Skip to main content
Log in

Antibody affinity maturation through combining display of two-chain paired antibody and precision flow cytometric sorting

  • Methods and protocols
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Recombination of antibody light and heavy chain libraries greatly increases the size of a two-chain paired antibody library, thus easing the construction of large antibody libraries. Here, light and heavy chain variable domains paired by a coiled coil were applied to a bacterial inner membrane display system. However, the probability of the correct pairing of light and heavy chains through random recombination after each round of flow cytometric sorting and cloning was very low in the presence of mostly unmatched light and heavy chain genes, resulting in inefficient enrichment; a target antibody clone in the ratio of 1:100,000 negative control spheroplasts was unable to be enriched by six rounds of sorting and cloning by a conventional sorting strategy (sorting the top 1 %). By just sorting the top 0.000025 % of spheroplasts, we succeeded in enriching the target antibody clone mixed with negative control spheroplasts in a ratio of 1:108 by just one round of sorting and cloning. Furthermore, using this gating strategy, we efficiently enriched for an antibody clone with an affinity slightly better than the parent antibody clone from mixed spheroplasts which were present in the ratio of 1 better affinity clone to 10 parent clones to 106 negative control clones after just two rounds of sorting and cloning, suggesting that this gating strategy is highly sensitive in distinguishing between clones with a small difference in affinity and also enriching for clones with a higher affinity. Taken together, the combination of the display of a two-chain paired antibody library and the use of stringent gating has significantly increased the efficiency of the antibody maturation system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akamatsu Y, Pakabunto K, Xu Z, Zhang Y, Tsurushita N (2007) Whole IgG surface display on mammalian cells: application to isolation of neutralizing chicken monoclonal anti-IL-12 antibodies. J Immunol Methods 327(1):40–52

    Article  CAS  PubMed  Google Scholar 

  • Baek DS, Kim YS (2014) Construction of a large synthetic human fab antibody library on yeast cell surface by optimized yeast mating. J Micorbiol Biotechn 24(3):408–420

    Article  CAS  Google Scholar 

  • Binder U, Matschiner G, Theobald I, Skerra A (2010) High-throughput sorting of an anticalin library via EspP-mediated functional display on the Escherichia coli cell surface. J Mol Biol 400(4):783–802. doi:10.1016/j.jmb.2010.05.049

    Article  CAS  PubMed  Google Scholar 

  • Bradbury ARM, Marks JD (2004) Antibodies from phage antibody libraries. J Immunol Methods 290(1–2):29–49. doi:10.1016/j.jim.2004.04.007

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Okayama H (1987) High-efficiency transformation of mammalian-cells by plasmid DNA. Mol Cell Biol 7(8):2745–2752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C, Li N, Zhao Y, Hang H (2016) Coupling recombinase-mediated cassette exchange with somatic hypermutation for antibody affinity maturation in CHO cells. Biotechnol Bioeng 113(1):39–51. doi:10.1002/bit.25541

    Article  CAS  PubMed  Google Scholar 

  • Chen SP, Qiu JK, Chen C, Liu CC, Liu YH, An LL, Jia JY, Tang J, Wu LJ, Hang HY (2012) Affinity maturation of anti-TNF-alpha scFv with somatic hypermutation in non-B cells. Protein Cell 3(6):460–469. doi:10.1007/s13238-012-2024-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daugherty PS, Chen G, Iverson BL, Georgiou G (2000) Quantitative analysis of the effect of the mutation frequency on the affinity maturation of single chain Fv antibodies. P Natl Acad Sci USA 97(5):2029–2034. doi:10.1073/pnas.030527597

    Article  CAS  Google Scholar 

  • Daugherty PS, Chen G, Olsen MJ, Iverson BL, Georgiou G (1998) Antibody affinity maturation using bacterial surface display. Protein Eng 11(9):825–832. doi:10.1093/protein/11.9.825

    Article  CAS  PubMed  Google Scholar 

  • Feldhaus MJ, Siegel RW, Opresko LK, Coleman JR, Feldhaus JMW, Yeung YA, Cochran JR, Heinzelman P, Colby D, Swers J, Graff C, Wiley HS, Wittrup KD (2003) Flow-cytometric isolation of human antibodies from a nonimmune Saccharomyces cerevisiae surface display library. Nat Biotechnol 21(2):163–170. doi:10.1038/nbt785

    Article  CAS  PubMed  Google Scholar 

  • Fromant M, Blanquet S, Plateau P (1995) Direct random mutagenesis of gene-sized DNA fragments using polymerase chain-reaction. Anal Biochem 224(1):347–353. doi:10.1006/abio.1995.1050

    Article  CAS  PubMed  Google Scholar 

  • Guzman LM, Belin D, Carson MJ, Beckwith J (1995) Tight regulation, modulation, and high-level expression by vectors containing the arabinose p-bad promoter. J Bacteriol 177(14):4121–4130

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hanes J, Pluckthun A (1997) In vitro selection and evolution of functional proteins by using ribosome display. P Natl Acad Sci USA 94(10):4937–4942. doi:10.1073/pnas.94.10.4937

    Article  CAS  Google Scholar 

  • Hanes J, Schaffitzel C, Knappik A, Pluckthun A (2000) Picomolar affinity antibodies from a fully synthetic naive library selected and evolved by ribosome display. Nat Biotechnol 18(12):1287–1292

    Article  CAS  PubMed  Google Scholar 

  • Harvey BR, Georgiou G, Hayhurst A, Jeong KJ, Iverson BL, Rogers GK (2004) Anchored periplasmic expression, a versatile technology for the isolation of high-affinity antibodies from Escherichia coli-expressed libraries. Proc Natl Acad Sci U S A 101(25):9193–9198. doi:10.1073/pnas.0400187101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashimotogotoh T, Inselburg J (1979) Cole1 plasmid incompatibility-localitzation and analysis of mutations affecting incompatibility. J Bacteriol 139(2):608–619

    CAS  Google Scholar 

  • Higuchi K, Araki T, Matsuzaki O, Sato A, Kanno K, Kitaguchi N, Ito H (1997) Cell display library for gene cloning of variable regions of human antibodies to hepatitis B surface antigen. J Immunol Methods 202(2):193–204

    Article  CAS  PubMed  Google Scholar 

  • Huston JS, Levinson D, Mudgetthunter M, Tai MS, Novotny J, Margolies MN, Ridge RJ, Bruccoleri RE, Haber E, Crea R, Oppermann H (1988) Protein engineering of antibody-binding sites-recovery of specific activity in an anti-digoxin single-chain Fv analog produced in Escherichia-coli. Proc Natl Acad Sci U S A 85(16):5879–5883. doi:10.1073/pnas.85.16.5879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobs M, Wnendt S, Stahl U (1990) High-efficiency electro-transformation of Escherichia coli with DNA from ligation mixtures. Nucleic Acids Res 18(6):1653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kammerer RA, Frank S, Schulthess T, Landwehr R, Lustig A, Engel J (1999) Heterodimerization of a functional GABA(B) receptor is mediated by parallel coiled-coil alpha-helices. Biochemistry 38(40):13263–13269. doi:10.1021/bi991018t

    Article  CAS  PubMed  Google Scholar 

  • Karlsson AJ, Lim H-K, Xu H, Rocco MA, Bratkowski MA, Ke A, DeLisa MP (2012) Engineering antibody fitness and function using membrane-anchored display of correctly folded proteins. J Mol Biol 416(1):94–107. doi:10.1016/j.jmb.2011.12.021

    Article  CAS  PubMed  Google Scholar 

  • Kondo A, Ueda M (2004) Yeast cell-surface display-applications of molecular display. Appl Microbiol Biotechnol 64(1):28–40. doi:10.1007/s00253-003-1492-3

    Article  CAS  PubMed  Google Scholar 

  • Krebber A, Bornhauser S, Burmester J, Honegger A, Willuda J, Bosshard HR, Pluckthun A (1997) Reliable cloning of functional antibody variable domains from hybridomas and spleen cell repertoires employing a reengineered phage display system. J Immunol Methods 201(1):35–55. doi:10.1016/s0022-1759(96)00208-6

    Article  CAS  PubMed  Google Scholar 

  • Kuner R, Kohr G, Grunewald S, Eisenhardt G, Bach A, Kornau HC (1999) Role of heteromer formation in GABA(B) receptor function. Science 283(5398):74–77. doi:10.1126/science.283.5398.74

    Article  CAS  PubMed  Google Scholar 

  • Lofblom J (2011) Bacterial display in combinatorial protein engineering. J Biotechnol 6(9):1115–1129. doi:10.1002/biot.201100129

    Article  Google Scholar 

  • Lou J, Geren I, Garcia-Rodriguez C, Forsyth CM, Wen W, Knopp K, Brown J, Smith T, Smith LA, Marks JD (2010) Affinity maturation of human botulinum neurotoxin antibodies by light chain shuffling via yeast mating. Protein Eng Des Sel 23(4):311–319. doi:10.1093/protein/gzq001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazor Y, Van Blarcom T, Carroll S, Georgiou G (2010) Selection of full-length IgGs by tandem display on filamentous phage particles and Escherichia coli fluorescence-activated cell sorting screening. Febs J 277(10):2291–2303. doi:10.1111/j.1742-4658.2010.07645.x

    Article  CAS  PubMed  Google Scholar 

  • Mazor Y, Van Blarcom T, Iverson BL, Georgiou G (2008) E-clonal antibodies: selection of full-length IgG antibodies using bacterial periplasmic display. Nat Protoc 3(11):1766–1777. doi:10.1038/nprot.2008.176

    Article  PubMed  Google Scholar 

  • Rani M, Bolles M, Donaldson EF, Van Blarcom T, Baric R, Iverson B, Georgiou G (2012) Increased antibody affinity confers broad in vitro protection against escape mutants of severe acute respiratory syndrome coronavirus. J Virol 86(17):9113–9121. doi:10.1128/jvi.00233-12

  • Rodi DJ, Makowski L (1999) Phage-display technology-finding a needle in a vast molecular haystack. Curr Opin Biotech 10(1):87–93. doi:10.1016/s0958-1669(99)80016-0

    Article  CAS  PubMed  Google Scholar 

  • Sawahel W, Sastry G, Knight C, Cove D (1993) Development of an electrotransformation system for Escherichia-coli DH10B. Biotechnol Tech 7(4):261–266. doi:10.1007/bf00150895

    Article  CAS  Google Scholar 

  • Van Blarcom TJ, Sofer-Podesta C, Ang J, Boyer JL, Crystal RG, Georgiou G (2010) Affinity maturation of an anti-V antigen IgG expressed in situ through adenovirus gene delivery confers enhanced protection against Yersinia pestis challenge. Gene Ther 17(7):913–921. doi:10.1038/gt.2010.42

    Article  PubMed  PubMed Central  Google Scholar 

  • Vaughan TJ, Williams AJ, Pritchard K, Osbourn JK, Pope AR, Earnshaw JC, McCafferty J, Hodits RA, Wilton J, Johnson KS (1996) Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library. Nat Biotechnol 14(3):309–314. doi:10.1038/nbt0396-309

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Zhong P, Luo PP, Wang KC (2011) Antibody engineering using phage display with a coiled-coil heterodimeric Fv antibody fragment. PLoS one 6(4):e19023. doi:10.1371/journal.pone.0019023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weaver-Feldhaus JM, Lou JL, Coleman JR, Siegel RW, Marks JD, Feldhaus MJ (2004) Yeast mating for combinatorial fab library generation and surface display. FEBS Lett 564(1–2):24–34. doi:10.1016/s0014-5793(04)00309-6

    Article  CAS  PubMed  Google Scholar 

  • White JH, Wise A, Main MJ, Green A, Fraser NJ, Disney GH, Barnes AA, Emson P, Foord SM, Marshall FH (1998) Heterodimerization is required for the formation of a functional GABA(B) receptor. Nature 396(6712):679–682

    Article  CAS  PubMed  Google Scholar 

  • Yim SS, Bang HB, Kim YH, Lee YJ, Jeong GM, Jeong KJ (2014) Rapid isolation of antibody from a synthetic human antibody library by repeated fluorescence-activated cell sorting (FACS). PLoS one 9(10):11. doi:10.1371/journal.pone.0108225

    Article  Google Scholar 

  • Xu L-M, Li T-H, Zhou B, Guo M, Liu M, Zhao J-Z, Cao H-W, Li D-S (2014) scFv antibodies against infectious bursal disease virus isolated from a combinatorial antibody library by flow cytometry. Biotechnol Lett 36(5):1029–1035. doi:10.1007/s10529-014-1463-z

    Article  CAS  PubMed  Google Scholar 

  • Zhou C, Jacobsen FW, Cai L, Chen Q, Shen D (2010) Development of a novel mammalian cell surface antibody display platform. mAbs vol 2. Taylor & Francis, p 508–518

  • Zhou I, Zhang Z-H, Li C-Z, Chen Z-R, He W, Zhou Y, Liu S, Wu S, Zhou Y, Tan W (2011) Four-way ligation for construction of a mammalian cell-based full-length antibody display library. Acta Bioch Bioph Sin 43(3):232–238

    Article  CAS  Google Scholar 

  • Zhou Y, Xie ZG (2015) High throughput screening of scFv antibodies against viral hemorrhagic septicaemia virus by flow cytometry. J Virol Methods 219:18–22. doi:10.1016/j.jviromet.2015.03.012

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Chunchun Liu and Junying Jia for their technical assistance in flow cytometry analysis and sorting. This work was supported by National Science and Technology Major Project (2013ZX10004611-002 and 2013ZX10003006-001-001), National Special Projects for Key Scientific Instruments and Equipment Development of Ministry of Science and Technology (2011YQ03013404), and State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences (SKLMR-20130605). It was also funded by National Natural Science Funds of China (31500753 and 31400041).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiying Hang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Shuang Sun and Xiao Yang contributed equally to the work.

Electronic Supplementary Material

ESM 1

(PDF 350 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, S., Yang, X., Wang, H. et al. Antibody affinity maturation through combining display of two-chain paired antibody and precision flow cytometric sorting. Appl Microbiol Biotechnol 100, 5977–5988 (2016). https://doi.org/10.1007/s00253-016-7472-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7472-1

Keywords

Navigation