Skip to main content
Log in

Mechanism of salinomycin overproduction in Streptomyces albus as revealed by comparative functional genomics

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The anticoccidial salinomycin is a polyketide produced by Streptomyces albus, and the high-yield strain BK 3-25 produces 18.0 g/L salinomycin under lab condition. In order to elucidate the overproduction mechanism, the genome of BK 3-25 was fully sequenced and compared with the wild-type DSM 41398. Strain BK 3-25 has a 75-kb large deletion, containing type-I polyketide gene cluster PKS-9, and 60 additional InDels and SNVs affecting 55 CDSs, including a 1-bp deletion in type-I PKS gene cluster PKS-6. Subsequently, individual or combined deletions of the 75-kb region and PKS-6 in the wild-type resulted in improved salinomycin yields from 2.60 to 5.20, 6.90, and 9.50 g/L (53% of BK 3-25), respectively, suggesting a redirected flux of polyketide precursors to salinomycin biosynthesis. Moreover, due to the much higher transcription of salinomycin biosynthetic genes (sln) in the high-yield BK 3-25 than in the wild-type, 13 putative regulatory genes among the 55 CDSs were individually inactivated and 7 were proved to be negatively involved in the transcription of sln genes. Combined deletions of two major negative regulatory genes SLNWT_3357 and SLNWT_7015 caused further improved transcription of sln genes as well as the yield, from 2.60 to 7.30 g/L (40% of BK 3-25). Therefore, the comparative genomics approach combined with functional experiments identified that the multiple deletions and mutations of competing gene clusters and negative regulatory genes are crucial for salinomycin overproduction, setting an example for rational titer improvement of other polyketide natural products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adrio J, Demain A (2006) Genetic improvement of processes yielding microbial products. FEMS Microbiol Rev 30(2):187–214

    Article  CAS  PubMed  Google Scholar 

  • Capecchi MR (1989) Altering the genome by homologous recombination. Science 244(4910):1288–1292

    Article  CAS  PubMed  Google Scholar 

  • Delcher AL, Harmon D, Kasif S, White O, Salzberg SL (1999) Improved microbial gene identification with GLIMMER. Nucleic Acids Res 27(27):4636–4641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DelVecchio F, Petkovic H, Kendrew SG, Low L, Wilkinson B, Lill R, Cortés J, Rudd BAM, Staunton J, Leadlay PF (2003) Active-site residue, domain and module swaps in modular polyketide synthases. J Ind Microbiol Biotechnol 30(8):489–494

    Article  CAS  Google Scholar 

  • Fedoryshyn M, Welle E, Bechthold A, Luzhetskyy A (2008) Functional expression of the Cre recombinase in actinomycetes. Appl Microbiol Biotechnol 78(6):1065–1070

    Article  CAS  PubMed  Google Scholar 

  • Fineran PC, Everson L, Slater H, Salmond GP (2005) A GntR family transcriptional regulator (PigT) controls gluconate-mediated repression and defines a new, independent pathway for regulation of the tripyrrole antibiotic, prodigiosin, in Serratia. Microbiology 151(12):3833–3845

    Article  CAS  PubMed  Google Scholar 

  • Gumila C, Ancelin ML, Delort AM, Jeminet G, Vial HJ (1997) Characterization of the potent in vitro and in vivo antimalarial activities of ionophore compounds. Antimicrob Agents Chemother 41(3):523–529

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hanna L, Williams SR, Hong H, Luciana GDO, Leadlay PF (2014) Site-specific modification of the anticancer and antituberculosis polyether salinomycin by biosynthetic engineering. Chembiochem 15(14):2081–2085

    Article  Google Scholar 

  • Hsu P, Lander E, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157(6):1262–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong J, Cho N, Jung D, Bang D (2013) Genome-scale genetic engineering in Escherichia coli. Biotechnol Adv 31(6):804–810

    Article  CAS  PubMed  Google Scholar 

  • Jiang C, Wang H, Kang Q, Liu J, Bai L (2012) Cloning and characterization of the polyether salinomycin biosynthesis gene cluster of Streptomyces albus XM211. Appl Environ Microbiol 78(4):994–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung WS, Kim E, Yoo YJ, Ban YH, Kim EJ, Yoon YJ (2014) Characterization and engineering of the ethylmalonyl-CoA pathway towards the improved heterologous production of polyketides in Streptomyces venezuelae. Appl Microbiol Biotechnol 98(8):3701–3713

    Article  CAS  PubMed  Google Scholar 

  • Kang SH, Huang J, Lee HN, Hur YA, Cohen SN, Kim ES (2007) Interspecies DNA microarray analysis identifies WblA as a pleiotropic down-regulator of antibiotic biosynthesis in Streptomyces. J Bacteriol 189(11):4315–4319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kieser T (2000) Practical Streptomyces Genetics. John Innes Foundation, Norwick

    Google Scholar 

  • Kol S, Merlo ME, Scheltema RA, De VM, Vonk RJ, Kikkert NA, Dijkhuizen L, Breitling R, Takano E (2010) Metabolomic characterization of the salt stress response in Streptomyces coelicolor. Appl Environ Microbiol 76(8):2574–2581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis RJ, Brannigan JA, Offen WA, Smith I, Wilkinson AJ (1998) An evolutionary link between sporulation and prophage induction in the structure of a repressor: anti-repressor complex. J Mol Biol 283(5):907–912

    Article  CAS  PubMed  Google Scholar 

  • Lin FM, Qiao B, Yuan YJ (2009) Comparative proteomic analysis of tolerance and adaptation of ethanologenic Saccharomyces cerevisiae to furfural, a lignocellulosic inhibitory compound. Appl Environ Microbiol 75(11):3765–3776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin YF, Dr A, Guan S, Mamanova L, Mcdowall KJ (2013) A combination of improved differential and global RNA-seq reveals pervasive transcription initiation and events in all stages of the life-cycle of functional RNAs in Propionibacterium acnes, a major contributor to wide-spread human disease. BMC Genomics 14(1):1–22

    Article  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25(5):955–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu C, Zhang X, Jiang M, Bai L (2016) Enhanced salinomycin production by adjusting the supply of polyketide extender units in Streptomyces albus. Metab Eng 35:129–137

    Article  CAS  PubMed  Google Scholar 

  • Makarova KS, Wolf YI, Koonin EV (2013) Comparative genomics of defense systems in archaea and bacteria. Nucleic Acids Res 41(8):4360–4377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437(7057):376–380

    CAS  PubMed  PubMed Central  Google Scholar 

  • Migita A, Watanabe M, Hirose Y, Watanabe K, Tokiwano T, Kinashi H, Oikawa H (2009) Identification of a gene cluster of polyether antibiotic lasalocid from Streptomyces lasaliensis. Biosci Biotechnol Biochem 73(1):169–176

    Article  CAS  PubMed  Google Scholar 

  • Ohnishi Y, Ishikawa J, Hara H, Suzuki H, Ikenoya M, Ikeda H, Yamashita A, Hattori M, Horinouchi S (2008) Genome sequence of the streptomycin-producing microorganism Streptomyces griseus IFO 13350. J Bacteriol 190(11):4050–4060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olano C, Lombó F, Méndez C, Salas JA (2008) Improving production of bioactive secondary metabolites in actinomycetes by metabolic engineering. Metab Eng 10(5):281–292

    Article  CAS  PubMed  Google Scholar 

  • Peano C, Damiano F, Forcato M, Pietrelli A, Palumbo C, Corti G, Siculella L, Fuligni F, Tagliazucchi GM, Benedetto GED (2014) Comparative genomics revealed key molecular targets to rapidly convert a reference rifamycin-producing bacterial strain into an overproducer by genetic engineering. Metab Eng 26:1–16

    Article  CAS  PubMed  Google Scholar 

  • Peano C, Talà A, Corti G, Pasanisi D, Durante M, Mita G, Bicciato S, Bellis GD, Alifano P (2012) Comparative genomics and transcriptional profiles of Saccharopolyspora erythraea NRRL 2338 and a classically improved erythromycin over-producing strain. Microb Cell Factories 11(3):204–208

    Google Scholar 

  • Qu S, Kang Q, Wu H, Wang L, Bai L (2015) Positive and negative regulation of GlnR in validamycin A biosynthesis by binding to different loci in promoter region. Appl Microbiol Biotechnol 99(11):1–13

    Article  Google Scholar 

  • Tang L, Yoon Y, Choi C, Hutchinson C (1998) Characterization of the enzymatic domains in the modular polyketide synthase involved in rifamycin B biosynthesis by Amycolatopsis mediterranei. Gene 216(2):255–265

    Article  CAS  PubMed  Google Scholar 

  • Tian J, Yang J, Lei L, Ruan L, Wei W, Zheng G, Wei Z, Chen J, Jiang W, Mei G (2015) The complete genome sequence of a high pristinamycin-producing strain Streptomyces pristinaespiralis HCCB10218. J Biotechnol 214:45–46

    Article  CAS  PubMed  Google Scholar 

  • Viegelmann C, Margassery LM, Kennedy J, Zhang T, O’Brien C, O’Gara F, Morrissey JP, Dobson ADW, Edradaebel RA (2014) Metabolomic profiling and genomic study of a marine sponge-associated Streptomyces sp. Mar Drugs 12(6):3323–3351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Long X, Mao X, Dong H, Xu L, Li Y (2010) SigN is responsible for differentiation and stress responses based on comparative proteomic analyses of Streptomyces coelicolor wild-type and sigN deletion strains. Microbiol Res 165(3):221–231

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Qu S, Lu C, Zheng H, Zhou X, Bai L, Deng Z (2012) Genomic and transcriptomic insights into the thermo-regulated biosynthesis of validamycin in Streptomyces hygroscopicus 5008. BMC Genomics 13(1):337

  • Yu L, Gao W, Li S, Pan Y, Liu G (2016) GntR family regulator SCO6256 is involved in antibiotic production and conditionally regulates the transcription of myo-inositol catabolic genes in Streptomyces coelicolor A3(2). Microbiology 162(3):537–551

    Article  CAS  PubMed  Google Scholar 

  • Yuan P-H, Zhou R-C, Chen X, Luo S, Wang F, Mao X-M, Li Y-Q (2016) DepR1, a TetR family transcriptional regulator, positively regulates daptomycin production in an industrial producer, Streptomyces roseosporus SW0702. Appl Environ Microbiol 82(6):1898–1905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yurkovich ME, Tyrakis PA, Hong H, Sun Y, Samborskyy M, Kamiya K, Leadlay PF (2011) A late-stage intermediate in salinomycin biosynthesis is revealed by specific mutation in the biosynthetic gene cluster. Chembiochem 13(1):66–71

    Article  PubMed  Google Scholar 

  • Zhang G, Li C, Li Q, Li B, Larkin DM, Lee C, Storz JF, Antunes A, Greenwold MJ, Meredith RW (2014) Comparative genomics reveals insights into avian genome evolution and adaptation. Science 346(6215):1311–1320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao W, Zhong Y, Yuan H, Wang J, Zheng H, Wang Y, Cen X, Xu F (2010) Complete genome sequence of the rifamycin SV-producing Amycolatopsis mediterranei U32 revealed its genetic characteristics in phylogeny and metabolism. Cell Res 20(10):1096–1108

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Xiang S, Dai X, Yang K (2013) A simplified diphenylamine colorimetric method for growth quantification. Appl Microbiol Biotechnol 97(11):5069–5077

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (Nos. 21661140002, 31470157, 31400030, 31401056) and the Ministry of Science and Technology of China (Nos. 2012CB721005, 2012AA022107, 2012AA02A706). We are grateful to Prof. Yongquan Li (Zhejiang University) and Zhejiang Shenghua Biok Biology Co., Ltd. for providing the strain S. albus BK 3-25.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linquan Bai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

ESM 1

(PDF 362 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Lu, C. & Bai, L. Mechanism of salinomycin overproduction in Streptomyces albus as revealed by comparative functional genomics. Appl Microbiol Biotechnol 101, 4635–4644 (2017). https://doi.org/10.1007/s00253-017-8278-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-017-8278-5

Keywords

Navigation