Skip to main content
Log in

Enzyme and microbial technology for synthesis of bioactive oligosaccharides: an update

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Oligosaccharides, in either free or bound forms, play crucial roles in a wide range of biological processes. Increasing appreciation of their roles in cellular communication, interaction, pathogenesis, and prebiotic functions has stimulated tremendous interests in their synthesis. Pure and structurally defined oligosaccharides are essential for fundamental studies. On the other hand, for those with near term medical and nutraceutical applications, their large-scale synthesis is necessary. Unfortunately, oligosaccharides are notoriously difficult in their synthesis, and their enormous diverse structures leave a vast gap between what have been synthesized in laboratory and those present in various biological systems. While enzymes and microbes are nature’s catalysts for oligosaccharides, their effective use is not without challenges. Using examples of galactose-containing oligosaccharides, this review analyzes the pros and cons of these two forms of biocatalysts and provides an updated view on the status of biocatalysis in this important field. Over the past few years, a large number of novel galactosidases were discovered and/or engineered for improved synthesis via transglycosylation. The use of salvage pathway for regeneration of uridine diphosphate (UDP)-galactose has made the use of Leloir glycosyltransferases simpler and more efficient. The recent success of large-scale synthesis of 2′ fucosyllactose heralded the power of whole-cell biocatalysis as a scalable technology. While it still lags behind enzyme catalysis in terms of the number of oligosaccharides synthesized, an acceleration in the use of this form of biocatalyst is expected as rapid advances in synthetic biology have made the engineering of whole cell biocatalysts less arduous and less time consuming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adlercreutz D, Weadge JT, Petersen BO, Duus JO, Dovichi NJ, Palcic (2010) Enzymatic synthesis of Gb3 and iGb3 ceramides. Carbhydr Res 345:1384–1388

    Article  CAS  Google Scholar 

  • Antoine T, Prieme B, Heyraud A, Greffe L, Gilbert M, Wakarchuk WW, Lam JS, Samain E (2003) Large-scale in vivo synthesis of the carbohydrate moieties of gangliosides GM1 and GM2 by metabolically engineered Escherichia coli. ChemBioChem 4:406–412

    Article  CAS  PubMed  Google Scholar 

  • Baumgartner F, Jurzitza L, Conrad J, Beifuss U, Sprenger GA, Abermann C (2015) Synthesis of fucosylated lacto-N-tetraose using whole-cell biotransformation. Bioorg Med Chem 23(21):L 6799–L 6806

    Article  PubMed  Google Scholar 

  • Benini S, Toccafondi M, Reijzek M, Musiani F, Wagstaff BA, Wuerges J, Cianci M, Field RA (2017) Glucose-1-phosphate uridylyltransferase from Erwinia amylovora: activity, structure, and substrate specificity. Biochim Biophys Acta 1365(11A):1348–1357

    Article  Google Scholar 

  • Bernatchez S, Golbert M, Blanchard MC, Karwaski MF, Li J, Defrees S, Wakarchuk WW (2007) Variants of the β1,3 galactosyltransferase CgtB from the bacterium Campylobacter jejuni have distinct acceptor specificities. Glycobiology 17(12):1333–1343

    Article  CAS  PubMed  Google Scholar 

  • Bettler E, Samain E, Chazalet V, Bosso C, Heyraud A, Joziasse DH, Wakarchuk WW, Imberty A, Geremia AR (1999) The living factory in vivo production of N-acetylglucosamine containing carbohydrates in E. coli. Glycoconj J 16(3):205–212

    Article  CAS  PubMed  Google Scholar 

  • Bidart GN, Rodrigue-Diaz J, Palomino-Schatzlein M, Monedero V, Yebra MJ (2017) Human milk and mucosal lacto-and galacto-N-biose synthesis by transgalactosylation and their prebiotic potential in Lactobacillus species. Appl Microbiol Biotechnol 101(1):205–215

    Article  CAS  PubMed  Google Scholar 

  • Blixt O, Brown J, Schur MJ, Wakarchuk W, Paulson JC (2001) Efficient preparation of natural and synthetic galactosides with a recombinant beta 1,4 galatosyltransferase/UDP-4’-Gal epimerase fusion protein. J Org Chem 66(7):2442–2448

    Article  CAS  PubMed  Google Scholar 

  • Blixt O, Vasiliu D, Allin K, Jacobsen N, Warnock D, Razi N, Paulson JC, Bernatchez S, Gilbert M, Wakarchuk W (2005) Chemoenzymatic synthesis of 2-azidoethyl-ganglio-oligosaccharides GD3, GT3, GM2, GD2, GT2, GM1, and GD1a. Carbohydr Res 340(12):1963–1972

    Article  CAS  PubMed  Google Scholar 

  • Brockhausen I, Riley JG, Joynt M, Yang X, Szarek WA (2008) Acceptor substrate specificity of UDP-GalL GlcNAc-R β1,3 galactosyltransferase (WbbD) from Escherichia coli O7:K1. Glycocong J 25(7):663–673

    Article  CAS  Google Scholar 

  • Chen R (2012) Bacterial expression systems for recombinant proteins: E. coli and beyond. Biotechnol Adv 30(5):1102–1107

    Article  CAS  PubMed  Google Scholar 

  • Chen R (2015) The sweet branch of metabolic engineering: cherry-picking the low-hanging sugary fruits. Microb Cell Factories 14:197

    Article  Google Scholar 

  • Chen C, Liu B, Xu Y, Utikina N, Zhou D, Danrilov L, Torgov V, Veselovsky V, Feng L (2016) Biochemical characterization of the novel a-1,3-galactosyltransferase WcIR from Escherichia coli O3. Carbohydr Res 430:36–43

    Article  CAS  PubMed  Google Scholar 

  • Dagher SF, Azcarate-peril MA, Bruno-Barcena JM (2013) Heterologous expression of a bioactive β-heoxysyltransferase, an enzyme producer of prebiotics from Sporobolomyces singularis. Appl Environ Microbiol 79(4):1241–1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Damerow S, Hoppe C, Bandini G, Zarnovican P, Buettner FF, Ferguson MA, Routier FH (2015) Leishmania major UDP-sugar pyrophosphorylase salvages galactose for glycoconjugate biosynthesis. Int J Parasitol 45(12):783–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Decker D, Kleckowski LA (2017) Substrate specificity and inhibitor sensitivity of plant UDP-sugar producing pyrophosphorylases. Front Plant Sci 8:1610

    Article  PubMed  PubMed Central  Google Scholar 

  • Gong W, Xu L, Gu G, Lu L, xiao M (2016) Efficient and regioselective synthesis of globotriose by a novel a-galactosidase from Bacteroides fragilis. Appl Microbiol Biotechnol 100(15):6693–6702

    Article  CAS  PubMed  Google Scholar 

  • Guo Y, Fang J, Li T, Li X, Ma C, Wang Z, Wang PG, Li L (2015) Comparing substrate specificity of two UDP-sugar pyrophosphorylases and efficient one-pot enzymatic synthesis of UDP-GlaC and UP-GalA. Carbohydr Res 411:1–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hart GW (2013) Thematic minireview series on glycobiology and extracellular matrices glycan functions pervade biology at all levels. JBC 288:6903–6904

    Article  CAS  Google Scholar 

  • Kataoka Y, Ozeki S, Miyake K, Lijima S (2006) Functional expression of Streptococcal galactosyltransferase in baculovirus/insect cell expression system. J Biosci Bioeng 101(4):372–375

    Article  CAS  PubMed  Google Scholar 

  • Kato T, Oizumi T, ogata M, Murakawa A, Usui T, Park EY (2015) Novel enzymatic synthesis of spacer-linked p(k) trisaccharide targeting for neutralization of Shiga toxin. J Biotechnol 209:50–57

    Article  CAS  PubMed  Google Scholar 

  • Koizumi S, Endo T, Tabata K and Ozaki A (1998) Large-scale production of UDP-galactose and globotriose by coupling metabolically engineered bacteria. Nature Biotechnol 16:847–850

  • Kornberg A (1995) Inorganic polyphosphate: toward making a forgotten polymer unforgettable. J Bacteriol 177(3):491–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotake T, Yamaguchi D, Ohzono H, Hojot S, Kaneko S, Ishida H, Tsumuraya Y (2004) UDP-sugar pyrophosphorylase with broad substrate specificity toward various monosaccharide 1-phosphates from pea sprouts. JBC 279(44):45728–45736

    Article  CAS  Google Scholar 

  • Lau K, Thon V, Yu H, Ding L, Chen Y, Muthana MM, Wong D, Huang R, Chen X (2010) Highly efficient chemoenzymatic synthesis of beta 1,4-linked galactosides with promiscuous bacterial beta 1,4 galactosyltransferases. Chem Commun (Camb) 46(33):6066–6068

    Article  CAS  Google Scholar 

  • Lee WH, Pathanibul P, Quarterman J, Jo JH, Han NS, Miller MJ, Jin YS, Seo JH (2012) Whole cell biosynthesis of a functional oligosaccharide, 2’-fucosyllactose, using engineered Escherichia coli. Microb Cell Factories 11:48

    Article  CAS  Google Scholar 

  • Litterer LA, Schnurr JA, Alaisance KL, Storery KK, Gronwald JW, Somers DA (2006) Characterization and expression of Arabidopsis UDP-sugar pyrophosphorylase. Plant Physiol Biochem 44(4):171–180

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Lu Y, zhang J, Pardee K, Wang PG (2003) P1 trisaccharide (Gala1,4Galb1,4GlcNac) synthesis by enzyme glycosylation reactions using recombinant Escherichia coli. Appl Environ Microbiol 69(4):2110–2115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu XW, Xia C, Li L, Guan WY, Pettot N, Zhang HC, Chen M, Wang PG (2009) Characterization and synthetic application of a novel β1,3-galactosyltransferase from Escherichia coli O55:H7. Bioorg Med Chem 17(14):4910–4915

    Article  CAS  PubMed  Google Scholar 

  • Mackenzie LF, Wang Q, Warren RAJ, Withers SG (1998) Glycosynthase: mutant glycosidases for oligosaccharide synthesis. J Am Chem Soc 120:5583–5584

    Article  CAS  Google Scholar 

  • Malissard M, Berger EG (2001) Improving solubility of catalytic domain of human beta 1,4 galactosyltransferase 1 through rationally designed amino acid replacement. Eur J Biochem 268(15):4352–4358

    Article  CAS  PubMed  Google Scholar 

  • Mao Z, Shin HD, Chen RR (2006) Engineering the E coli UDP-glucose synthesis pathway for oligosaccharide synthesis. Biotechnol Prog 22(2):369–374

    Article  CAS  PubMed  Google Scholar 

  • Muthana MM, Qu J, Xue M, Klyuchnik T, Siu A, Li Y, Zhang L, Yu H, Li L, Wang PG, Chen X (2015) Improved one-pot multienzyme (OPME) systems for synthesizing UDP-uronic acids and glucuronides. Chem Commun (Camb) 51(22):4595–4598

    Article  CAS  Google Scholar 

  • Nahalka J, Patoprsty V (2009) Enzymatic synthesis of sialylation substrates powered by a novel polyphosphate kinase (PPK3). Org Biomol Chem 7(9):1778–1780

    Article  CAS  PubMed  Google Scholar 

  • Nakajima M, Kitaoka M (2008) Identification of Lacto-N-Biose I phosphorylase from Vibrio vulnificus CMCP6. Appl Environ Microbiol 74(20):6333–6337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Namdjou DJ, Chem HM, Vinogradov E, Brochu D, Withers SG, Wakarchuk WW (2008) A b1,4 galactosyltransferase from Helicobacter pylori is an efficient and versatile biocatalyst displaying a novel activity for thioglycoside synthesis. Chembiochem 9(10):1632–1640

    Article  CAS  PubMed  Google Scholar 

  • Noguchi T, Shiba T (1998) Use of Escherichia coli polyphosphate kinase for oligosaccharide synthesis. Biosci Biotechnol Biochem 62(8):1594–1596

    Article  CAS  PubMed  Google Scholar 

  • Ohashi T, Cramer N, Ishimizu T, Hase S (2006) Preparation of UDP-galacturonic acid using UDP-sugar pyrophosphorylase. Anal Biochem 352(2):182–187

    Article  CAS  PubMed  Google Scholar 

  • OKuyama M, Matsunaga K, Watanabe K, Yamahita K, Tagami T, Kikuchi A, Ma M, Klahan P, Mori H, Yao M, Kimura A (2017) Efficient synthesis of a-galactosyl oligosaccharides using a mutant Bacteroides thetaiotaomicron retaining a-galactosidase (BtGH97b). FEBS J 284:766–783

    Article  CAS  PubMed  Google Scholar 

  • Park JE, Lee KY, Do SI, Lee SS (2002) Expression and characterization of beta 1,4 galactosyltransferase from Neisseria meningitidis and Neisseria gonorrhoeae. J Biochem Mol Biol 35(3):330–336

    CAS  PubMed  Google Scholar 

  • Pasek M, Boeggeman E, Ramakrishnan B, Qasba PK (2010) Galactin-1 as a fusion partner for the production of soluble and folded human beta 1,4 galacosyltransferase-T7 in E. coli. Biochem Biophys Res Commun 394(3):679–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prudden AR, Liu L, Capicciotti CJ, Wolfert MA, Wang S, Gao Z, Meng L, Moremen KW, Boons GJ (2017) Synthesis of asymmetrical multiantennary human milk oligosaccharides. Proc Natl Acad Sci U S A 114(27):6954–6959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rexer TFT, Schildbach A, Klapproth J, Schierhorn A, Mahour R, Pietzsch M, Rapp E, Reichl U (2018) One pot synthesis of GDP-mannose by a multi-enzyme cascade for enzymatic assembly of lipid-linked oligosaccharides. Biotechnol Bioeng 115:192–205

    Article  CAS  PubMed  Google Scholar 

  • Ruffing A, Chen R (2006) Metabolic engineering of microbes for oligosaccharide and polysaccharide synthesis. Microb Cell Factories 5:25

    Article  Google Scholar 

  • Ruffing AM, Mao Z, Chen RR (2006) Metabolic engineering of Agrobacterium sp for UDP-galactose regeneration and oligosaccharide synthesis. Metab Eng 8:465–473

    Article  CAS  PubMed  Google Scholar 

  • Saksouk N, Pelosi L, colin-Morel P, Boumedienne M, abdian PL, Geremia RA (2005) The capsular polysaccharide biosynthesis of Streptococcus pneumonia serotype 8: functional identification of the glycosyltransferase WciS (Cap8H). Biochem J 389(1):63–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seto NO, Palcic MM, Hindsgaul O, Bundle DR, Narang SA (1995) Expression of a recombinant human glycosyltransferase from a synthetic gene and its utilization for synthesis of the human group B trisaccharide. Eur J Biochem 234(1):322–328

    Article  Google Scholar 

  • Shao J, Hayashi T, wang PG (2003) Enhanced production of alpha-galactosyl epitopes by metabolically engineered Pichia pastoris. Appl Environ Microbiol 69(9):5238–5242

  • Sprenger GA, Baumgautner F, Alvermann C (2017) Production of human milk oligosaccharides by enzymatic and whole-cell microbial biotransformations. J Biotechnol 258:79–91

    Article  CAS  PubMed  Google Scholar 

  • Stenutz R, Weintraub A, Goran W (2006) The structures of Escherichia coli O-polysaccharide antigens. FEMS Microbiol Rev 30:382–403

    Article  CAS  PubMed  Google Scholar 

  • Strazzulli A, Cobucci-Ponzano B, Carillo S, Bedini E, Corsaro MM, Pocsfalvi G, Withers SG, Rossi M, Moracci M (2017) Introducing transgalactosylation activity into a family 42 β-galactosidase. Glycobiology 27(5):425–437

    Article  PubMed  Google Scholar 

  • Teze D, Daligault F, Ferrieres V, sanejouand YH, Tellier C (2015) Semi-rational approach for converting a GH36 α-glycosidase into an α-transglucosidase. Glycobiology 25(4):420–427

    Article  CAS  PubMed  Google Scholar 

  • Tsai T, Lee H, Chang S, Wang C, Tu Y, Lin Y, Hwang D, Wong C (2013) Effective sugar nucleotide regeneration for the large-scale enzymatic synthesis of Globo H and SSEA4. J Am Chem Soc 135:14831–14839

    Article  CAS  PubMed  Google Scholar 

  • Usvalampi A, Maaheimo H, Tossavainen O, Frey AD (2017) Enzymatic synthesis of fucose-containing galacto-oligosaccharides using β-galactosidase and identification of novel disaccharide structures. Glycoconj J. https://doi.org/10.1007/s10719-017-9794-3

  • Vasta GR (2009) Roles of glactins in infection. Nat Rev Microbiol 7:424–38

  • Vera C, Cordova A, Aburto C, Guerrero C, Suarez S, Illanes A (2016) Synthesis and purification of galacto-oligosaccharides: state of the art. World J Microbiol Biotechnol 32(12):197

    Article  PubMed  Google Scholar 

  • Wahl C, Spiertz M, Elling L (2017) Characterization of a new UDP-sugar pyrophosphorylase from Hordeum vulgare (barley). J Biotechnol 258:51–55

    Article  CAS  PubMed  Google Scholar 

  • Wakarchuk WW, Cunningham A, Watson DC, Young NM (1998) Role of paired basic residues in the expression of active recombinant galactosyltransferases from the bacterial pathogen Neisseria meningitidis. Protein Eng 11(4):295–302

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Czuchry D, Liu B, Vinnikova AN, Gao Y, Vlahakis JZ, Szarek WA, Wang L, Feng L, Brockhausen I (2014) Characterization of two UDP-Gal: GalNAc-diphosphate-lipid b1,3-galacosyltransferases WbwcC from Escherichia coli serotypes O104 and O5. J Bacteriol 196(17):3122–3133

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang WL, Wang W, Du YM, Wu H, Yu XB, Ye CB, Jung YS, Qian YS, Voglmeir J, Lie L (2017a) Comparison of anti-pathogenic activities of the human and bovine milk N-glycome: fucosylation is a key factor. Food Chem 235:167–174

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Zheng C, Zhang T, Liu Y, Cheng Z, Liu D, Ying H, Niu H (2017b) Novel one-pot ATP regeneration system based on three-enzyme cascade for industrial CTP production. Biotechnol Lett 39(12):1875–1881

    Article  CAS  PubMed  Google Scholar 

  • Xiao Z, Guo Y, Liu Y, Li L, Zhang Q, Wen L, Wang X, Knodengaden SM, Wu Z, Zhou J, Cao X, Li X, Ma C, Wang PG (2016) Chemoenzymatic synthesis of a library of human milk oligosaccharides. J Org Chem 81(14):5851–5865

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Liu B, Hu B, Han Y, Feng L, Allingham JS, Szarek WA, Wang L, Brockhausen I (2011) Biochemical characterization of UDP-Gal: GlcNAc-pyrophosphate-lipid b1,4 galactosyltransferase WfeD, a new enzyme from Shigella boydii type 14 that catalyzes the second step in O-antigen repeating-unit synthesis. J Bacteriol 193(2):449–459

    Article  CAS  PubMed  Google Scholar 

  • Yan YL, Hu Y, Simpson DJ, Ganzle MG (2017) Enzymatic synthesis and purification of galactosylated chitosan oligosaccharides reducing adhesion of enterotoxigenic Escherichia coli K88. J Agric Food Chem 65(25):5142–5150

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Bar-Peled M (2010) Identification of a novel UDP-sugar pyrophosphorylase with a broad substrate specificity in Trypanosoma cruzi. Biochem J 429(3):533–543

    Article  CAS  PubMed  Google Scholar 

  • Yi W, Peroli RS, Eguchi H, Motari E, Woodward R, Wang PG (2008) Characterization of a bacterial β1.3 galactosyltransferase with application in the synthesis of tumor-associated T-antigen mimics. Biochemistry 47(5):1241–1248

    Article  CAS  PubMed  Google Scholar 

  • Yin H, Pijning T, Meng X, Dijkhuizen L, van Leeuwen SS (2017) Engineering of the Bacillus circulans β-galactosidase product specificity. Biochemistry 56(5):704–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu H, Thon V, Lau K Cai L, Chen Y, Mu S, Li Y, Wang PG, Chen X (2010) Highly efficient chemoenzymatic synthesis of β1,3-linked galactosides. Chem Commun (Camb) 46(40):7507–7509

    Article  CAS  Google Scholar 

  • Zeuner B, Nyffenegger C, Mikkelsen JD, Meyer AS (2017) Thermostable β-galactosidases for the synthesis of human milk oligosaccharides. N Biotechnol 33(3):355–360

    Article  Google Scholar 

  • Zhao X, Yang Z, Xue M, Ma Z, Wang S, Wang P, Chen M (2014) A one-pot approach to bio-synthesize globotriose and its derivatives from simpler substrates. European J of Med Chem 80:423–427

    Article  CAS  Google Scholar 

  • Zhou D, Utikina N, Li D, Dong C, Druzhinina T, Veselovsky V, Liu B (2013) Biochemical characterization of a new b1,3-galactosyltransferase WbuP from Escherichia coli O114 that catalyzed the second step in O-antigen repeating-unit. Carbohydr Res 381:43–50

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Research on complex carbohydrate synthesis in Chen Laboratory at Georgia Institute of Technology is supported by grants from US National Science Foundation, BES-0455193 and CBET-1509202.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel Chen.

Ethics declarations

Conflict of interest

The author declares that she has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, R. Enzyme and microbial technology for synthesis of bioactive oligosaccharides: an update. Appl Microbiol Biotechnol 102, 3017–3026 (2018). https://doi.org/10.1007/s00253-018-8839-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-018-8839-2

Keywords

Navigation