Skip to main content
Log in

An overview of levan-degrading enzyme from microbes

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Functional carbohydrates are ideal substitutes for table sugar and make up a large share of the worldwide functional food market because of their numerous physiological benefits. Growing attention has been focused on levan, a β-(2,6) fructan that possesses more favorable physicochemical properties, such as lower intrinsic viscosity and greater colloidal stability, than β-(2,1) inulin. Levan can be used not only as a functional carbohydrate but also as feedstock for the production of levan-type fructooligosaccharides (L-FOSs). Three types of levan-degrading enzymes (LDEs), including levanase (EC 3.2.1.65), β-(2,6)-fructan 6-levanbiohydrolase (LF2ase, EC 3.2.1.64), and levan fructotransferase (LFTase, EC 4.2.2.16), play significant roles in the biological production of L-FOSs. These three enzymes convert levan into different L-FOSs, levanbiose, and difructose anhydride IV (DFA IV), respectively. The prebiotic properties of both L-FOSs and DFA IV have been confirmed in recent years. Although levanase, LF2ase, and LFTase belong to the same O-glycoside hydrolase 32 family (GH32), their catalytic properties and product spectra differ significantly. In this paper, recent studies on these LDEs are reviewed, including those investigating microbial source and catalytic properties. Additionally, comparisons of LDEs, including those of their differing cleavage behavior and applications for different L-FOSs, are presented in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andersen B (1967) The transferring activity of a β-fructofuranosidase: formation of two disaccharides from fructose. Acta Chem Scand 21:828–829

    Article  CAS  Google Scholar 

  • Calub TM, Waterhouse AL (1990) Conformational analysis of inulobiose by molecular mechanics. Carbohydr Res 207:221–235

    Article  CAS  PubMed  Google Scholar 

  • Cha J, Park NH, Yang SJ, Lee TH (2001) Molecular and enzymatic characterization of a levan fructotransferase from Microbacterium sp. AL-210. J Biotechnol 91:49–61

    Article  CAS  PubMed  Google Scholar 

  • Chaudhary A, Gupta LK, Gupta JK, Banerjee UC (1996) Purification and properties of levanase from Rhodotorula sp. J Biotechnol 46:55–61

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Karboune S (2019) Prebiotics in food and health: properties, functionalities, production, and overcoming limitations with second-generation levan-type fructooligosaccharides. Encyclopedia of Food Chemistry. 271–279

  • Cordeiro de Paula V, Pinheiro IO, Lopes CE, Calazans G (2008) Microwave-assisted hydrolysis of Zymomonas mobilis levan envisaging oligofructan production. Bioresour Technol 99:2466–2470

    Article  CAS  Google Scholar 

  • Cuskin F, Flint J, Gloster T, Morland C, Baslé A, Henrissat B, Coutinho P, Strazzulli A, Solovyova A, Davies G, Gilbert H (2012) How nature can exploit nonspecific catalytic and carbohydrate binding modules to create enzymatic specificity. Proc Natl Acad Sci U S A 109:20889–20894

    Article  PubMed  PubMed Central  Google Scholar 

  • Dahech I, Ayed HB, Belghith KS, Belghith H, Mejdoub (2013) Microbial production of levanase for specific hydrolysis of levan. Int J Biol Macromol 60:128–133

    Article  CAS  PubMed  Google Scholar 

  • Ernits K, Eek P, Lukk T, Visnapuu T, Alarnae T (2019) First crystal structure of an endo-levanase - the BT1760 from a human gut commensal Bacteroides thetaiotaomicron. Sci Rer-UK 9:8443. https://doi.org/10.1038/s41598-019-44785-0

    Article  CAS  Google Scholar 

  • Gouet P, Courcelle E, Stuart DI, Metoz F (1999) ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics 15:305–308

    Article  CAS  PubMed  Google Scholar 

  • Hang H (2017) Recent advances on the difructose anhydride IV preparation from levan conversion. Appl Microbiol Biotechnol 101:7477–7486

    Article  CAS  PubMed  Google Scholar 

  • Igarashi T, Takahashi M, Yamamoto A, Etoh Y, Takamori K (1987) Purification and characterization of levanase from Actinomyces viscosus ATCC 19246. Infect Immun 55:3001–3005

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jang KH, Ryu EJ, Park BS, Song KB, Kang SA, Kim CH, Uhm TB, Park YI, Rhee SK (2003) Levan fructotransferase from Arthrobacter oxydans J17-21 catalyzes the formation of the di-D-fructose dianhydride IV from levan. J Agric Food Chem 51:2632–2636

    Article  CAS  PubMed  Google Scholar 

  • Jensen SL, Diemer MB, Lundmark M, Larsen FH, Blennow A, Mogensen HK, Nielsen TH (2016) Levanase from Bacillus subtilis hydrolyses β-2,6 fructosyl bonds in bacterial levans and in grass fructans. Int J Biol Macromol 85:514–521

    Article  CAS  PubMed  Google Scholar 

  • Kang SK, Lee SO, Lim YS, Jang K, Lee TH (1998) Purification and characterization of a novel levanoctaose-producing levanase from Pseudomonas strain K-52. Biotechnol Appl Biochem 27:159–166

    CAS  PubMed  Google Scholar 

  • Kang EJ, Lee SO, Lee JD, Lee TH (1999) Purification and characterization of a levanbiose-producing levanase from Pseudomonas sp. No. 43. Biotechnol Appl Biochem 29:263–268

    CAS  Google Scholar 

  • Kasperowicz A, Pristas P, Piknova M, Javorsky P, Guczynska W, Michalovski T, Kwiatkowska E (2010) Fructanolytic and saccharolytic enzymes of Treponema zioleckii strain kT. Anaerobe 16:387–392

    Article  CAS  PubMed  Google Scholar 

  • Kilian S, Kritzinger S, Rycroft C, Gibson G, Preez JD (2002) The effects of the novel bifidogenic trisaccharide, neokestose, on the human colonic microbiota. World J Microbiol Biotechnol 18:637–644

    Article  CAS  Google Scholar 

  • Kuramoto T, Tamura K, Kitahata S, Izuka M, Minamiura N (1988) Abstracts of papers. Ann Meet Agric Chem Soc Jpan 62:348

    Google Scholar 

  • Laloux O, Cassart JP, Delcour J, Van Beeumen J, Vandenhaute J (1991) Cloning and sequencing of the inulinase gene of Kluyveromyces marxianus var. marxianus ATCC 12424. FEBS Lett 289:64–68

    Article  CAS  PubMed  Google Scholar 

  • Li WJ, Yu SH, Zhang T, Jiang B, Mu WM (2015) Recent novel applications of levansucrases. Appl Microbiol Biotechnol 99:6959–6969

    Article  CAS  PubMed  Google Scholar 

  • Lim YS, Kang SK, Sang OL, Lee JD, Lee TH (1998) Purification and characterization of a levanase from Streptomyces sp. 366L. J Biotechnol 61:33–41

    Article  Google Scholar 

  • Liu JH, Waterhouse AL (1992) Conformational analysis of levanbiose by molecular mechanics. Carbohydr Res 232:1–15

    Article  CAS  PubMed  Google Scholar 

  • Marx SP, Winkler S, Hartmeier W (2000) Metabolization of β-(2,6)-linked fructose-oligosaccharides by different bifidobacteria. FEMS Microbiol Lett 182:163–169

    CAS  PubMed  Google Scholar 

  • Mellet CO, Garcia Fernandez JM (2010) Difructose dianhydrides (DFAs) and DFA-enriched products as functional foods. Top Curr Chem 294:49–77

    Article  CAS  PubMed  Google Scholar 

  • Menéndez C, Hernández L, Banguela A, Paìs J (2004) Functional production and secretion of the Gluconacetobacter diazotrophicus fructose-releasing exo-levanase (LsdB) in Pichia pastoris. Enzym Microb Technol 34:446–452

    Article  CAS  Google Scholar 

  • Menéndez C, Hernández L, Selman G, Mendoza MF, Hevia P, Sotolongo M, Arrieta JG (2005) Molecular cloning and expression in Escherichia coli of an exo-levanase gene from the endophytic bacterium Gluconacetobacter diazotrophicus srt4. Curr Microbiol 45:5–12

    Google Scholar 

  • Meng Q, Zhang T, Jiang B, Mu W, Miao M (2016) Advances in applications, metabolism, and biotechnological production of L-xylulose. Appl Microbiol Biotechnol 100:535–540

    Article  CAS  PubMed  Google Scholar 

  • Miasnikov AN (1997) Characterization of a novel endo-levanase and its gene from Bacillus sp. L7. FEMS Microbiol Lett 154:23–28

    Article  CAS  PubMed  Google Scholar 

  • Moreno F, Corzo N, Montilla A, Villamiel M, Olano A (2017) Current state and latest advances in the concept, production and functionality of prebiotic oligosaccharides. Curr Opin Food Sci 13:50–55

    Article  Google Scholar 

  • Murakami H, Muroi H, Kuramoto T, Tamura Y, Mizutani K, Nakano H, Kitahata S (1990) Purification and some properties of a levanase from Streptomyces sp. no. 7-3. Agric Biol Chem 54:2247–2255

    CAS  Google Scholar 

  • Murakami H, Kuramoto T, Mizutani K, Nakano H, Kitahata S (1992) Purification and some properties of a new levanase from Bacillus sp. no. 71. Biosci Biotechnol Biochem 56:608–613

    Article  CAS  PubMed  Google Scholar 

  • Murakami H, Muroi H, Nakano H, Kitahata S (1993) Purification and some properties of a DFA IV (Di-D-fructose anhydride IV) producing levanase from Arthrobacter sp. No.11-E. Kagaku to Kogyo (in Japanese) 67:365–370

    CAS  Google Scholar 

  • Nolling J, Breton G, Omel Chenko M, Makarova K, Zeng Q, Gibson R, Lee M, Dubois J, Qiu D, Hitti J (2001) Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. J Bacteriol 183:4823–4838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Öner ET, Hernández L, Combie J (2016) Review of Levan polysaccharide: From a century of past experiences to future prospects. Biotechnol Adv 34:827–844

    Article  CAS  PubMed  Google Scholar 

  • Oscarson S, Sehgelmeble FW (2002) Chemical syntheses of inulin and levan structures. J Organomet Chem 67:8457–8462

    Article  CAS  Google Scholar 

  • Park J, Kim M, Park Y, Shin I, Cha J, Kim CH, Rhee S (2012) Structural and functional basis for substrate specificity and catalysis of levan fructotransferase. J Biol Chem 287:31233–31241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porras-Domínguez JR, Ávila-Fernández Á, Rodríguez-Alegría ME, Miranda-Molina A, Escalante A, González-Cervantes R, Olvera C, López Munguía A (2014) Levan-type FOS production using a Bacillus licheniformis endolevanase. Process Biochem 49:783–790

    Article  CAS  Google Scholar 

  • Saito K, Tomita F (2000) Difructose anhydrides: their mass-production and physiological functions. Biosci Biotechnol Biochem 64:1321–1327

    Article  CAS  PubMed  Google Scholar 

  • Saito K, Goto H, Yokota A, Tomita F (1997) Purification of levan fructotransferase from Arthrobacter nicotinovorans GS-9 and production of DFA IV from levan by the enzyme. Biosci Biotechnol Biochem 61:1705–1709

    Article  CAS  PubMed  Google Scholar 

  • Saito K, Kondo K, Kojima I, Yokota A, Tomita F (2000) Purification and characterization of 2,6-beta-D-fructan 6-levanbiohydrolase from Streptomyces exfoliatus F3-2. Appl Environ Microbiol 66(1):252–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh RS, Singh RP, Kennedy JF (2016) Recent insights in enzymatic synthesis of fructooligosaccharides from inulin. Int J Biol Macromol 85:565–572

    Article  CAS  PubMed  Google Scholar 

  • Singh RS, Chauhan K, Kennedy JF (2017a) A panorama of bacterial inulinases: production, purification, characterization and industrial applications. Int J Biol Macromol 96:312–322

    Article  CAS  PubMed  Google Scholar 

  • Singh SP, Jadaun JS, Narnoliya LK, Pandey A (2017b) Prebiotic oligosaccharides: special focus on fructooligosaccharides, its biosynthesis and bioactivity. Appl Biochem Biotechnol 183:613–635

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Chauhan K, Pandey A, Larrochec C (2018) Biocatalytic strategies for the production of high fructose syrup from inulin. Bioresource Tech 260:394–403

    Article  CAS  Google Scholar 

  • Song KB, Bae KS, Lee YB, Lee KY, Rhee SK (2000) Characteristics of levan fructotransferase from Arthrobacter ureafaciens K2032 and difructose anhydride IV formation from levan. Enzym Microb Technol 27:212–218

    Article  CAS  Google Scholar 

  • Song EK, Kim H, Sung HK, Cha J (2002) Cloning and characterization of a levanbiohydrolase from Microbacterium laevaniformans ATCC 15953. Gene 29:45–55

    Article  Google Scholar 

  • Sridevi V, Sumathi V, Guru Prasad M, Satish KM (2014) Fructooligosaccharides - type prebiotic: A Review. J Pharm Res 8:321

    CAS  Google Scholar 

  • Takesue N, Sone T, Tanaka M, Tomita F, Asano K (2009) Effect of an additionally introduced degQ gene on di-D-fructofuranosyl 2,6′: 2′,6 anhydride (DFA IV) production by recombinant Bacillus subtilis in a single culture production system. J Biosci Bioeng 107:623–632

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Kawguchi H, Ohno K, Shohji K (1981) Enzymic formation of difructose anhydride IV from bacterial levan. J Biochem 90:1545–1548

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Karigane T, Yamaguchi F, Nishikawa S, Yoshida N (1983) Action of levan fructotransferase of Arthrobacter ureafaciens on levanoligosaccharides. J Biochem 94:1569–1578

    CAS  PubMed  Google Scholar 

  • Tian F, Karboune S, Hill A (2014) Synthesis of fructooligosaccharides and oligolevans by the combined use of levansucrase and endo-inulinase in one-step bi-enzymatic system. Innov Food Sci Emerg 22:230–238

    Article  CAS  Google Scholar 

  • Van den Ende W, Michiels A, De RJ, Van LA (2014) Fructan biosynthetic and breakdown enzymes in dicots evolved from different invertases. Expression of fructan genes throughout chicory development. The Scientific World J 2:1281–1295

    Article  CAS  Google Scholar 

  • Vicentini A, Liberatore L, Mastrocola D (2016) Functional foods: trends and development of the global market. Ital J Food Sci 28:338–351

    Google Scholar 

  • Vijn I, van Dijken A, Lüscher M, Weisbeek P, Smeekens S (2010) Molecular analysis of plant fructan accumulation. Dev Plant Genet Breed 5:199–205

    Google Scholar 

  • Wang X, Yu S, Zhang T, Jiang B, Mu W (2015) From fructans to difructose dianhydrides. Appl Microbiol Biotechnol 99:175–188

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Ni D, Zhang W, Guang C, Zhang T, Mu W (2019) Recent advances in levansucrase and inulosucrase: evolution, characteristics, and application. Crit Rev Food Sci Nutr. https://doi.org/10.1080/10408398.2018.1506421

  • Yamamoto Y, Takahashi Y, Kawano M, Iizuka M, Matsumoto T, Saeki S, Yamaguchi H (1999) In vitro digestibility and fermentability of levan and its hypocholesterolemic effects in rats. J Nutr Biochem 10:13–18

    Article  CAS  PubMed  Google Scholar 

  • Yokota A, Kondo K, Nakagawa M, Kojima I, Tomita F (1993) Production of levanbiose by a levan-degrading enzyme from Streptomyces exfoliatus F3-2. Biosci Biotechnol Biochem 57:745–749

    Article  CAS  Google Scholar 

  • Yoo SH, Yoon EJ, Cha J, Lee HG (2004) Antitumor activity of levan polysaccharides from selected microorganisms. Int J Biol Macromol 34(1):37–41

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 31801583), the Natural Science Foundation of Jiangsu Province (No. BK20180607), and the Fundamental Research Funds for the Central Universities (JUSRP11966) and the National First-Class Discipline Program of Food Science and Technology (No. JUFSTR20180203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanmeng Mu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Xu, W., Ni, D. et al. An overview of levan-degrading enzyme from microbes. Appl Microbiol Biotechnol 103, 7891–7902 (2019). https://doi.org/10.1007/s00253-019-10037-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-019-10037-4

Keywords

Navigation