CAS  PubMed  Google Scholar 

  • Yokota Y, Shikano A, Kuda T, Takei M, Takahashi H, Kimura B (2018a) Lactobacillus plantarum AN1 cells increase caecal L. reuteri in an ICR mouse model of dextran sodium sulphate-induced inflammatory bowel disease. Int Immunopharmacol 56:119–127

    CAS  PubMed  Google Scholar 

  • Yokota Y, Haraguchi Y, Shikano A, Kuda T, Takahashi H, Kimura B (2018b) Induction of gut Lactobacillus reuteri in normal ICR mice by oral administration of L. plantarum AN1. J Food Biochem 42:e12589

    Google Scholar 

  • Zhao C, Yang C, Liu B, Lin L, Sarker SD, Nahar S, Yu H, Cao H, Xiao J (2018) Bioactive compounds from marine macroalgae and their hypoglycemic benefits. Trends Food Sci Technol 72:1–12

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Towa Foundation for Food Science & Research, Tokyo, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Kuda.

Ethics declarations

Statement of animal rights

Animal experiments were performed in compliance with the Fundamental Guidelines for Proper Conduct of Animal Experiment and Related Activities in Academic Research Institutions, under the jurisdiction of the Ministry of Education, Culture, Sports, Science, and Technology, and approved by the animal experiment committee of the Tokyo University of Marine Science and Technology (approval No. H30-4).

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(XLSX 15277 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takei, M., Kuda, T., Fukunaga, M. et al. Effects of edible algae on caecal microbiomes of ICR mice fed a high-sucrose and low–dietary fibre diet. J Appl Phycol 31, 3969–3978 (2019). https://doi.org/10.1007/s10811-019-01866-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-019-01866-x

Keywords

Navigation