Skip to main content

Advertisement

Log in

Synthesis and purification of galacto-oligosaccharides: state of the art

  • REVIEW
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Lactose-derived non-digestible oligosaccharides are prominent components of functional foods. Among them, galacto-oligosaccharides (GOS) outstand for being prebiotics whose health-promoting effects are supported on strong scientific evidences, having unique properties as substitutes of human milk oligosaccharides in formulas for newborns and infants. GOS are currently produced enzymatically in a kinetically-controlled reaction of lactose transgalactosylation catalyzed by β-galactosidases from different microbial strains. The enzymatic synthesis of GOS, although being an established technology, still offers many technological challenges and opportunities for further development that has to be considered within the framework of functional foods which is the most rapidly expanding market within the food sector. This paper presents the current technological status of GOS production, its main achievements and challenges. Most of the problems yet to be solved refer to the rather low GOS yields attainable that rarely exceed 40 %, corresponding to lactose conversions around 60 %. This means that the product or reaction (raw GOS) contains significant amounts of residual lactose and monosaccharides (glucose and galactose). Efforts to increase such yields have been for the most part unsuccessful, even though improvements by genetic and protein engineering strategies are to be expected in the near future. Low yields impose a burden on downstream processing to obtain a GOS product of the required purity. Different strategies for raw GOS purification are reviewed and their technological significance is appraised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

CEP:

Crude enzyme preparation

CMR:

Continuous membrane reactor

CPBR:

Continuous packed bed reactor

CSTR:

Continuously stirred tank reactor

FOS:

Fructo-oligosaccharides

GOS:

Galacto-oligosaccharides

HMOS:

Human milk oligosaccharides

MWCO:

Molecular weight cut-off

NDOS:

Non-digestible oligosaccharides

NF:

Nanofiltration

PBR:

Packed bed reactors

PEP:

Purified enzyme preparation

PF:

Purification factor

PI:

Prebiotic index

Pu:

Percentage of purity

RBR:

Recycle-batch reactor

SCFA:

Short chain fatty acids

SMB:

Simulated moving bed chromatography

TMP:

Transmembrane pressure

UF-MBR:

Ultrafiltration membrane bioreactor

References

  • Aburto C, Guerrero C, Vera C, Wilson L, Illanes A (2016) Simultaneous synthesis and purification (SSP) of galacto-oligosaccharides in batch operation. Food Sci Technol-LEB 72:81–89

    Article  CAS  Google Scholar 

  • Albayrak N, Yang ST (2002a) Production of galacto-oligosaccharides from lactose by Aspergillus oryzae β-galactosidase immobilized on cotton cloth. Biotechnol Bioeng 77:8–19

    Article  CAS  Google Scholar 

  • Albayrak N, Yang ST (2002b) Immobilization of Aspergillus oryzae β-galactosidase on tosylated cotton cloth. Enzyme Microb Technol 31:371–383

    Article  CAS  Google Scholar 

  • Als-Nielsen B, Gluud LL, Gluud C (2004) Non-absorbable disaccharides for hepatic encephalopathy: systemic review of randomized trials. Brit Med J 328:1046–1050

    Article  CAS  Google Scholar 

  • Asp NG, Burvall A, Dahlqvist A, Hallgren P, Lundblad A (1980) Oligosaccharide formation during hydrolysis of lactose with Saccharomyces lactis lactase (Maxilact). Part 2. Oligosaccharide structures. Food Chem 5(2):147–153

    Article  CAS  Google Scholar 

  • Bednarski W, Kulikowska A (2007) Influence of two-phase system composition on biocatalytic properties of β-galactosidase preparations. Chem Pap 61:364–369

    Article  CAS  Google Scholar 

  • Benjamins E (2014) Galacto-oligosaccharide synthesis using immobilized β-galactosidase. Ph.D. Thesis. University of Groningen. pp. 43–59

  • Benjamins E, Boxem L, KleinJan J, Broekhuis T (2014) Assessment of repetitive batch-wise synthesis of galacto-oligosaccharides from lactose slurry using immobilised β-galactosidase from Bacillus circulans. Int Dairy J 38(2):160–168

    Article  CAS  Google Scholar 

  • Beudeker RF, van Dam HW, van der Plaat JB, Vellenga K (1990) Developments in bakers’ yeast production. In: Verachtert H, De Mot R (eds) Yeast biotechnology and biocatalysis. Marcel Dekker, New York, pp 103–146

    Google Scholar 

  • Bode L (2009) Human milk oligosaccharides: prebiotics and beyond. Nutr Rev 67:S183–S191

    Article  Google Scholar 

  • Boehm G, Stahl B (2007) Oligosaccharides from milk. J Nutr 137(3):847S–849S

    CAS  Google Scholar 

  • Boehm G, Fanaro S, Jelinek J, Stahl B, Marini A (2003) Prebiotic concept for infant nutrition. Act Pediatr 91(Suppl 441):64–67

    CAS  Google Scholar 

  • Borodina I, Nielsen J (2014) Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals. Biotechnol J 9:1–12

    Article  CAS  Google Scholar 

  • Botelho-Cunha V, Mateus M, Petrus J, Pinho M (2010) Tailoring the enzymatic synthesis and nanofiltration fractionation of galacto-oligosaccharides. Biochem Eng J 50:29–36

    Article  CAS  Google Scholar 

  • Bouhnik Y, Raskine L, Simoneau G, Vicaut E, Neut C, Flourie B, Brouns F, Bornet FR (2004) The capacity of nondigestible carbohydrates to stimulate fecal bifidobacteria in healthy humans: a double-blind, randomized, placebo-controlled, parallel-group, dose-response relation study. Am J Clin Nutr 80:1658–1664

    CAS  Google Scholar 

  • Bucs SS, Valladares-Linares R, van Loosdrecht MCM, Kruithof JC, Vrouwenvelder JS (2014) Impact of organic nutrient load on biomass accumulation, feed channel pressure drop increase and permeate flux decline in membrane systems. Water Res 67:227–242

    Article  CAS  Google Scholar 

  • Cardelle-Cobas A, Villamiel M, Olano A, Corzo N (2008) Study of galacto-oligosaccharide formation from lactose using Pectinex ultra SP-L. J Sci Food Agric 88(6):954–961

    Article  CAS  Google Scholar 

  • Carvalho AL, Maugeri-Filho F, Silva V, Hernandez A, Palacio L, Pradanos P (2011) AFM analysis of the surface of nanoporous membranes: application to the nanofiltration of potassium clavulanate. J Mat Sci 46:3356–3369

    Article  CAS  Google Scholar 

  • Chen SX, Wei DZ, Hu ZH (2001) Synthesis of galacto-oligosaccharides in AOT/isooctane reverse micelles by beta-galactosidase. J Mol Catal B Enzym 16(2):109–114

    Article  Google Scholar 

  • Cheng CC, Yu MC, Cheng TC, Sheu DC, Duan KJ, Tai WL (2006) Production of high-content galacto-oligosaccharide by enzyme catalysis and fermentation with Kluyveromyces marxianus. Biotechnol Lett 28:793–797

    Article  CAS  Google Scholar 

  • Choi HJ, Kim CS, Kim P, Jung HC, Oh DK (2004) Lactosucrose bioconversion from lactose and sucrose by whole cells of Paenibacillus polymyxa harboring levansucrase activity. Biotechnol Prog 20:1876–1879

    Article  CAS  Google Scholar 

  • Chonan O, Takahashi R, Yasui H, Watanuki M (1996) Effects of beta 1-4 linked galactooligosaccharides on use of magnesium and calcification of the kidney and heart in rats fed excess dietary phosphorous and calcium. Biosci Biotech Bioch 60:1735–1737

    Article  CAS  Google Scholar 

  • Clasado Inc (2013) GRAS Bimuno, exemption claim for galacto-oligosaccharides. www.fda.gov/downloads/food/ingredientspackaginglabeling/gras/noticeinventory/ucm379675.pdf

  • Córdova A, Astudillo C, Vera C, Guerrero C, Illanes A (2016a) Performance of an ultrafiltration membrane bioreactor (UF-MBR) as a processing strategy for the synthesis of galacto-oligosaccharides at high substrate concentrations. J Biotechnol 223:26–35

    Article  CAS  Google Scholar 

  • Córdova A, Astudillo C, Conidi C, Giorno L, Guerrero C, Illanes A, Cassano A (2016b) Nanofiltration potential for the purification of highly concentrated enzymatically produced oligosaccharides. Food Bioprod Process 98:50–61

    Article  CAS  Google Scholar 

  • Coulier L, Timmermans J, Bas R, Van Den Dool R, Haaksman I, Klarenbeek B, Slaghek T, Van Dongen W (2009) In-depth characterization of prebiotic galacto-oligosaccharides by a combination of analytical techniques. J Agr Food Chem 23:8488–8495

    Article  CAS  Google Scholar 

  • Crittenden R, Playne MJ (2009) Prebiotics. In: Lee YK, Salminen S (eds) Handbook of probitocs and prebiotics. John Wiley & Sons, Inc., New Jersey, pp 535–581

    Google Scholar 

  • Cruz-Guerrero AE, Gómez-Ruiz L, Viniega-González G, Bárzana E, García-Garibay M (2006) Influence of water activity in the synthesis of galactooligosaccharides produced by a hyperthermophilic β-glycosidase in an organic medium. Biotechnol Bioeng 93:1123–1129

    Article  CAS  Google Scholar 

  • Depeint F, Tzortzis G, Vulevic J, I´Anson K, Gibson G (2008) Prebiotic evaluation of a novel galactooligosaccharide mixture produced by the enzymatic activity of Bifidobacterium bifidum NCIMB 41171, in healthy humans: a randomized, double-blind, crossover, placebo-controlled intervention study. Am J Clin Nutr 87:785–791

    CAS  Google Scholar 

  • Díez-Municio M, Herrero M, Olano A, Moreno FJ (2014) Synthesis of novel bioactive lactose-derived oligosaccharides by microbial glycoside hydrolases. Microb Biotechnol 7:315–331

    Article  CAS  Google Scholar 

  • Dong Y, Sun Y, Chen Y, Wu W (2015) Determination of lactose solubility in organic-aqueous biphasic system. J Chinese Inst Food Sci Technol 15:262–267

    CAS  Google Scholar 

  • Drioli E (2004) Membrane reactors. Chem Eng Process 43:1101–1102

    Article  CAS  Google Scholar 

  • Dumortier V, Brassart C, Bouquelet S (1994) Purification and properties of a beta-d-galactosidase from Bifidobacterium bifidum exhibiting a transgalactosylation reaction. Biotechnol Appl Biochem 19:341–354

    CAS  Google Scholar 

  • Ebrahimi M, Placido L, Engel L, Shams Ashaghi K, Czermak P (2010) A novel ceramic membrane reactor system for the continuous Enzymatic synthesis of oligosaccharides. Desalination 250:1105–1108

    Article  CAS  Google Scholar 

  • Environ (2007) Vivinal® GOS, GRAS Notification for Galacto-oligosaccharides (GOS). http://www.fda.gov/downloads/Food/IngredientsPackagingLabeling/GRAS/NoticeInventory/ucm264094.pdf

  • Feng YM, Chang XL, Wang WL, Maa RY (2009) Separation of galacto-oligosaccharides mixture by nanofiltration. J Taiwan Inst Chem Eng 40:326–332

    Article  CAS  Google Scholar 

  • Fischer C, Kleinschmidt T (2015) Synthesis of galactooligosaccharides using sweet and acid whey as a substrate. Int Dairy J 48:15–22

    Article  CAS  Google Scholar 

  • Freitas FF, Marquez LDS, Ribeiro GP, Bradao GC (2011) A comparison of the kinetic properties of free and immobilized Aspergillus oryzae β-galactosidase. Biochem Eng J 58–59:33–38

    Article  CAS  Google Scholar 

  • Frenzel M, Zerge K, Clawin-Rädecker I, Lorenzen P (2015) Comparison of the galacto-oligosaccharide forming activity of different β-galactosidases. Food Sci Technol 60:1068–1071

    CAS  Google Scholar 

  • Gänzle MG (2012) Enzymatic synthesis of galacto-oligosaccharides and other lactose derivatives (hetero-oligosaccharides) from lactose. Int Dairy J 22:116–122

    Article  CAS  Google Scholar 

  • Gaur R, Pant H, Jain R, Khare S (2006) Galacto-oligosaccharides synthesis by immobilized Aspergillus oryzae β-galactosidase. Food Chem 97:426–430

    Article  CAS  Google Scholar 

  • Ghoddusi HB, Grandison MA, Grandison AS, Tuohy KM (2007) In vitro on gas generation and prebiotic effects of some carbohydrates abd their mixtures. Anaerobe 13:193–199

    Article  CAS  Google Scholar 

  • Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125:1401–1412

    CAS  Google Scholar 

  • Gopal P, Sullivan P, Smart J (2001) Utilization of galacto-oligosaccharides as selective substrates for growth by lactic acid bacteria including Bifidobacterium lactis DR10 and Lactobacillus rhamnosus DR210. Int Dairy J 11:19–25

    Article  CAS  Google Scholar 

  • Gosling A, Stevens G, Barber A, Kentish S, Gras S (2010) Recent advances refining galactooligosaccharides production from lactose. Food Chem 121:307–318

    Article  CAS  Google Scholar 

  • Goulas A, Kapasakalidis P, Sinclair H, Rastall R, Grandison R (2002) Purification of oligosaccharides by nanofiltration. J Membr Sci 209:321–335

    Article  CAS  Google Scholar 

  • Goulas A, Tzortzis G, Gibson GR (2007) Development of a process for the production and purification of α- and β-galactooligosaccharides from Bifidobacterium bifidum NCIMB 41171. Int Dairy J 17:648–656

    Article  CAS  Google Scholar 

  • Grand View Research (2015) Galacto-Oligosaccharides (GOS) market analysis by application (Food & Beverage, Prebiotic Dietary Supplements) and segment forecasts to 2020. Available online: http://www.grandviewresearch.com/industry-analysis/galacto-oligosaccharides-gos-market. Cited on: June, 2016

  • GTC Nutrition (2009) Purimune, GRAS notice for galactooligosaccharide-infant formula. www.fda.gov/ucm/groups/fdagov-public/%40fdagov-foods-gen/documents/document/ucm2692 63.pdf

  • Guerrero C, Vera C, Plou F, Illanes A (2011) Influence of reaction conditions on the selectivity of the synthesis of lactulose with microbial β-galactosidases. J Mol Catal B Enzym 72:206–212

    Article  CAS  Google Scholar 

  • Guerrero C, Vera C, Illanes A (2013) Optimization of synthesis of oligosaccharides derived from lactulose (fructosyl-galacto-oligosaccharides) with β-galactosidase of different origin. Food Chem 138:2225–2232

    Article  CAS  Google Scholar 

  • Guerrero C, Vera C, Novoa C, Dumont J, Acevedo F, Illanes A (2014) Purification of highly concentrated galacto-oligosaccharide preparations by selective fermentation with yeasts. Int Dairy J 39:78–88

    Article  CAS  Google Scholar 

  • Guerrero C, Vera C, Conejeros R, Illanes A (2015) Repeated-batch operation for the synthesis of lactulose with β-galactosidase immobilized by aggregation and crosslinking. Biores Technol 190:122–131

    Article  CAS  Google Scholar 

  • Hernández O, Ruiz-Matute AI, Olano A, Moreno FJ, Sanz ML (2009) Comparison of fractionation techniques to obtain prebiotic galactooligosaccharides. Int Dairy J 19:531–536

    Article  CAS  Google Scholar 

  • Hsu C, Lee S, Cho C (2007) Enzymatic production of galactooligosaccharides by β-galactosidase from Bifidobacterium longum BCRC 15708. J Agric Food Chem 55:2225–2230

    Article  CAS  Google Scholar 

  • Huerta L, Vera C, Guerrero C, Wilson L, Illanes A (2011) Synthesis of galacto-oligosaccharides at very high lactose concentrations with immobilized β-galactosidases from Aspergillus oryzae. Process Biochem 46:245–252

    Article  CAS  Google Scholar 

  • Hutkins RW, Krumbeck JA, Bindels LB, Cani PD, Fahey G, Goh YJ, Hamaker B, Martens EC, Mills DA, Rastal RA, Vaughan E, Sanders ME (2016) Prebiotics: why definitions matter. Curr Opin Biotechol 37:1–7

    Article  CAS  Google Scholar 

  • Illanes A (2011) Whey upgrading by enzyme biocatalysis. Electron J Biotechnol 14:1–28

    Article  CAS  Google Scholar 

  • International Food Focus Ltd (2013) Floraid™, GRAS exemption claim. www.fda.gov/ucm/groups/fdagov-public/%40fdagov-foods-gen/documents/document/ucm3814 00.pdf

  • Iqbal S, Nguyen T, Nguyen H, Nguyen T, Maischberger T, Kittl R, Haltrich D (2011) Characterization of a heterodimeric GH2 β-galactosidase from Lactobacillus sakei Lb790 and formation of prebiotic galacto-oligosaccharides. J Agric Food Chem 59:3803–3811

    Article  CAS  Google Scholar 

  • Irazoqui G, Giacomini C, Batista-Viera F, Brena BM, Cardelle-Cobas A, Corzo N, Jimeno ML (2009) Characterization of galactosyl derivatives obtained by transgalactosylation of lactose and different polyols using immobilized β-galactosidase from Aspergillus oryzae. J Agric Food Chem 57:11302–11307

    Article  CAS  Google Scholar 

  • Ji E, Park N, Oh D (2005) Galacto-oligosacharide production by a thermostable recombinant β-galactosidase from Thermotoga maritima. World J Microbiol Biotechnol 21:759–764

    Article  CAS  Google Scholar 

  • Kim YS, Oh DK (2012) Lactulose production from lactose as a single substrate by a thermostable cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus. Biores Technol 104:668–672

    Article  CAS  Google Scholar 

  • Kim YS, Park CS, Oh DK (2006) Lactulose production from lactose and fructose by a thermostable β-galactosidase from Sulfolobus solfataricus. Enzyme Microb Technol 39:903–908

    Article  CAS  Google Scholar 

  • Klein M, Fallavenab L, Schöfferb J, Ayubb M, Rodrigues R, Ninowa J, Hertz P (2013) High stability of immobilized β-galactosidase for lactose hydrolysis and galactooligosaccharides synthesis. Carbohyd Res 95:465–470

    Article  CAS  Google Scholar 

  • Klewicki R (2000) Transglycosylation of a β-galactosyl radical, in the course of enzymic hydrolysis of lactose, in the presence of selected polyhydroxyalcohols. Biotechnol Lett 22:1063–1066

    Article  CAS  Google Scholar 

  • Klewicki R (2007a) Formation of gal-sorbitol during lactose hydrolysis with β-galactosidase. Food Chem 100:1196–1201

    Article  CAS  Google Scholar 

  • Klewicki R (2007b) Effect of selected parameters of lactose hydrolysis in the presence of β-galactosidase from various sources on the synthesis of galactosyl-polyol derivatives. Eng Life Sci 7(3):268–274

    Article  CAS  Google Scholar 

  • Kovács Z, Benjamins E, Grau K, Rehman AU, Ebrahimi M, Czermak P (2014) Recent developments in manufacturing oligosaccharides with prebiotic functions. Adv Biochem Eng Biotechnol 143:257–295

    Google Scholar 

  • Kuusisto J, Tokarev AV, Murzina EV, Roslund MU, Mikkola JP, Murzin DY, Salmi T (2007) From renewable raw materials to high value-added fine chemicals-catalytic hydrogenation and oxidation of D-lactose. Catal Today 121:92–99

    Article  CAS  Google Scholar 

  • Li Z, Xiao M, Lu L, Li Y (2008) Production of non-monosaccharide and high purity galactooligosaccharides by immobilized enzyme catalysis and fermentation with immobilized yeast cells. Process Biochem 43:896–899

    Article  CAS  Google Scholar 

  • Li W, Xiang X, Tang S, Hu B, Tian L, Sun Y, Ye H, Zeng Y (2009) Effective enzymatic synthesis of lactosucrose and its analogues by β-galactosidase from Bacillus circulans. J Agric Food Chem 57:3927–3933

    Article  CAS  Google Scholar 

  • Li W, Wang K, Sun Y, Ye H, Hu B, Zeng X (2015) Influences of structures of galactooligosaccharides and fructooligosaccharides on the fermentation in vitro by human intestinal microbiota. J Funct Foods 13:158–168

    Article  CAS  Google Scholar 

  • Lu L, Xu S, Zhao R, Zhang D, Zhengyi L, Yumei L, Xiao M (2012) Synthesis of galactooligosaccharides by CBD fusion β-galactosidase immobilized on cellulose. Biores Technol 116:327–333

    Article  CAS  Google Scholar 

  • Macfarlane GT, Steed H, Macfarlane S (2008) Bacterial metabolism and health-related effects of galactooligosaccharides and other prebiotics. J Appl Microbiol 104:305–344

    CAS  Google Scholar 

  • Majumder A, Sultan A, Jersie-Christensen RR, Ejby M, Gregers Schmidt B, Lahtinen SJ, Jacobsen S, Svensson B (2011) Proteome reference map of Lactobacillus acidophilus NCFM and quantitative proteomics towards understanding the prebiotic action of lactitol. Proteomics 11:3470–3481

    Article  CAS  Google Scholar 

  • Manning TS, Gibson GR (2004) Prebiotics. Best Pract Res Clin Gastroenterol 18:287–298

    Article  Google Scholar 

  • Martínez-Villaluenga C, Cardelle-Cobas A, Corzo N, Olano A, Villamiel M, Jimeno ML (2008) Enzymatic synthesis and identification of two trisaccharides produced from lactulose by transgalctosylation. J Agric Food Chem 56:557–563

    Article  CAS  Google Scholar 

  • Mattar R, de Campos Ferraz, Mazo D, Carrilho FJ (2012) Lactose intolerance: diagnosis, genetic, and clinical factors. Clin Exp Gastroenterol 5:113–121

    Article  CAS  Google Scholar 

  • Michelon M, Manera AP, Carvalho AL, Maugeri-Filho F (2014) Concentration and purification of galacto-oligosaccharides using nanofiltration membranes. Int J Food Sci Technol 49:1953–1961

    Article  CAS  Google Scholar 

  • Moro G, Minoli I, Mosca M, Fanaro S, Jelinek J, Stahl B, Boehm G (2002) Dosage-related bifidogenic effects of galacto- and fructooligosaccharides in formula-fed term infants. Pediatr Gastroenterol Nutr 34:291–295

    Article  CAS  Google Scholar 

  • Mozaffar Z, Nakanishi K, Matsuno R (1986) Continuous production of galactooligosaccharides from lactose using immobilized β-galactosidase from Bacillus circulans. Appl Microbiol Biotechnol 25:224–228

    CAS  Google Scholar 

  • Mu W, Chen Q, Wang X, Zhang T, Jiang B (2013) Current studies on physiological functions and biological production of lactosucrose. Appl Microbiol Biotechnol 97:7073–7080

    Article  CAS  Google Scholar 

  • Nakkharat P, Haltrich D (2007) β-Galactosidase from Talaromyces thermophilus immobilized on to Eupergit C for production of galacto-oligosaccharides during lactose hydrolysis in batch and packed-bed reactor. World J Microbiol Biotechnol 23:759–764

    Article  CAS  Google Scholar 

  • Nath A, Bhattacharjee Ch, Chowdhury R (2013) Synthesis and separation of galacto-oligosaccharides using membrane bioreactor. Desalination 316:31–41

    Article  CAS  Google Scholar 

  • Nauta A, Bakker-Zierikzee AM, Schoterman MHC (2009) Galacto-Oligosaccharides. In: Cho SS, Finocchiaro T (eds) Handbook of Prebiotics and Probiotics Ingredients: Health Benefits and Food Applications, 1st edn. CRC Press, Boca Raton, pp 75–94

    Google Scholar 

  • Neri D, Balcão V, Costa R, Rocha I, Ferreira E, Torres D, Rodriguez L, Carvalho L Jr (2009a) Galacto-oligosaccharides production during lactose hydrolysis by free Aspergillus oryzae β-galactosidase and immobilized on magnetic polysiloxane-polyvinyl alcohol. Food Chem 115:92–99

    Article  CAS  Google Scholar 

  • Neri D, Balcão V, Dourado F, Oliveira J, Carvalho L Jr, Teixeira J (2009b) Galactooligosaccharides production by β-galactosidase immobilized onto magnetic polysiloxane-polyaniline particles. React Funct Polym 69:246–251

    Article  CAS  Google Scholar 

  • Neri D, Balcão V, Dourado F, Oliveira J, Carvalho L Jr, Teixeira J (2011) Immobilized β-galactosidase onto magnetic particles coated with polyaniline: support characterization and galactooligosaccharides production. J Mol Catal B Enzym 70:74–80

    Article  CAS  Google Scholar 

  • Nguyen TH, Splechtna B, Krasteva S, KneifelW Kulbe KD, Divne C, Haltrich D (2007) Characterization and molecular cloning of a heterodimeric beta-galactosidase from the probiotic strain Lactobacillus acidophilus R22. FEMS Microbiol Lett 269(1):136–144

    Article  CAS  Google Scholar 

  • Nicoud RM (2000) Simulated moving-bed chromatography for biomolecules. In: Ahuja S (ed) Handbook of bioseparation. Academic Press. vol. 2. pp. 475–508

  • Nikolovska-nedelkoska D, Mladenoska I, Poposka F, Kuzmanova S (2009) Modification of β-Galactosidase for Use in Organic Mono-Phase Hexanol System. Maced J Chem Chem En 28:91–97

    CAS  Google Scholar 

  • Nordvang RT, Luo J, Zeuner B, Prior R, Andersen M, Mikkelsen JD, Meyer A, Pinelo M (2014) Separation of 3´-sialyllactose and lactose by nanofiltration: a trade-off between charge repulsion and pore swelling induced by high pH. Sep Purif Technol 138:77–83

    Article  CAS  Google Scholar 

  • Nurmi J, Puolakkainen P, Rautonen N (2005) Bifidobacterium lactis sp. 420 up-regulates cylooxygenase (Cox) 1 and down-regulates COX-2 gene expression in a Caco-2 cell culture model. Nutr Cancer 51:83–92

    Article  CAS  Google Scholar 

  • Osman A (2016) Synthesis of Prebiotic Galacto- Oligosaccharides: Science and Technology. In: Ross R, Preedy V (eds) Probiotics, Prebiotics, and Synbiotics. Academic Press, San Diego, Bioactive Foods in Health Promotion, pp 135–154

    Chapter  Google Scholar 

  • Osman A, Tzortzis G, Rastall R, Charalampopoulos D (2010) A comprehensive investigation of the synthesis of prebiotic galactooligosaccharides by whole cells of Bifidobacterium bifidum NCIMB 41171. J Biotechnol 150:140–148

    Article  CAS  Google Scholar 

  • Osman A, Symeou S, Trisse V, Watson K, Tzortzis G, Charalampopoulos D (2014) Synthesis of prebiotic galactooligosaccharides from lactose using bifidobacterial β-galactosidase (BbgIV) immobilised on DEAE-Cellulose, Q-Sepharose and amino-ethyl agarose. Biochem Eng J 82:188–199

    Article  CAS  Google Scholar 

  • Palai T, Bhattacharya PK (2013) Kinetics of lactose conversion to galacto-oligosaccharides by β-galactosidase immobilized on PVDF membrane. J Biosci Bioeng 115(6):668–673

    Article  CAS  Google Scholar 

  • Palai T, Mitra S, Bhattacharya P (2012) Kinetics and design relation for enzymatic conversion of lactose into galacto-oligosaccharides using commercial grade β-galactosidase. J Biosci Bioeng 114:418–423

    Article  CAS  Google Scholar 

  • Palframan R, Gibson GR, Rastall RA (2003) Development of a quantitative tool for the comparison of the prebiotic effect of dietary oligosaccharides. Lett Appl Microbiol 37:281–284

    Article  CAS  Google Scholar 

  • Pan C, Hu B, Li W, Sun Y, Ye H, Zeng X (2009) Novel and efficient method for immobilization and stabilization of β-D-galactosidase by covalent attachment onto magnetic Fe3O4–chitosan nanoparticles. J Mol Catal B Enzym 61:208–215

    Article  CAS  Google Scholar 

  • Panesar P, Panesar R, Singh R, Kennedy J, Kumar H (2006) Microbial production, immobilization and applications of β-D-galactosidase. J Chem Technol Biotechnol 81(4):530–543

    Article  CAS  Google Scholar 

  • Panesar PS, Kumari S, Panesar R. (2010) Potential applications of immobilized β-galactosidase in food processing industries. Enzym Res. 2010: ID 473137 (16 pp)

  • Park HY, Kim HJ, Lee JK, Kim D, Oh DK (2008) Galactooligosaccharide production by a thermostable β-galactosidase from Sulfolobus solfataricus. World J Microbiol Biotechnol 24:1553–1558

    Article  CAS  Google Scholar 

  • Paterson AHJ, Kellam SJ (2009) Transformation of lactose for value-added ingredients. In: Corredig M (ed) Dairy-Derived Ingredients: Food and Nutraceutical Uses. CRC Press, Boca Raton, pp 625–643

    Chapter  Google Scholar 

  • Patil N, Janssen A, Boom R (2014) The potential impact of membrane cascading on downstream processing of oligosaccharides. Chem Eng Sci 106:86–98

    Article  CAS  Google Scholar 

  • Petuely F (1957) Biochemische Untersuchungen zur Regulation der Dickdarmflora des Säuglings: über den Bifidusfaktor. Notring der Wiss, Verbaende Österreichs, Wien, p 90

    Google Scholar 

  • Pilgrim A, Kawase M, Ohashi M, Fujita K, Murakami K, Hashimoto K (2001) Reaction kinetics and modeling of the enzyme-catalyzed production of lactosucrose using β-fructofuranosidase from Arthrobacter sp. K-1. Biosci Biotech Bioch 65:758–765

    Article  CAS  Google Scholar 

  • Pinelo M, Jonsson G, Meyer A (2009) Membrane technology for purification of enzymatically produced oligosaccharides: molecular and operational features affecting performance. Sep Purif Technol 70:1–11

    Article  CAS  Google Scholar 

  • Playne MJ, Crittenden RG (2009) Galacto-oligosaccharides and other products derived from lactose. In: Fox PF (ed) Advanced dairy chemistry. Volume 3 Lactose, water, salts and minor constituents, 3 edn. Springer, New York, pp. 121–201

  • Prenosil JE, Stuker E, Bourne JR (1987) Formation of oligosaccharides during enzymatic lactose hydrolysis and their importance in a whey hydrolysis process: part II: experimental. Biotechnol Bioeng 30:1026–1031

    Article  CAS  Google Scholar 

  • Pruksasri S, Nguyen TH, Haltrich D, Novalin S (2015) Fractionation of a galacto oligosaccharides solution at low and high temperature using nanofiltration. Sep Purif Technol 151:124–130

    Article  CAS  Google Scholar 

  • Rabiu B, Jay A, Gibson G, Rastall R (2001) Synthesis and fermentation properties of novel galacto-oligosaccharides by β-galactosidases from Bifidobacterium species. Appl Environ Microbiol 67:2526–2530

    Article  CAS  Google Scholar 

  • Rastall R, Maitin V (2002) Prebiotics and synbiotics: towards the next generation. Curr Opin Biotechnol 13:490–496

    Article  CAS  Google Scholar 

  • Ren H, Fei J, Shi X, Zhao T, Cheng H, Zhao N, Chen Y, Ying H (2015) Continuous ultrafiltration membrane reactor coupled with nanofiltration for the enzymatic synthesis and purification of galactosyl-oligosaccharides. Sep Purif Technol 144:70–79

    Article  CAS  Google Scholar 

  • Roberfroid MB (2007) Prebiotic: the concept revisited. J Nutr 137(suppl):830s–837s

    CAS  Google Scholar 

  • Rodriguez-Colinas B, Kolida S, Baran M, Ballesteros AO, Rastall RA, Plou FJ (2013) Analysis of fermentation selectivity of purified galacto-oligosaccharides by in vitro human faecal fermentation. Appl Microbiol Biotechnol 97:5743–5752

    Article  CAS  Google Scholar 

  • Rodriguez-Colinas B, Fernandez-Arrojo L, Ballesteros A, Plou F (2014) Galactooligosaccharides formation during enzymatic hydrolysis of lactose: towards a prebiotic-enriched milk. Food Chem 145:388–394

    Article  CAS  Google Scholar 

  • Rodriguez-Fernandez M, Cardelle-Cobas A, Villamiel M, Banga JR (2011) Detailed kinetic model describing new oligosaccharides synthesis using different β-galactosidases. J Biotechnol 153:116–124

    Article  CAS  Google Scholar 

  • Rubio-Texeira M (2006) Endless versatility in the biotechnological applications of Kluyveromyces LAC genes. Biotechnol Adv 24:212–225

    Article  CAS  Google Scholar 

  • Ruby Figueroa RA, Cassano A, Drioli E (2011) Ultrafiltration of orange press liquor: optimization for permeate flux and fouling index by response surface methodology. Sep Purif Technol 80:1–10

    Article  CAS  Google Scholar 

  • Rycroft CE, Jones MR, Gibson GR, Rastall RA (2001) A comparative in vitro evaluation of the fermentation properties of prebiotic oligosaccharides. J Appl Microbiol 91:878–887

    Article  CAS  Google Scholar 

  • Sako T, Matsumoto K, Tanaka R (1999) Recent progress on research and applications of non-digestible galacto-oligosaccharides. Int Dairy J 9:69–80

    Article  CAS  Google Scholar 

  • Santibáñez L, Fernández-Arrojo L, Guerrero C, Plou FJ, Illanes A (2016) Removal of lactose in crude galacto-oligosaccharides by β-galactosidase from Kluyveromyces lactis. J Mol Catal B Enzym 133:85–91

    Article  CAS  Google Scholar 

  • Sanz ML, Gibson GR, Rastall RA (2005) Influence of disaccharide structure on prebiotic selectivity in vitro. J Agr Food Chem 53:5192–5199

    Article  CAS  Google Scholar 

  • Sanz-Valero JI (2009) Production of galacto-oligossacarides from lactose by immobilized β- galactosidase and posterior chromatographic separation. PhD thesis. Ohio State University. p. 270

  • Schäfer A, Fane A, Waite T (2005) Nanofiltration: principles and applications. Elsevier, pp. 1–5

  • Schuster-Wolff-Bühring R, Fischer L, Hinrichs J (2010) Production and physiological action of the disaccharide lactulose. Int Dairy J 20:731–741

    Article  CAS  Google Scholar 

  • Sen D, Gosling A, Stevens GW, Bhattacharya PK, Barber AR, Kentish SE, Bhattacharjee C, Gras SL (2011) Galactosyl oligosaccharide purification by ethanol precipitation. Food Chem 128:773–777

    Article  CAS  Google Scholar 

  • Sharma R, Agrawal R, Chellam S (2003) Temperature effects on sieving characteristics of thin-film composite nanofiltration membranes: pore size distributions and transport parameters. J Membr Sci 223:69–87

    Article  CAS  Google Scholar 

  • Shin H-J, Yang J-W (1994) Galacto-oligosaccharide production by β-galactosidase in hydrophobic organic media. Biotechnol Lett 16:1157–1162

    Article  CAS  Google Scholar 

  • Sinclair H, De Slegte J, Gibson G, Rastall R (2009) Galactooligosaccharides (GOS) inhibit Vibrio cholera toxin binding to its GM1 receptor. J Agr Food Chem 57:3113–3119

    Article  CAS  Google Scholar 

  • Soni & Associates, Inc (2014) King-prebiotic® GOS, GRAS notification for galacto-oligosaccharide.http://www.fda.gov/downloads/Food/IngredientsPackagingLabeling/GRAS/NoticeInventory/ucm409795.pdf

  • Soontornchai S, Sirichakwal P, Puwastien P, Tontisirin K, Kruger D, Grossklaus R (1999) Lactitol tolerance in healthy Thai adults. Eur J Clin Nutr 38(5):218–226

    Article  CAS  Google Scholar 

  • Spherix Consulting Inc (2010) Generally Recognized as Safe (GRAS) determination for the use of galacto-oligosaccharides in foods and infants formulas. Yakult Pharmaceutical Industry Co., Ltd, Kunitachi-shi

    Google Scholar 

  • Splechtna B, Nguyen T-H, Haltrich D (2007) Comparison between discontinuous and continuous lactose conversion processes for the production of prebiotic galacto-oligosaccharides using β-galactosidase from Lactobacillus reuteri. J Agric Food Chem 55:6772–6777

    Article  CAS  Google Scholar 

  • Srivastava A, Mishra S, Chand S (2015) Transgalactosylation of lactose for synthesis of galacto-oligosaccharides using Kluyveromyces marxianus NCIM 3551. New Biotechnol 32(4):412–418

    Article  CAS  Google Scholar 

  • Stevenson DE, Stanley RA, Furneaux RH (1993) Optimization of alkyl-D galactopyranoside from lactose using commercially available β-galactosidases. Biotechnol Bioeng 42:657–666

    Article  CAS  Google Scholar 

  • Sun H, You S, Wang M, Qi W, Su R, He Z (2016) Recyclable strategy for the production of high-purity galacto-oligosaccharides by Kluyveromyces lactis. J Agric Food Chem 64(28):5679–5685

    Article  CAS  Google Scholar 

  • Tamura Y, Mizota T, Shimamura S, Tomita M (1993) Lactulose and its application to the food and pharmaceutical industries. Bull Int Dairy Fed 289:43–53

    CAS  Google Scholar 

  • Toba T, Adachi S (1978) Hydrolysis of lactose by microbial beta-galactosidases—formation of oligosaccharides with special reference to 2-0-beta-D-galactopyranosyl-D-glucose. J Dairy Sci 61(1):33–38

    Article  CAS  Google Scholar 

  • Torres DPM, Gonçalves MPF, Teixeira JA, Rodrigues LT (2010) Galacto-oligosaccharides production, properties, applications, and significance as prebiotics. Comp Rev Food Sci Food Saf 9:438–454

    Article  CAS  Google Scholar 

  • Tzortzis G, Vulevic J (2009) Galacto-oligosaccharide prebiotics. In: Charalampopoulos D, Rastall RA (eds) Prebiotics and probiotics science and technology. Springer, New York, pp 207–244

    Chapter  Google Scholar 

  • Urrutia P, Mateo C, Guisan JM, Wilson L, Illanes A (2013) Immobilization of Bacillus circulans β-galactosidase and its application in the synthesis of galacto-oligosaccharides under repeated-batch operation. Biochem Eng J 77:41–48

    Article  CAS  Google Scholar 

  • Urrutia P, Bernal C, Wilson L, Illanes A (2014) Improvement of chitosan derivatization for the immobilization of bacillus circulans β-galactosidase and its further application in galacto-oligosaccharides synthesis. J Agric Food Chem 62:10126–10135

    Article  CAS  Google Scholar 

  • Van den Heuvel E, Schoterman M, Muijs T (2000) Transgalactooligosaccharides stimulate calcium absorption in postmenopausal women. J Nutr 130:2938–2942

    Google Scholar 

  • Vaňková K, Onderková Z, Antošová M, Polakovič M (2008) Design and economics of Industrial production of fructooligosaccharides. Chem Pap 62:375–381

    Article  CAS  Google Scholar 

  • Vanneste J, De Ron S, Vandecruys S, Soare SA, Darvishmanesh S, Van der Bruggen B (2011) Techno-economic evaluation of membrane cascades relative to simulated moving bed chromatography for the purification of mono- and oligosaccharides. Sep Purif Technol 80:600–609

    Article  CAS  Google Scholar 

  • Vardakou M, Nueno C, Christakopoulos P, Faulds CB, Gassom MA, Narbad A (2008) Evaluation of the prebiotic properties of wheat arabinoxylan fractions and induction of hydrolase activity in gut microflora. Int J Food Microbiol 123:166–170

    Article  CAS  Google Scholar 

  • Vera C, Guerrero C, Conejeros R, Illanes A (2011a) A pseudo steady-state model for galacto-oligosaccharides synthesis with β-galactosidase from Aspergillus oryzae. Biotechnol Bioeng 108:2270–2279

    Article  CAS  Google Scholar 

  • Vera C, Guerrero C, Illanes A (2011b) Determination of the transgalactosylation activity of Aspergillus oryzae β-galactosidase: effect of pH, temperature, and galactose and glucose concentrations. Carbohydr Res 346:745–752

    Article  CAS  Google Scholar 

  • Vera C, Guerrero C, Conejeros R, Illanes A (2012) Synthesis of galacto-oligosaccharides by β-galactosidase from Aspergillus oryzae using partially dissolved and supersaturated solution of lactose. Enzyme Microb Technol 50:188–194

    Article  CAS  Google Scholar 

  • Vera C, Guerrero C, Illanes A, Conejeros R (2014) Fed-batch synthesis of galacto-oligosaccharides with Aspergillus oryzae β-galactosidase using optimal control strategy. Biotechnol Progr 30:59–67

    Article  CAS  Google Scholar 

  • Vulevic J, Drakoularakou A, Yaqoob P, Tzortzis G, Gibson G (2008) Modulation of the fecal microflora profile and immune function by a novel trans-galactooligosaccharide mixture (B-GOS) in healthy elderly volunteers. Am J Clin Nutr 88:1438–1446

    CAS  Google Scholar 

  • Wang Y (2009) Prebiotics: present and future in food science and technology. Food Res Int 42:8–12

    Article  CAS  Google Scholar 

  • Wang KY, Chung TS (2005) The characterization of flat composite nanofiltration membranes and their applications in the separation of cephalexin. J Membr Sci 247:37–50

    Article  CAS  Google Scholar 

  • Wang M, Yang R, Hua X, Shen Q, Zhang W, Zhao W (2015) Lactulose production from lactose by recombinant cellobiose 2-epimerase in permeabilised Escherichia coli cells. Food Sci Technol 50:1625–1631

    Article  CAS  Google Scholar 

  • Warmerdam A, Paudel E, Jia W, Boom RM, Janssen AEM (2013) Characterization of β-galactosidase isoforms from Bacillus circulans and their contribution to GOS production. Appl Biochem Biotechnol 170:340–358

    Article  CAS  Google Scholar 

  • Warmerdam A, Benjamins E, Leeuv T, Broekhuis T, Boom R, Janssen A (2014) Galacto-oligosaccharide production with immobilized β-galactosidase in a packed-bed reactor vs. free β-galactosidase in a batch reactor. Food Bioprod Process 92:383–392

    Article  CAS  Google Scholar 

  • Wiśniewski L, Antošová M, Polakovič M (2013) Simulated moving bed chromatography separation of galacto-oligosaccharides. Acta Chim Slovaca. 6:206–210

    Google Scholar 

  • Wu Y, Yuan S, Chen S, Wu D, Chen J, Wu J (2013) Enhancing the production of galacto-oligosaccharides by mutagenesis of Sulfolobus solfataricus β-galactosidase. Food Chem 138:1588–1595

    Article  CAS  Google Scholar 

  • Yanahira S, Kobayashi T, Suguri T, Nakakoshi M, Miura S, Ishikawa H, Nakajima I (1995) Formation of oligosaccharides from lactose by Bacillus circulans β-galactosidase. Biosci Biotechnol Biochem 59(6):1021–1026

    Article  CAS  Google Scholar 

  • Yazawa K, Imai K, Tamura Z (1978) Oligosaccharides and polysaccharides specifically utilizable by bifidofacteria. Chem Pharm Bull 26:3306–3311

    Article  CAS  Google Scholar 

  • Yoon SH, Mukerjea R, Robyt JF (2003) Specificity of yeast (Saccharomyces cerevisiae) in removing carbohydrates by fermentation. Carbohydr Res 338:1127–1132

    Article  CAS  Google Scholar 

  • Zhou Q, Chen X (2001) Effects of temperature and pH on the catalytic activity of the immobilized β-galactosidase from Kluyveromyces lactis. Biochem Eng J 9:33–40

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was developed within the framework of the following grants: Fondecyt 1130059, Fondecyt 1160216, Fondecyt Postdoctoral 3140259 and the scholarships 21120651 and 22160912, Conicyt, Chile. Dr. Andrés Córdova was a postdoctoral fellow of the Pontificia Universidad Católica de Valparaíso 2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés Córdova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vera, C., Córdova, A., Aburto, C. et al. Synthesis and purification of galacto-oligosaccharides: state of the art. World J Microbiol Biotechnol 32, 197 (2016). https://doi.org/10.1007/s11274-016-2159-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-016-2159-4

Keywords

Navigation