Skip to main content

Advertisement

Log in

Nanomaterials for the control of bacterial blight disease in pomegranate: quo vadis?

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Bacterial blight, caused by Xanthomonas axonopodis pv. punicae, Xap is a serious threat to commercially successful pomegranate (Punica granatum L) crop. Owing to the non-availability of disease-resistant varieties of pomegranate, integrated disease management involving change of season, adequate nutrition, and preventive sprays of bactericides is used to control Xap. We undertook a systematic study to assess the efficacy of metal-based nanomaterials (Cu, CuO, ZnO, CaO, MgO) for the control of Xap. The antimicrobial effectiveness was in the order Cu > ZnO > MgO > CuO with MIC (minimum inhibitory concentration) 2.5, 20, 190, 200, and 1600 μg/ml. A time-to-kill curve indicated that Cu nanoparticles (CuNPs) killed Xap cells within 30 min at 2.5 μg/ml. Under controlled conditions (polyhouse), foliar application of CuNPs (400 μg/ml) resulted in ~ 90 and ~ 15% disease reduction in 6-month-old infected plants at early (disease severity 10%) and established (disease severity 40%) stages of infection, respectively. In a subsequent field study on severely infected 7-year-old plants, applications of nanoparticles reduced the disease incidence by ~ 20% as compared to untreated control. Microscopic observations revealed that CuNPs reduced the bacterial colonization of the leaf surface. Anti-Xap activity of foliar applied CuNPs was on par with conventionally used copper oxychloride (3000 μg/ml) albeit at 8-fold reduced copper concentration. Thus, early disease detection and application of effective dosage of copper nanoparticles can indeed help the farmer in achieving rapid infection control. Further studies on use of combinations of nanoparticles for management of bacterial blight are warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Avanzato CP, Follieri JM, Banerjee IA, Fath KR (2009) Biomimetic synthesis and antibacterial characteristics of magnesium oxide—germanium dioxide nanocomposite powders. J Compos Mater 43:897–910

    Article  CAS  Google Scholar 

  • Aysan Y, Sahin F (2003) First report of bacterial blight of anthurium caused by Xanthomonas axonopodis pv. dieffenbachiae in Turkey. Plant Pathol 52:783–783

  • Benagi VI, Ravikumar MR, Nargund VB (2012) Threat of bacterial blight on pomegranate in India—mitigation by an integrated approach. In: Melgarejo P, Valero D (eds) Options Méditerranéennes Series A: Mediterranean Seminars, II International Symposium on the Pomegranate, vol 103. CIHEAM, Zaragoza, pp 113–116

    Google Scholar 

  • Benson DM, Hall JL, Moorman GW, Daughtrey ML, Chase AR, Lamour KH (2002) The history and diseases of poinsettia, the christmas flower. Plant Health Progress 3(1):18

    Article  Google Scholar 

  • Boro MC, Beriam LOS, Guzzo SD (2011) Induced resistance against Xanthomonas axonopodis pv. passiflorae in passion fruit plants. Trop Plant Pathol 36:74–80

    Google Scholar 

  • Carabineiro SAC, Bogdanchikova N, Pestryakov A, Tavares PB, Fernandes LSG, Figueiredo JL (2011) Gold nanoparticles supported on magnesium oxide for CO oxidation. Nanoscale Res Lett 6(1):435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carmo MGFD, Macagnan D, Carvalho ADOD (2001) Progress of bacterial leaf spot of pepper starting with different initial quantities of infected seedlings and treatment with the use or not of copper oxichloride. Hortic Bras 19:342–347

    Article  Google Scholar 

  • Chatterjee AK, Sarkar RK, Chattopadhyay AP, Aich P, Chakraborty R, Basu T (2012) A simple robust method for synthesis of metallic copper nanoparticles of high antibacterial potency against E. coli. Nanotechnology 23:085103

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Jing X, Wang J, Liu J, Song D, Liu L (2013) Self-assembly of ZnO nanoparticles into hollow microspheres via a facile solvothermal route and their application as gas sensor. CrystEngComm 15(36):7243

    Article  CAS  Google Scholar 

  • Christian T, Schneider RJ, Färber HA, Skutlarek D, Meyer MT, Goldbach HE (2003) Determination of antibiotic residues in manure, soil, and surface waters. Acta Hydrochim Hydrobiol 31:36–44

    Article  CAS  Google Scholar 

  • Dapkekar A, Deshpande P, Oak MD, Paknikar KM, Rajwade JM (2018) Zinc use efficiency is enhanced in wheat through nanofertilization. Sci Rep 8:6832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Degrassi G, Antisari LV, Venturi V, Carbone S, Gatti AM, Gambardella C, Falugi C, Vianello G (2014) Impact of Engineered Nanoparticles on Virulence of Xanthomonas oryzae pv oryzae and on Rice Sensitivity at its Infection. EQA-International. J Environ Qual 16:21–33

    Google Scholar 

  • Deshpande P, Dapkekar A, Oak MD, Paknikar KM, Rajwade JM (2017) Zinc complexed chitosan/TPP nanoparticles: a promising micronutrient nanocarrier suited for foliar application. Carbohydr Polym 165:394–401

    Article  CAS  PubMed  Google Scholar 

  • El-Hendawy HH, Osman ME, Sorour NM (2005) Biological control of bacterial spot of tomato caused by Xanthomonas campestris pv. vesicatoria by Rahnella aquatilis. Microbiol Res 160:343–352

    Article  PubMed  Google Scholar 

  • Elmer WH, Ma C, White JC (2018) Nanoparticles for plant disease management. Curr Opin Environ Sci Heath 6:66–70

    Article  Google Scholar 

  • Espitia PJP, Soares NDFF, dos Reis Coimbra JS, de Andrade NJ, Cruz RS, Medeiros EAA (2012) Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Technol 5:1447–1464

    Article  CAS  Google Scholar 

  • Fones H, Preston GM (2012) Reactive oxygen and oxidative stress tolerance in plant pathogenic Pseudomonas. FEMS Microbiol Lett 327:1–8

    Article  CAS  PubMed  Google Scholar 

  • Gan N, Yang X, Xie D, Wu Y, Wen W (2010) A disposable organophosphorus pesticides enzyme biosensor based on magnetic composite nano-particles modified screen printed carbon electrode. Sensors 10:625–638

    Article  CAS  PubMed  Google Scholar 

  • Graham JH, Gottwald TR, Cubero J, Achor DS (2004) Xanthomonas axonopodis pv. citri: factors affecting successful eradication of citrus canker. Mol Plant Pathol 5:1–15

    Article  PubMed  Google Scholar 

  • Grass G, Rensing C, Solioz M (2011) Metallic copper as an antimicrobial surface. Appl Environ Microbiol 77:1541–1547

    Article  CAS  PubMed  Google Scholar 

  • Guan H, Chi D, Yu J, Li X (2008) A novel photodegradable insecticide: preparation, characterization and properties evaluation of nano-Imidacloprid. Pestic Biochem Physiol 92:83–91

    Article  CAS  Google Scholar 

  • Hajipour MJ, Fromm KM, Ashkarran AA, de Aberasturi DJ, de Larramendi IR, Rojo T, Serpooshan V, Parak WJ, Mahmoudi M (2012) Antibacterial properties of nanoparticles. Trends Biotechnol 30:499–511

    Article  CAS  PubMed  Google Scholar 

  • Horcas I, Fernández T (2007) WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev Sci Instrum 78:013705

    Article  CAS  PubMed  Google Scholar 

  • Horticultural Statistics of India (2017) http://www.mospi.gov.in/statistical-year-book-india/2017/178. Accessed 22 Oct 2018

  • Imtiaz A, Farrukh MA, Khaleeq-ur-Rahman M, Adnan R (2013) Micelle-assisted synthesis of Al O·CaO nanocatalyst: optical properties and their applications in photodegradation of 2, 4, 6-trinitrophenol. Sci World J Article ID 641420

  • Jain K, Desai N (2018) Pomegranate the cash crop of India: a comprehensive review on agricultural practices and diseases. Int J Health Sci Res 8:315–336

    Google Scholar 

  • Johanningsmeier SD, Harris GK (2011) Pomegranate as a functional food and nutraceutical source. Ann Rev Food Sci Technol 2:181–201

    Article  CAS  Google Scholar 

  • Kasabe N (2015) Bacterial blight affects pomegranate quality in Maharashtra by up to 70%. https://www.financialexpress.com/market/commodities/bacterial-blight-affects-pomegranate-quality-in-maharashtra-by-up-to-70/109008/. Accessed 22 Oct 2018

  • Kathuria K, Bhargava R, Yadav PK, Gurjar K (2017) Molecular studies ascertaining the phylogenetic relationships in pomegranate (Punica granatum L.) cultivars using RAPD markers. Int J Curr Microbiol App Sci 6:1282–1291

    Google Scholar 

  • Khiyami MA, Almoammar H, Awad YM, Alghuthaymi MA, Abd-Elsalam KA (2014) Plant pathogen nanodiagnostic techniques: forthcoming changes? Biotechnol Biotechnol Equip 28:775–785

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim DY, Kadam A, Shinde S, Saratale RG, Patra J, Ghodake G (2018) Recent developments in nanotechnology transforming the agricultural sector: a transition replete with opportunities. J Sci Food Agric 98:849–864

    Article  CAS  PubMed  Google Scholar 

  • Kirankumar KC, Khan ANA (2017) Performance of bactericides against bacterial blight of pomegranate. Environ Ecol 35:97–101

    Google Scholar 

  • Knell M (2010) Nanotechnology and the sixth technological revolution. In: Cozzens SE, Wetmore JM (eds) Nanotechnology and the challenges of equity, equality and development. Springer, Dordrecht, pp 127–143

    Chapter  Google Scholar 

  • Koné D, Dao S, Tekete C, Doumbia I, Koita O, Abo K, Wicker E, Verdier V (2015) Confirmation of Xanthomonas axonopodis pv. manihotis causing cassava bacterial blight in Ivory Coast. Plant Dis 99:1445

    Article  Google Scholar 

  • Laha D, Pramanik A, Laskar A, Jana M, Pramanik P, Karmakar P (2014) Shape-dependent bactericidal activity of copper oxide nanoparticle mediated by DNA and membrane damage. Mater Res Bull 59:185–191

    Article  CAS  Google Scholar 

  • Lalithya KA, Manjunatha G, Raju B, Kulkarni MS, Lokesh V (2017) Plant growth regulators and signal molecules enhance resistance against bacterial blight disease of pomegranate. J Phytopathol 165:727–736

    Article  CAS  Google Scholar 

  • Lamichhane JR, Osdaghi E, Behlau F, Köhl J, Jones JB, Aubertot JN (2018) Thirteen decades of antimicrobial copper compounds applied in agriculture. A review. Agron Sustain Dev 38:28–46

    Article  CAS  Google Scholar 

  • Lansky EP, Newman RA (2007) Punica granatum (pomegranate) and its potential for prevention and treatment of inflammation and cancer. J Ethnopharmacol 109:177–206

    Article  CAS  PubMed  Google Scholar 

  • Li B, Zhang Y, Yang Y, Qiu W, Wang X, Liu B, Wang Y, Sun G (2016) Synthesis, characterization, and antibacterial activity of chitosan/TiO nanocomposite against Xanthomonas oryzae pv. oryzae. Carbohydr Polym 152:825–831

    Article  CAS  PubMed  Google Scholar 

  • Lisa M, Chouhan RS, Vinayaka AC, Manonmani HK, Thakur MS (2009) Gold nanoparticles based dipstick immunoassay for the rapid detection of dichlorodiphenyltrichloroethane: an organochlorine pesticide. Biosens Bioelectron 25:224–227

    Article  CAS  PubMed  Google Scholar 

  • Lokesh R, Erayya KK, Chandrashekhar N, Khan ANA (2014) In vivo efficacy of some antibiotics against bacterial blight of pomegranate caused by Xanthomonas axonopodis pv. punicae. Int Res J Biol Sci 3:31–35

    Google Scholar 

  • Majeed ZH, Taha MR (2013) A review of stabilization of soils by using nanomaterials. Aust J Basic Appl Sci 7(2):576–581

    CAS  Google Scholar 

  • Mazzaglia A, Fortunati E, Kenny JM, Torre L, Balestra GM (2017) Nanomaterials in plant protection. In: MAV A, Voorde MV (eds) Nanotechnology in agriculture and food science. Wiley-VCH Verlag GmbH & Co, Weinheim, pp 113–134

    Chapter  Google Scholar 

  • Melgarejo P, Melgarejo-Sánchez P, Martínez JJ, Hernández F, Legua P, Martínez R (2013) The pomegranate tree in the world: new cultivars and uses. In: Yuan Z, Wilkins E, Wang D (eds) III International Symposium on Pomegranate and Minor Mediterranean Fruits Leuven, vol 1089. ISHS, Leuven, pp 327–332

    Google Scholar 

  • Mondal KK, Mani C (2012) Investigation of the antibacterial properties of nanocopper against Xanthomonas axonopodis pv. punicae, the incitant of pomegranate bacterial blight. Ann Microbiol 62:889–893

    Article  CAS  Google Scholar 

  • Mondal KK, Rajendran TP, Phaneendra C, Mani C, Sharma J, Shukla R, Verma G, Kumar R, Singh D, Kumar A, Saxena AK (2012) The reliable and rapid polymerase chain reaction (PCR) diagnosis for Xanthomonas axonopodis pv. punicae in pomegranate. Afr J Microbiol Res 6:5950–5956

    CAS  Google Scholar 

  • Mu C, He J (2011) Confined conversion of CuS nanowires to CuO nanotubes by annealing-induced diffusion in nanochannels. Nanoscale Res Lett 6(1):50

    Article  CAS  Google Scholar 

  • Mukherji S, Ruparelia J, Agnihotri S (2012) Antimicrobial activity of silver and copper nanoparticles: variation in sensitivity across various strains of bacteria and fungi. In: Cioffi N, Rai M (eds) Nano-Antimicrobials. Springer, Berlin, pp 225–251

    Chapter  Google Scholar 

  • Mukhopadhyay SS (2014) Nanotechnology in agriculture: prospects and constraints. Nanotechnol Sci Appl 7:63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Obradovic A, Jones JB, Momol MT, Balogh B, Olson SM (2004) Management of tomato bacterial spot in the field by foliar applications of bacteriophages and SAR inducers. Plant Dis 88:736–740

    Article  CAS  PubMed  Google Scholar 

  • Ocsoy I, Paret ML, Ocsoy MA, Kunwar S, Chen T, You M, Tan W (2013) Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. ACS Nano 7:8972–8980

    Article  CAS  PubMed  Google Scholar 

  • Opio AF, Allen DJ, Teri JM (1996) Pathogenic variation in Xanthomonas campestris pv. phaseoli, the causal agent of common bacterial blight in Phaseolus beans. Plant Pathol 45:1126–1133

    Article  Google Scholar 

  • Owolade OF, Ogunleti DO, Adenekan MO (2008) Titanium dioxide affects disease development and yield of edible cowpea. Agri Food Chem 7:2942–2947

    CAS  Google Scholar 

  • Paknikar KM, Nagpal V, Pethkar AV, Rajwade JM (2005) Degradation of lindane from aqueous solutions using iron sulfide nanoparticles stabilized by biopolymers. Sci Technol Adv Mater 6:370–374

    Article  CAS  Google Scholar 

  • Paret ML, Vallad GE, Averett DR, Jones JB, Olson SM (2013) Photocatalysis: effect of light-activated nanoscale formulations of TiO on and control of bacterial spot of tomato. Phytopathology 103(3):228–236

    Article  CAS  PubMed  Google Scholar 

  • Petersen Y, Mansvelt EL, Venter E, Langenhoven WE (2010) Detection of Xanthomonas axonopodis pv. punicae causing bacterial blight on pomegranate in South Africa. Australas Plant Pathol 39:544–546

    Article  Google Scholar 

  • Raju J, Benagi VI, Jayalakshmi K, Nargund VB, Sonavane PS (2012) In vitro evaluation of chemicals, botanicals and bioagents against the bacterial blight of pomegranate caused by Xanthomonas axonopodis pv. punicae. Int J Plant Prot 5:315–318

    Google Scholar 

  • Rastogi A, Zivcak M, Sytar O, Kalaji HM, He X, Mbarki S, Brestic M (2017) Impact of metal and metal oxide nanoparticles on plant: a critical review. Front Chem 5:78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravi V, Kulkarni SD, Samuel V, Kale SN, Mona J, Rajgopal R, Daundkar A, Lahoti PS, Joshee RS (2007) Synthesis of La Sr MnO at 800°C using citrate gel method. Ceram Int 33(6):1129–1132

    Article  CAS  Google Scholar 

  • Reidy B, Haase A, Luch A, Dawson K, Lynch I (2013) Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications. Materials 6(6):2295–2350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S (2008) Strain specificity in antimicrobial activity of silver and copper nanoparticles. ActaBiomater 4:707–716

    CAS  Google Scholar 

  • Santo CE, Quaranta D, Grass G (2012) Antimicrobial metallic copper surfaces kill Staphylococcus haemolyticus via membrane damage. Microbiol Open 1:46–52

    Article  CAS  Google Scholar 

  • Sarkar S, Datta SC, Biswas DR (2014) Synthesis and characterization of nanoclay–polymer composites from soil clay with respect to their water-holding capacities and nutrient-release behavior. J Appl Polym Sci 131:6

    Article  CAS  Google Scholar 

  • Sawai J (2003) Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J Microbiol Methods 54:177–182

    Article  CAS  PubMed  Google Scholar 

  • Servin A, Elmer W, Mukherjee A, De la Torre-Roche R, Hamdi H, White JC, Bindraban P, Dimkpa C (2015) A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. J Nanopart Res 17(2)

  • Sharma KK, Jadhav VT, Sharma J (2011) Present status of pomegranate bacterial blight caused by Xanthomonas axonopodis pv. punicae and its management. Acta Hortic 890:513–522

    Article  CAS  Google Scholar 

  • Sharma J, Sharma KK, Kumar A, Mondal KK, Thalor S, Maity A, Gharate R, Chinchure S, Jadhav VT (2017) Pomegranate bacterial blight: symptomatology and rapid inoculation technique for Xanthomonas axonopodis pv. punicae. J Plant Pathol 99:109–119

    Google Scholar 

  • Silva AT, Nguyen A, Ye C, Verchot J, Moon JH (2010) Conjugated polymer nanoparticles for effective siRNA delivery to tobacco BY-2 protoplasts. BMC Plant Biol 10:291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slavin YN, Asnis J, Häfeli UO, Bach H (2017) Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J Nanobiotechnol 15:65

    Article  CAS  Google Scholar 

  • Stall RE, Thayer PL (1962) Streptomycin resistance of the bacterial spot pathogen and control with streptomycin. Plant Dis Rep 46:389–392

    CAS  Google Scholar 

  • Swings J, Van den Mooter M, Vauterin L, Hoste B, Gillis M, Mew TW, Kersters K (1990) Reclassification of the causal agents of bacterial blight (Xanthomonas campestris pv. oryzae) and bacterial leaf streak (Xanthomonas campestris pv. oryzicola) of rice as pathovars of Xanthomonas oryzae (ex Ishiyama 1922) sp. nov., nom. Rev. Int J Syst Evol Microbiol 40:309–311

    Google Scholar 

  • Torney F, Trewyn BG, Lin VSY, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295–300

    Article  CAS  PubMed  Google Scholar 

  • Viuda-Martos M, Fernández-López J, Pérez-Álvarez JA (2010) Pomegranate and its many functional components as related to human health: a review. Compr Rev Food Sci Food Saf 9:635–654

    Article  CAS  Google Scholar 

  • Wang S, Chang LY, Wang YJ, Wang Q, Yang CH, Mei RH (2009) Nanoparticles affect the survival of bacteria on leaf surfaces. FEMS Microbiol Ecol 68:182–191

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Zhu XF, Zhou MG, Kuang J, Zhang Y, Shang Y, Wang JX (2010) Status of streptomycin resistance development in Xanthomonas oryzae pv. oryzae and Xanthomonas oryzae pv. oryzicola in China and their resistance characters. J Phytopathol 158(9):601–608

    CAS  Google Scholar 

  • Yao KS, Wang DY, Ho WY, Yan JJ, Tzeng KC (2007) Photocatalytic bactericidal effect of TiO thin film on plant pathogens. Surf Coat Technol 201(15):6886–6888

    Article  CAS  Google Scholar 

  • Yenjerappa ST, Byadagi AS, Ravikumar MR, Mokashi AN, Goud KB (2013) Biological management of bacterial blight of pomegranate caused by Xanthomonas axonopodis pv. punicae. Karnataka J Agrisci 26:561–562

Download references

Acknowledgments

RGC is thankful to UGC, New Delhi for awarding the research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. M. Paknikar or Jyutika M. Rajwade.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chikte, R.G., Paknikar, K.M., Rajwade, J.M. et al. Nanomaterials for the control of bacterial blight disease in pomegranate: quo vadis?. Appl Microbiol Biotechnol 103, 4605–4621 (2019). https://doi.org/10.1007/s00253-019-09740-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-019-09740-z

Keywords

Navigation