Skip to main content
Log in

Synthetic fused sRNA for the simultaneous repression of multiple genes

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Efficient control over multiple gene expression still presents a major challenge. Synthetic sRNA enables targeted gene expression control in trans without directly modifying the chromosome, but its use to simultaneously target multiple genes can often cause cell growth defects because of the need for additional energy for transcription and lowering of their repression efficiency by limiting the amount of Hfq protein. To address these limitations, we present fusion sRNA (fsRNA) that simultaneously regulates the translation of multiple genes efficiently. It is constructed by linking the mRNA-binding modules for multiple targeted genes in one sRNA scaffold via one-pot generation using overlap extension PCR. The repression capacity of fsRNA was demonstrated by the construction of sRNAs to target four endogenous genes: caiF, hybG, ytfR and minD in Escherichia coli. Their cross-reactivity and the effect on cell growth were also investigated. As practical applications, we applied fsRNA to violacein- and protocatechuic acid–producing strains, resulting in increases of 13% violacein and 81% protocatechuic acid, respectively. The developed fsRNA-mediated multiple gene expression regulation system thus enables rapid and efficient development of optimised cell factories for valuable chemicals without cell growth defects and limiting cellular resources.

Key points

• Synthetic fusion sRNA (fsRNA)–based system was constructed for the repression of multiple target genes.

• fsRNA repressed multiple genes by only expressing a single sRNA while minimising the cellular burden.

• The application of fsRNA showed the increased production titers of violacein (13%) and protocatechuic acid (81%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All datasets obtained for this study are included in the manuscript/supplementary material.

References

  • Ajiboye TO, Habibu RS, Saidu K, Haliru FZ, Ajiboye HO, Aliyu NO, Ibitoye OB, Uwazie JN, Muritala HF, Bello SA, Yusuf II Mohammed AO (2017) Involvement of oxidative stress in protocatechuic acid-mediated bacterial lethality. Microbiologyopen 6 e00472

  • Apura P, Saramago M, Peregrina A, Viegas SC, Carvalho SM, Saraiva LM, Arraiano CM, Domingues S (2020) Tailor-made sRNAs: a plasmid tool to control the expression of target mRNAs in Pseudomonas putida. Plasmid 109 102503

  • Bossi L, Figueroa-Bossi N (2016) Competing endogenous RNAs: a target-centric view of small RNA regulation in bacteria. Nat Rev Microbiol 14:775–784

    Article  CAS  PubMed  Google Scholar 

  • Chao CY, Yin MC (2009) Antibacterial effects of roselle calyx extracts and protocatechuic acid in ground beef and apple juice. Foodborne Pathog Dis 6:201–206

    Article  CAS  PubMed  Google Scholar 

  • Chappell J, Takahashi MK, Lucks JB (2015) Creating small transcription activating RNAs. Nat Chem Biol 11:214–220

    Article  CAS  PubMed  Google Scholar 

  • Chappell J, Westbrook A, Verosloff M, Lucks JB (2017) Computational design of small transcription activating RNAs for versatile and dynamic gene regulation. Nat Commun 8:1051

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen S, Zhang A, Blyn LB, Storz G (2004) MicC, a second small-RNA regulator of Omp protein expression in Escherichia coli. J Bacteriol 186:6689–6697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho C, Lee SY (2017) Efficient gene knockdown in Clostridium acetobutylicum by synthetic small regulatory RNAs. Biotechnol Bioeng 114:374–383

    Article  CAS  PubMed  Google Scholar 

  • Choi SY, Yoon KH, Lee JI, Mitchell RJ (2015) Violacein: properties and production of a versatile bacterial pigment. Biomed Res Int 2015 465056

  • Cress BF, Jones JA, Kim DC, Leitz QD, Englaender JA, Collins SM, Linhardt RJ, Koffas MA (2016) Rapid generation of CRISPR/dCas9-regulated orthogonally repressible hybrid T7-lac promoters for modular tuneable control of metabolic pathway fluxes in Escherichia coli. Nucleic Acids Res 44:4472–4485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duran N, Justo GZ, Ferreira CV, Melo PS, Cordi L, Martins D (2007) Violacein: properties and biological activities. Biotechnol Appl Biochem 48:127–133

    Article  CAS  PubMed  Google Scholar 

  • Durante-Rodriguez G, de Lorenzo V, Nikel PI (2018) A post-translational metabolic switch enables complete decoupling of bacterial growth from biopolymer production in engineered Escherichia coli. ACS Synth Biol 7:2686–2697

    Article  CAS  PubMed  Google Scholar 

  • Eggenhofer F, Tafer H, Stadler PF, Hofacker IL (2011) RNApredator: fast accessibility-based prediction of sRNA targets. Nucleic Acids Res 39:W149-154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang H, Li D, Kang J, Jiang P, Sun J, Zhang D (2018) Metabolic engineering of Escherichia coli for de novo biosynthesis of vitamin B12. Nat Commun 9:4917

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao W, He Y, Zhang F, Zhao F, Huang C, Zhang Y, Zhao Q, Wang S, Yang C (2019) Metabolic engineering of Bacillus amyloliquefaciens LL3 for enhanced poly-gamma-glutamic acid synthesis. Microb Biotechnol 12:932–945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Green AA, Silver PA, Collins JJ, Yin P (2014) Toehold switches: de-novo-designed regulators of gene expression. Cell 159:925–939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gruber AR, Lorenz R, Bernhart SH, Neubock R, Hofacker IL (2008) The Vienna RNA websuite. Nucleic Acids Res 36:W70-74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hao Y, Xu L, Shi H (2011) Theoretical analysis of catalytic-sRNA-mediated gene silencing. J Mol Biol 406:195–204

    Article  CAS  PubMed  Google Scholar 

  • Hawkins M, Atkinson J, McGlynn P (2016) Escherichia coli chromosome copy number measurement using flow cytometry analysis. Methods Mol Biol 1431:151–159

    Article  CAS  PubMed  Google Scholar 

  • Hussein R, Lim HN (2011) Disruption of small RNA signaling caused by competition for Hfq. Proc Natl Acad Sci U S A 108:1110–1115

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa H, Otaka H, Maki K, Morita T, Aiba H (2012) The functional Hfq-binding module of bacterial sRNAs consists of a double or single hairpin preceded by a U-rich sequence and followed by a 3’ poly(U) tail. RNA 18:1062–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones JA, Vernacchio VR, Lachance DM, Lebovich M, Fu L, Shirke AN, Schultz VL, Cress B, Linhardt RJ, Koffas MA (2015) ePathOptimize: a combinatorial approach for transcriptional balancing of metabolic pathways. Sci Rep 5:11301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jost D, Nowojewski A, Levine E (2011) Small RNA biology is systems biology. BMB Rep 44:11–21

    Article  CAS  PubMed  Google Scholar 

  • Jung SW, Yeom J, Park JS, Yoo SM (2021) Recent advances in tuning the expression and regulation of genes for constructing microbial cell factories. Biotechnol Adv 50 107767

  • Konovalova A, Sogaard-Andersen L, Kroos L (2014) Regulated proteolysis in bacterial development. FEMS Microbiol Rev 38:493–522

    Article  CAS  PubMed  Google Scholar 

  • Kües U, Stahl U (1989) Replication of plasmids in gram-negative bacteria. Microbiol Rev 53:491–516

    Article  PubMed  PubMed Central  Google Scholar 

  • Levine E, Zhang Z, Kuhlman T, Hwa T (2007) Quantitative characteristics of gene regulation by small RNA. PLoS Biol 5 e229

  • Long M, Xu M, Qiao Z, Ma Z, Osire T, Yang T, Zhang X, Shao M, Rao Z (2020) Directed evolution of ornithine cyclodeaminase using an evolvR-based growth-coupling strategy for efficient biosynthesis of L-proline. ACS Synth Biol 9:1855–1863

    Article  CAS  PubMed  Google Scholar 

  • Malecka EM, Strozecka J, Sobanska D, Olejniczak M (2015) Structure of bacterial regulatory RNAs determines their performance in competition for the chaperone protein Hfq. Biochemistry 54:1157–1170

    Article  CAS  PubMed  Google Scholar 

  • Mars RA, Nicolas P, Denham EL, van Dijl JM (2016) Regulatory RNAs in Bacillus subtilis: a Gram-positive perspective on bacterial RNA-mediated regulation of gene expression. Microbiol Mol Biol Rev 80:1029–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo ZW, Kim WJ, Lee SY (2018) Metabolic engineering of Escherichia coli for efficient production of 2-pyrone-46-dicarboxylic acid from glucose. ACS Synth Biol 7:2296–2307

    Article  CAS  PubMed  Google Scholar 

  • Mancuso F, Bunkenborg J, Wierer M, Molina H (2012) Data extraction from proteomics raw data: an evaluation of nine tandem MS tools using a large Orbitrap data set. J Proteomics 75:5293–5303

    Article  CAS  PubMed  Google Scholar 

  • Miscevic D, Mao JY, Kefale T, Abedi D, Moo-Young M, Perry Chou C (2021) Strain engineering for high-level 5-aminolevulinic acid production in Escherichia coli. Biotechnol Bioeng 118:30–42

    Article  CAS  PubMed  Google Scholar 

  • Na D, Yoo SM, Chung H, Park H, Park JH, Lee SY (2013) Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs. Nat Biotechnol 31:170–174

    Article  CAS  PubMed  Google Scholar 

  • Noh M, Yoo SM, Kim WJ, Lee S (2017) Gene expression knockdown by modulating synthetic small RNA expression in Escherichia coli. Cell Syst 5 418 426 e4

  • Noh M, Yoo SM, Yang D, Lee SY (2019) Broad-spectrum gene repression using scaffold engineering of synthetic sRNAs. ACS Synth Biol 8:1452–1461

    Article  CAS  PubMed  Google Scholar 

  • Overgaard M, Johansen J, Moller-Jensen J, Valentin-Hansen P (2009) Switching off small RNA regulation with trap-mRNA. Mol Microbiol 73:790–800

    Article  CAS  PubMed  Google Scholar 

  • Ou C, Shi N, Yang Q, Zhang Y, Wu Z, Wang B, Compans RW, He C (2014) Protocatechuic acid a novel active substance against avian influenza virus H9N2 infection. PLoS One 9 e111004

  • Panja S, Schu DJ, Woodson SA (2013) Conserved arginines on the rim of Hfq catalyze base pair formation and exchange. Nucleic Acids Res 41:7536–7546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santiago-Frangos A, Woodson SA (2018) Hfq chaperone brings speed dating to bacterial sRNA. Wiley Interdiscip Rev RNA 9:e1475

  • Sun T, Li S, Song X, Pei G, Diao J, Cui J, Shi M, Chen L, Zhang W (2018) Re-direction of carbon flux to key precursor malonyl-CoA via artificial small RNAs in photosynthetic Synechocystis sp, PCC 6803. Biotechnol Biofuels 11:26

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun D, Chen J, Wang Y, Li M, Rao D, Guo Y, Chen N, Zheng P, Sun J, Ma Y (2019) Metabolic engineering of Corynebacterium glutamicum by synthetic small regulatory RNAs. J Ind Microbiol Biotechnol 46:203–208

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi Y, Choi PJ, Li GW, Chen H, Babu M, Hearn J, Emili A, Xie XS (2010) Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 329:533–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian T, Kang JW, Kang A, Lee TS (2019) Redirecting metabolic flux via combinatorial multiplex CRISPRi-mediated repression for isopentenol production in Escherichia coli. ACS Synth Biol 8:391–402

    Article  CAS  PubMed  Google Scholar 

  • Tobie WC (1935) The pigment of Bacillus violaceus: I, the production extraction and purification of violacein. J Bacteriol 29:223–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Updegrove TB, Zhang A, Storz G (2016) Hfq: the flexible RNA matchmaker. Curr Opin Microbiol 30:133–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vigouroux A, Bikard D (2020) CRISPR tools to control gene expression in bacteria. Microbiol Mol Biol Rev 84:e00077-e19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang M, Herrmann CJ, Simonovic M, Szklarczyk D, von Mering C (2015) Version 4.0 of PaxDb: protein abundance data integrated across model organisms tissues and cell-lines. Proteomics 15:3163–3168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang D, Kim WJ, Yoo SM, Choi JH, Ha SH, Lee MH, Lee SY (2018) Repurposing type III polyketide synthase as a malonyl-CoA biosensor for metabolic engineering in bacteria. Proc Natl Acad Sci U S A 115:9835–9844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S, Wang Y, Wei C, Liu Q, Jin X, Du G, Chen J, Kang Z (2018) A new sRNA-mediated posttranscriptional regulation system for Bacillus subtilis. Biotechnol Bioeng 115:2986–2995

    Article  CAS  PubMed  Google Scholar 

  • Yang D, Yoo SM, Gu C, Ryu JY, Lee JE, Lee SY (2019) Expanded synthetic small regulatory RNA expression platforms for rapid and multiplex gene expression knockdown. Metab Eng 54:180–190

    Article  CAS  PubMed  Google Scholar 

  • Yeom J, Park JS, Jung SW, Lee S, Kwon H, Yoo SM (2021) High-throughput genetic engineering tools for regulating gene expression in a microbial cell factory. Crit Rev Biotechnol:1–18. https://doi.org/10.1080/07388551.2021.2007351

  • Yoo SM, Na D, Lee SY (2013) Design and use of synthetic regulatory small RNAs to control gene expression in Escherichia coli. Nat Protoc 8:1694–1707

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Zhao Y, Cao Y, Yu Z, Wang G, Li Y, Ye X, Li C, Lin X, Song H (2020) sRNA-based screening chromosomal gene targets and modular designing Escherichia coli for high-titer production of aglycosylated immunoglobulin G. ACS Synth Biol 9:1385–1394

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by an NRF grant funded by the Ministry of Science and ICT (NRF-2022R1A2C2004292) and the Chung-Ang University Research Scholarship Grants in 2021.

Author information

Authors and Affiliations

Authors

Contributions

SMY and JY conceived the project and designed the experiments. JY, JSP, YMJ and BSS performed the experiments. SMY, JY and JSP analysed the data and wrote the manuscript.

Corresponding author

Correspondence to Seung Min Yoo.

Ethics declarations

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1081 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeom, J., Park, J.S., Jeon, Y.M. et al. Synthetic fused sRNA for the simultaneous repression of multiple genes. Appl Microbiol Biotechnol 106, 2517–2527 (2022). https://doi.org/10.1007/s00253-022-11867-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-022-11867-5

Keywords

Navigation