Skip to main content
Log in

Transcriptome analysis of acetic-acid-treated yeast cells identifies a large set of genes whose overexpression or deletion enhances acetic acid tolerance

  • Genomics, transcriptomics, proteomics
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Acetic acid inhibits the metabolic activities of Saccharomyces cerevisiae. Therefore, a better understanding of how S. cerevisiae cells acquire the tolerance to acetic acid is of importance to develop robust yeast strains to be used in industry. To do this, we examined the transcriptional changes that occur at 12 h post-exposure to acetic acid, revealing that 56 and 58 genes were upregulated and downregulated, respectively. Functional categorization of them revealed that 22 protein synthesis genes and 14 stress response genes constituted the largest portion of the upregulated and downregulated genes, respectively. To evaluate the association of the regulated genes with acetic acid tolerance, 3 upregulated genes (DBP2, ASC1, and GND1) were selected among 34 non-protein synthesis genes, and 54 viable mutants individually deleted for the downregulated genes were retrieved from the non-essential haploid deletion library. Strains overexpressing ASC1 and GND1 displayed enhanced tolerance to acetic acid, whereas a strain overexpressing DBP2 was sensitive. Fifty of 54 deletion mutants displayed enhanced acetic acid tolerance. Three chosen deletion mutants (hsps82Δ, ato2Δ, and ssa3Δ) were also tolerant to benzoic acid but not propionic and sorbic acids. Moreover, all those five (two overexpressing and three deleted) strains were more efficient in proton efflux and lower in membrane permeability and internal hydrogen peroxide content than controls. Individually or in combination, those physiological changes are likely to contribute at least in part to enhanced acetic acid tolerance. Overall, information of our transcriptional profile was very useful to identify molecular factors associated with acetic acid tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbott DA, Knijnenburg TA, de Poorter LM, Reinders MJ, Pronk JT, Van Maris AJ (2007) Generic and specific transcriptional responses to different weak organic acids in anaerobic chemostat cultures of Saccharomyces cerevisiae. FEMS Yeast Res 7:819–833

    Article  CAS  PubMed  Google Scholar 

  • Almeida B, Ohlmeier S, Almeida AJ, Madeo F, Leao C, Rodrigues F, Ludovico P (2009) Yeast protein expression profile during acetic acid-induced apoptosis indicates causal involvement of the TOR pathway. Proteomics 9:720–732

    Article  CAS  PubMed  Google Scholar 

  • Bajwa PK, Ho CY, Chan CK, Martin VJ, Trevors JT, Lee H (2013) Transcriptional profiling of Saccharomyces cerevisiae T2 cells upon exposure to hardwood spent sulphite liquor: comparison to acetic acid, furfural and hydroxymethylfurfural. Antonie Van Leeuwenhoek 103:1281–1295

    Article  CAS  PubMed  Google Scholar 

  • Beilharz TH, Preiss T (2004) Translational profiling: the genome-wide measure of the nascent proteome. Brief Funct Genomic Proteomic 3:103–111

    Article  CAS  PubMed  Google Scholar 

  • Carmelo V, Bogaerts P, Sá-Correia I (1996) Activity of plasma membrane H+-ATPase and expression of PMA1 and PMA2 genes in Saccharomyces cerevisiae cells grown at optimal and low pH. Arch Microbiol 166:315–320

    Article  CAS  PubMed  Google Scholar 

  • Carmelo V, Santos H, Sá-Correia I (1997) Effect of extracellular acidification on the activity of plasma membrane ATPase and on the cytosolic and vacuolar pH of Saccharomyces cerevisiae. Biochim Biophys Acta 1325:63–70

    Article  CAS  PubMed  Google Scholar 

  • Causton HC, Ren B, Koh S, Harbison CT, Kanin E, Jennings EG, Lee TI, True HL, Lander ES, Young RA (2001) Remodeling of yeast genome expression in response to environmental changes. Mol Biol Cell 12:323–337

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fernandes AR, Mira NP, Vargas RC, Canelhas I, Sá-Correia I (2005) Saccharomyces cerevisiae adaptation to weak acids involves the transcription factor Haa1p and Haa1p-regulated genes. Biochem Biophys Res Commun 337:95–103

    Article  CAS  PubMed  Google Scholar 

  • Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11:4241–4257

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JY, Zhang J (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5:R80

    Article  PubMed Central  PubMed  Google Scholar 

  • Halbeisen RE, Galgano A, Scherrer T, Gerber AP (2008) Post-transcriptional gene regulation: from genome-wide studies to principles. Cell Mol Life Sci 65:798–813

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Holyoak CD, Stratford M, McMullin Z, Cole MB, Crimmins K, Brown AJ (1996) Activity of the plasma membrane H+-ATPase and optimal glycolytic flux are required for rapid adaptation and growth of Saccharomyces cerevisiae in the presence of the weak-acid preservative sorbic acid. Appl Environ Microbiol 62:3158–3164

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kawahata M, Masaki K, Fujii T, Iefuji H (2006) Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p. FEMS Yeast Res 6:924–936

    Article  CAS  PubMed  Google Scholar 

  • Kim NR, Yang J, Kwon H, An J, Choi W, Kim W (2013) Mutations of the TATA-binding protein confer enhanced tolerance to hyperosmotic stress in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 97:3227–3228

    Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li BZ, Yuan YJ (2010) Transcriptome shifts in response to furfural and acetic acid in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 86:1915–1924

    Article  CAS  PubMed  Google Scholar 

  • Marinho HS, Real C, Cyrne L, Soares H, Antunes F (2014) Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox Biol 2:535–562

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mira NP, Becker JD, Sá-Correia I (2010a) Genomic expression program involving the Haa1p-regulon in Saccharomyces cerevisiae response to acetic acid. OMICS 5:587–601

    Article  Google Scholar 

  • Mira NP, Palma M, Guerreiro JF, Sá-Correia I (2010b) Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid. Microb Cell Fact 9:79

    Article  PubMed Central  PubMed  Google Scholar 

  • Mira NP, Teixeira MC, Sá-Correia I (2010c) Adaptive response and tolerance to weak acids in Saccharomyces cerevisiae: a genome-wide view. OMICS 14:525–540

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mollapour M, Piper PW (2007) Hog1 mitogen-activated protein kinase phosphorylation targets the yeast Fps1 aquaglyceroporin for endocytosis, thereby rendering cells resistant to acetic acid. Mol Cell Biol 27:6446–6456

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mollapour M, Shepherd A, Piper PW (2008) Novel stress responses facilitate Saccharomyces cerevisiae growth in the presence of the monocarboxylate preservatives. Yeast 25:169–177

    Article  CAS  PubMed  Google Scholar 

  • Morgan M, Anders S, Lawrence M, Aboyoun P, Pages H, Gentleman R (2009) ShortRead: a bioconductor package for input, quality assessment and exploration of high-throughput sequence data. Bioinformatics 25:2607–2608

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Piper PW (1999) Yeast superoxide dismutase mutants reveal a prooxidant action of weak organic acid food preservatives. Free Radic Biol Med 27:1219–1227

    Article  CAS  PubMed  Google Scholar 

  • Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA

  • Sikkema J, de Bont JA, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222

    CAS  PubMed Central  PubMed  Google Scholar 

  • Silva A, Sampaio-Marques B, Fernandes A, Carreto L, Rodrigues F, Holcik M, Santos MA, Ludovico P (2013) Involvement of yeast HSP90 isoforms in response to stress and cell death induced by acetic acid. PLoS One 8, e71294

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Simões T, Mira NP, Fernandes AR, Sá-Correia I (2006) The SPI1 gene, encoding a glycosylphosphatidylinositol (GPI)-anchored cell wall protein, plays a prominent role in the development of yeast resistance to lipophilic weak acids food preservatives. Appl Environ Microbiol 72:7168–7175

    Article  PubMed Central  PubMed  Google Scholar 

  • Simpson CE, Ashe MP (2012) Adaptation to stress in yeast: to translate or not? Biochem Soc Trans 40:794–799

    Article  CAS  PubMed  Google Scholar 

  • Stevens S, Hofmeyr J-HS (1993) Effects of ethanol, octanoic and decanoic acids on fermentation and the passive influx of protons through the plasma membrane of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 38:656–663

    Article  CAS  Google Scholar 

  • Stratford M, Nebe-von-Caron G, Steels H, Novodvorska M, Ueckert J, Archer DB (2013) Weak-acid preservatives: pH and proton movements in the yeast Saccharomyces cerevisiae. Int J Food Microbiol 161:164–171

  • Szklarczyk D, FranceschiniA KM, Simonovic M, Roth A, Minguez P, Doerks T, Stark M, Muller J, Bork P, Jensen LJ, von Mering C (2011) The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 39:D561–D568

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tanaka K, Ishii Y, Ogawa J, Shima J (2012) Enhancement of acetic acid tolerance in Saccharomyces cerevisiae by overexpression of the HAA1 gene, encoding a transcriptional activator. Appl Environ Microbiol 78:8161–8163

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Teixeira MC, Santos PM, Fernandes AR, Sá-Correia I (2005) A proteome analysis of the yeast response to the herbicide 2,4-dichlorophenoxyacetic acid. Proteomics 5:1889–1901

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Bae JY, Lee YM, Kwon H, Moon H, Kang HA, Yee S, Kim W, Choi W (2011) Construction of Saccharomyces cerevisiae strains with enhanced ethanol tolerance by mutagenesis of the TATA-binding protein gene and identification of novel genes associated with ethanol tolerance. Biotechnol Bioeng 108:1776–1787

    Article  CAS  PubMed  Google Scholar 

  • Zheng DQ, Wu XC, Wang PM, Chi XQ, Tao XL, Li P (2011) Drug resistance marker-aided genome shuffling to improve acetic acid tolerance in Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 38:415–422

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Eunjung Kim for support with plasmid and strain construction and Young Lee for critical reading of the manuscript. This study was partly supported by the BK21 Plus Program (Creative Academy of Ecoscience, 31Z20130012990) funded by the Ministry of Education and National Research Foundation of Korea.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wankee Kim or Wonja Choi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 236 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, Y., Nasution, O., Choi, E. et al. Transcriptome analysis of acetic-acid-treated yeast cells identifies a large set of genes whose overexpression or deletion enhances acetic acid tolerance. Appl Microbiol Biotechnol 99, 6391–6403 (2015). https://doi.org/10.1007/s00253-015-6706-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6706-y

Keywords

Navigation