Skip to main content

Advertisement

Log in

Fruit peels support higher yield and superior quality bacterial cellulose production

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Fruit peels, also known as rinds or skins, are wastes readily available in large quantities. Here, we have used pineapple (PA) and watermelon (WM) peels as substrates in the culture media (containing 5 % sucrose and 0.7 % ammonium sulfate) for production of bacterial cellulose (BC). The bacterial culture used in the study, Komagataeibacter hansenii produced BC under static conditions as a pellicle at the air–liquid interface in standard Hestrin and Schramm (HS) medium. The yield obtained was ~3.0 g/100 ml (on a wet weight basis). The cellulosic nature of the pellicle was confirmed by CO2, H2O, N2, and SO2 (CHNS) analysis and Fourier transform infrared (FT-IR) spectroscopy. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) of the pellicle revealed the presence of flat twisted ribbonlike fibrils (70–130 nm wide). X-ray diffraction analysis proved its crystalline nature (matching cellulose I) with a crystallinity index of 67 %. When K. hansenii was grown in PA and WM media, BC yields were threefolds or fourfolds higher than those obtained in HS medium. Interestingly, textural characterization tests (viz., SEM, crystallinity index, resilience, hardness, adhesiveness, cohesiveness, springiness, shear energy and stress, and energy required for puncturing the pellicle) proved that the quality of BC produced in PA and WM media was superior to the BC produced in HS medium. These findings demonstrate the utility of the newly designed media for getting higher yields and better quality of BC, which could make fermentative production of BC more attractive on a commercial scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anon (2012) FSSAI lab manual no. 5. Manual of methods of analysis of foods (fruits and vegetables). Government of India, New Delhi

  • Ashori A, Sheykhnazari S, Tabarsa T, Shakeri A, Golalipour M (2012) Bacterial cellulose/silica nanocomposites: preparation and characterization. Carbohydr Polym 90:413–418. doi:10.1016/j.carbpol.2012.05.060

    Article  CAS  PubMed  Google Scholar 

  • Aydin YA, Aksoy ND (2009) Isolation of cellulose producing bacteria from wastes of vinegar fermentation. Proceedings of the World Congress on Engineering and Computer Science I:20–23

  • Aydin YA, Aksoy ND (2014) Isolation and characterization of an efficient bacterial cellulose producer strain in agitated culture: Gluconacetobacter hansenii P2A. Appl Microbiol Biotechnol 98:1065–1075. doi:10.1007/s00253-013-5296-9

    Article  CAS  PubMed  Google Scholar 

  • Bae S, Shoda M (2005) Statistical optimization of culture conditions for bacterial cellulose production using Box-Behnken design. Biotechnol Bioeng 90:20–28. doi:10.1002/bit.20325

    Article  CAS  PubMed  Google Scholar 

  • Barud HS, Ribeiro SJL, Carone CL, Ligabue R, Einloft S, Queiroz PVS, Borges APB, Jahno VD (2013) Optically transparent membrane based on bacterial cellulose/polycaprolactone. Polímeros 23:135–138. doi:10.1590/S0104-14282013005000018

    CAS  Google Scholar 

  • Blaker JJ, Lee KY, Mantalaris A, Bismarck A (2010) Ice-microsphere templating to produce highly porous nanocomposite PLA matrix scaffolds with pores selectively lined by bacterial cellulose nano-whiskers. Compos Sci Technol 70:1879–1888. doi:10.1016/j.compscitech.2010.05.028

    Article  CAS  Google Scholar 

  • Bottom R (2008) Thermogravimetric analysis. In: Gabbott P (ed) Principles and applications of thermal analysis. Blackwell Publishing, UK, pp 87–118

    Chapter  Google Scholar 

  • Bridson EY, Brecker A (1970) Chapter III Design and formulation of microbial culture media. In: Norris JR, Ribbons DW (eds) Methods in microbiology. U.S. Academic Press Inc., pp 22–295

  • Budhiono A, Rosidi B, Taher H, Iguchi M (1999) Kinetic aspects of bacterial cellulose focbrsrmation in nata-de-coco culture system. Carbohydr Polym 40:137–143. doi:10.1016/S0144-8617(99)00050-8

    Article  CAS  Google Scholar 

  • Campbell M (2006) Extraction of pectin from watermelon rind. Dissertation, Oklahoma State University

  • Castro C, Zuluaga R, Putaux JL, Caro G, Mondragon I, Gañán P (2011) Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes. Carbohydr Polym 84:96–102. doi:10.1016/j.carbpol.2010.10.072

    Article  CAS  Google Scholar 

  • Castro C, Zuluaga R, Álvarez C, Putaux JL, Caro G, Rojas OJ, Mondragon I, Gañán P (2012) Bacterial cellulose produced by a new acid-resistant strain of Gluconacetobacter genus. Carbohydr Polym 89:1033–1037. doi:10.1016/j.carbpol.2012.03.045

    Article  CAS  PubMed  Google Scholar 

  • Chao Y, Ishida T, Sugano Y, Shoda M (2000) Bacterial cellulose production by Acetobacter xylinum in a 50‐l internal‐loop airlift reactor. Biotechnol Bioeng 68:345–352. doi:10.1002/(SICI)1097-0290(20000505)68:3<345::AID-BIT13>3.0.CO;2-M

    Article  CAS  PubMed  Google Scholar 

  • Chawla PR, Bajaj IB, Survase SA, Singhal RS (2009) Microbial cellulose: fermentative production and applications. Food Technol Biotechnol 47:107–124

    CAS  Google Scholar 

  • Chen L, Hong F, Yang XX, Han SF (2013) Biotransformation of wheat straw to bacterial cellulose and its mechanism. Bioresour Technol 135:464–468. doi:10.1016/j.biortech.2012.10.029

    Article  CAS  PubMed  Google Scholar 

  • Ching CH, Muhammad II (2007) Evaluation and optimization of microbial cellulose (nata) production using pineapple waste as substrate. In: National research and innovation competition (NRIC), Penang, Malaysia

  • Czaja W, Romanovicz D, Brown RM (2004) Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose 11:403–411. doi:10.1023/B:CELL.0000046412.11983.61

    Article  CAS  Google Scholar 

  • Czaja WK, Young DJ, Kawecki M, Brown RM (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8:1–12. doi:10.1021/bm060620d

    Article  CAS  PubMed  Google Scholar 

  • Dobre LM, Stoica-Guzun A, Stroescu M, Jipa IM, Dobre T, Ferdeş M, Ciumpiliac Ş (2012) Modelling of sorbic acid diffusion through bacterial cellulose-based antimicrobial films. Chem Pap 66:144–151. doi:10.2478/s11696-011-0086-2

    Article  CAS  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers P, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356. doi:10.1021/ac60111a017

    Article  CAS  Google Scholar 

  • Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33. doi:10.1007/s10853-009-3874-0

    Article  CAS  Google Scholar 

  • El-Saied H, El-Diwany AI, Basta AH, Atwa NA, El-Ghwas DE (2008) Production and characterization of economical bacterial cellulose. Bioresour 3:1196–1217

    CAS  Google Scholar 

  • Embuscado ME, Marks JS, BeMiller JN (1994) Bacterial cellulose: I. Factors affecting the production of cellulose by Acetobacter xylinum. Food Hydrocolloid 8:407–418. doi:10.1016/S0268-005X(09)80084-2

    Article  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Ford ENJ, Mendon SK, Thames SF, Rawlins JW (2010) X-ray diffraction of cotton treated with neutralized vegetable oil-based macromolecular crosslinkers. J Eng Fiber Fabr 5:10–20

    Google Scholar 

  • Gadim TDO, Figueiredo AGPR, Rosero-Navarro NC, Vilela C, Gamelas JAF, Barros-Timmons A, Neto CP, Silvestre AJD, Freire CSR, Figueiredo FML (2014) Nanostructured bacterial cellulose-poly(4-styrene sulfonic acid) composite membranes with high storage modulus and protonic conductivity. ACS Appl Mater Interfaces 6:7864–7875. doi:10.1021/am501191t

    Article  CAS  PubMed  Google Scholar 

  • George J, Ramana KV, Sabapathy SN, Bawa AS (2005) Physico-mechanical properties of chemically treated bacterial (Acetobacter xylinum) cellulose membrane. World J Microbiol Biotechnol 21:1323–1327. doi:10.1007/s11274-005-3574-0

    Article  CAS  Google Scholar 

  • Haigler CH, White AR, Brown RM, Cooper KAYM (1982) Alteration of in vivo cellulose ribbon assembly by carboxymethylcellulose and other cellulose derivatives. 94:0–5. PMCID:PMC2112193

  • Haimer E, Wendland M, Schlufter K, Frankenfeld K, Miethe P, Potthast A, Rosenau T, Liebner F (2010) Loading of bacterial cellulose aerogels with bioactive compounds by antisolvent precipitation with supercritical carbon dioxide. Macromol Symp 294:64–74. doi:10.1002/masy.201000008

    Article  CAS  Google Scholar 

  • Hemalatha R, Anbuselvi S (2013) Physicohemical constituents of pineapple pulp and waste. J Chem Pharm Res 5:240–242

    CAS  Google Scholar 

  • Hong F, Qiu K (2008) An alternative carbon source from konjac powder for enhancing production of bacterial cellulose in static cultures by a model strain Acetobacter aceti subsp. xylinus ATCC 23770. Carbohydr Polym 72:545–549. doi:10.1016/j.carbpol.2007.09.015

    Article  CAS  Google Scholar 

  • Hong F, Zhu YX, Yang G, Yang XX (2011) Wheat straw acid hydrolysate as a potential cost‐effective feedstock for production of bacterial cellulose. J Chem Technol Biol 86:675–680. doi:10.1002/jctb.2567

    Article  CAS  Google Scholar 

  • Hu W, Chen S, Liu L, Ding B, Wang H (2011) Formaldehyde sensors based on nanofibrous polyethyleneimine/bacterial cellulose membranes coated quartz crystal microbalance. Sensors Actuators B Chem 157:554–559. doi:10.1016/j.snb.2011.05.021

    Article  CAS  Google Scholar 

  • Hungund BS, Gupta SG (2010) Strain improvement of Gluconacetobacter xylinus NCIM 2526 for bacterial cellulose production. Afr J Biotechnol 9:5170–5172. doi:10.5897/AJB09.1877

    CAS  Google Scholar 

  • Hungund B, Prabhu S, Shetty C, Acharya S, Prabhu V, Gupta SG (2013) Production of bacterial cellulose from Gluconacetobacter persimmonis GH-2 using dual and cheaper carbon sources. J Microb Biochem Technol 5:2. doi:10.4172/1948-5948.1000095

    Google Scholar 

  • Jagannath A, Manjunatha SS, Ravi N, Raju PS (2011) The effect of different substrates and processing conditions on the textural characteristics of bacterial cellulose (nata) produced by Acetobacter xylinum. J Food Process Eng 34:593–608. doi:10.1111/j.1745-4530.2009.00403.x

    Article  CAS  Google Scholar 

  • Kersters K, Lisdiyanti P, Komagata K, Swings J (2006) The family Acetobacteraceae: the genera Acetobacter, Acidomonas, Asaia, Gluconacetobacter, Gluconobacter, and Kozakia. In: Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The Prokaryotes, 3rd edn. Springer, New York, pp 163–200

    Chapter  Google Scholar 

  • Keshk SMAS, Sameshima K (2005) Evaluation of different carbon sources for bacterial cellulose production. Afr J Biotechnol 4:478–482

    CAS  Google Scholar 

  • Keshk SMAS, Razek TMA, Sameshima K (2006) Bacterial Cellulose Production from Beet Molasses. Afr J Biotechnol 5:1519–1523

    CAS  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120. doi:10.1007/BF01731581

    Article  CAS  PubMed  Google Scholar 

  • Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose synthesized artificial blood vessels for microsurgery. Prog Polym Sci 26:1561–1603. doi:10.1016/S0079-6700(01)00021-1

    Article  CAS  Google Scholar 

  • Kongruang S (2008) Bacterial cellulose production by Acetobacter xylinum strains from agricultural waste products. Appl Biochem Biotechnol 148:245–256. doi:10.1007/s12010-007-8119-6

    Article  CAS  PubMed  Google Scholar 

  • Kurosumi A, Sasaki C, Yamashita Y, Nakamura Y (2009) Utilization of various fruit juices as carbon source for production of bacterial cellulose by Acetobacter xylinum NBRC 13693. Carbohydr Polym 76:333–335. doi:10.1016/j.carbpol.2008.11.009

    Article  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948. doi:10.1093/bioinformatics/btm404

    Article  CAS  PubMed  Google Scholar 

  • Larrauri A, Rupe P, Calixto FS (1997) Pineapple shell as a source of dietary fiber with associated polyphenols. J Agric Food Chem 45:4028–4031. doi:10.1021/jf970450j

    Article  CAS  Google Scholar 

  • Lee KY, Buldum G, Mantalaris A, Bismarck A (2014) More than meets the eye in bacterial cellulose: biosynthesis, bioprocessing, and applications in advanced fiber composites. Macromol Biosci 14:10–32. doi:10.1002/mabi.201300298

    Article  CAS  PubMed  Google Scholar 

  • Lestari P, Elfrida N, Suryani A, Suryadi Y (2014) Study on the production of bacterial cellulose from Acetobacter xylinum using agro-waste. Jordan J Biol Sci 7:75–80

    Article  Google Scholar 

  • Lu H, Jiang X (2014) Structure and properties of bacterial cellulose produced using a trickling bed reactor. Appl Biochem Biotech 172:3844–3861. doi:10.1007/s12010-014-0795-4

    Article  CAS  Google Scholar 

  • Mohammadkazemi F, Azin M, Ashori A (2015) Production of bacterial cellulose using different carbon sources and culture media. Carbohydr Polym 117:518–523. doi:10.1016/j.carbpol.2014.10.008

    Article  CAS  PubMed  Google Scholar 

  • Mohanraj R, Deore PS, Paul N (2011) Phylogeny reconstruction of Acetobacter species by RAPD (random amplified polymorphic DNA) markers. Recent Res Sci Technol 3:100–102

    CAS  Google Scholar 

  • Moosavi-Nasab M, Yousefi AR, Askari H, Bakhtiyari M (2010) Fermentative production and characterization of carboxymethyl bacterial cellulose using date syrup. World Acad Sci Eng Technol 68:1467–1471

    Google Scholar 

  • Munoz AM (1986) Development and application of texture reference scales. J Sens Stud 1:55–83. doi:10.1111/j.1745-459X.1986.tb00159.x

    Article  Google Scholar 

  • Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700, PMCID:PMC202176

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nakai T, Tonouchi N, Konishi T, Kojima Y, Tsuchida T, Yoshinaga F, Sakai F, Hayashi T (1999) Enhancement of cellulose production by expression of sucrose synthase in Acetobacter xylinum. Proc Natl Acad Sci U S A 96:14–18. doi:10.1073/pnas.96.1.14

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nelson ML, O’Connor RT (1964) Relation of certain infrared bands to cellulose crystallinity and crystal lattice type: Part II. A new infrared ratio for estimation of crystallinity in celluloses I and II. J Appl Polym Sci 8:1325–1341. doi:10.1002/app.1964.070080323

    Article  CAS  Google Scholar 

  • Park JK, Jung JY, Park YH (2003) Cellulose production by Gluconacetobacter hansenii in a medium containing ethanol. Biotechnol Lett 25:2055–2059. doi:10.1023/B:BILE.0000007065.63682.18

    Article  CAS  PubMed  Google Scholar 

  • Pourramezan GZ, Roayaei AM, Qezelbash QR (2009) Optimization of culture conditions for bacterial cellulose production by Acetobacter sp. 4B-2. Biotechnol 8:150–154

    Article  CAS  Google Scholar 

  • Raghunathan D (2013) Production of microbial cellulose from the new bacterial strain isolated from temple wash waters. Int J Curr Microbiol App Sci 2:275–290

    Google Scholar 

  • Rajwade JM, Paknikar KM, Kumbhar JV (2015) Applications of bacterial cellulose and its composites in biomedicine. Appl Microbiol Biotechnol 99:2491–2511. doi:10.1007/s00253-015-6426-3

    Article  CAS  PubMed  Google Scholar 

  • Ramirez-Flores J, Rubio E, Rodriguez-Lugo V, Castano VM (2009) Purification of polluted waters by functionalized membranes. Rev Adv Mater Sci 21:211–216

    CAS  Google Scholar 

  • Rawlings DE (1995) Restriction enzyme analysis of 16S rDNA for the rapid identification of Thiobacillus ferrooxidans, Thiobacillus thiooxidans, and Leptospirillum ferrooxidans strains in leaching environments. In: Jerez CA, Vargas T, Toledo H, Wiertz JV (eds) Biohydrometallurgical processing, vol II. University of Chile, Santiago, pp 9–17

    Google Scholar 

  • Rezaee A, Godini H, Bakhtou H (2008) Microbial cellulose as support material for the immobilization of denitrifying bacteria. Environ Eng Manage J 7:589–594

    CAS  Google Scholar 

  • Ross P, Mayer R, Benziman M (1991) Cellulose biosynthesis and function in bacteria. Microbiol Rev 55:35–58, PMCID:PMC372800

    CAS  PubMed Central  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Schramm M, Hestrin S (1954) Factors affecting production of cellulose at the air/liquid interface of a culture of Acetobacter xylinum. J Gen Microbiol 11:123–129. doi:10.1099/00221287-11-1-123

    Article  CAS  PubMed  Google Scholar 

  • Schrecker ST, Gostomski PA (2005) Determining the water holding capacity of microbial cellulose. Biotechnol Lett 27:1435–1438. doi:10.1007/s10529-005-1465-y

    Article  CAS  PubMed  Google Scholar 

  • Segal L, Creely JJ, Martin AE Jr, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794. doi:10.1177/004051755902901003

    Article  CAS  Google Scholar 

  • Shah J, Brown RM (2005) Towards electronic paper displays made from microbial cellulose. Appl Microbiol Biotechnol 66:352–355. doi:10.1007/s00253-004-1756-6

    Article  CAS  PubMed  Google Scholar 

  • Sheykhnazari S, Tabarsa T, Ashori A, Shakeri A, Golalipour M (2011) Bacterial synthesized cellulose nanofibers: effects of growth times and culture mediums on the structural characteristics. Carbohydr Polym 86:1187–1191. doi:10.1016/j.carbpol.2011.06.011

    Article  CAS  Google Scholar 

  • Shi Z, Zhang Y, Phillips GO, Yang G (2014) Utilization of bacterial cellulose in food. Food hydrocolloid 35:539–545. doi:10.1016/j.foodhyd.2013.07.012

    Article  CAS  Google Scholar 

  • Shoda M, Sugano Y (2005) Recent advances in bacterial cellulose production. Biotechnol Bioprocess Eng 10:1–8. doi:10.1007/BF02931175

    Article  CAS  Google Scholar 

  • Sievers M, Swings J (2005) Family II: Acetobacteraceae. In: Brenner DJ, Krieg NR, Staley JT (eds) Bergey’s manual of systematic bacteriology, vol 2, 2nd edn. Springer, New York, pp 41–96

    Google Scholar 

  • Smith BG, Harris PJ (1995) Polysaccharide composition of unlignified cell walls of pineapple [Ananas comosus (L.) Merr] fruit. Plant Physiol 107:1399–1409

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Soares S, Camino G, Levchik S (1995) Comparative study of the thermal decomposition of pure cellulose and pulp paper. Polym Degrad Stabil 49:275–283. doi:10.1016/0141-3910(95)87009-1

    Article  CAS  Google Scholar 

  • Sun JX, Xu F, Sun XF, Xiao B, Sun RC (2005) Physico-chemical and thermal characterization of cellulose from barley straw. Polym Degrad Stabil 88:521–531. doi:10.1016/j.polymdegradstab.2004.12.013

    Article  CAS  Google Scholar 

  • Surma-ślusarska B, Presler S, Danielewicz D (2008) Characteristics of bacterial cellulose obtained from Acetobacter xylinum culture for application in papermaking. Fibres Text East Eur 16:108–111

    Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599. doi:10.1093/molbev/msm092

    Article  CAS  PubMed  Google Scholar 

  • Tokoh C, Takabe K, Sugiyama J, Fujita M (2002) CP/MAS 13 C NMR and electron diffraction study of bacterial cellulose structure affected by cell wall polysaccharides. Cellulose 9:351–360. doi:10.1023/A:1021150520953

    Article  CAS  Google Scholar 

  • Ul-Islam M, Khan T, Parka JK (2012) Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification. Carbohyd Polym 88:596–603. doi:10.1016/j.carbpol.2012.01.006

    Article  CAS  Google Scholar 

  • Vandamme EJ, De Baets S, Vanbaelen A, Joris K, De Wulf P (1998) Improved production of bacterial cellulose and its application potential. Polym Degrad Stab 59:93–99. doi:10.1016/S0141-3910(97)00185-7

    Article  CAS  Google Scholar 

  • Wee Y, Kim S, Yoon S, Ryu H (2011) Isolation and characterization of a bacterial cellulose-producing bacterium derived from the persimmon vinegar. African J Biotechnol 10:16267–16276. doi:10.5897/AJB11.2036

    CAS  Google Scholar 

  • Williams WS, Cannon RE (1989) Alternative environmental roles for cellulose produced by Acetobacter xylinum. Appl Environ Microbiol 55:2448–2452

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wu ZY, Li C, Liang HW, Chen JF, Yu SH (2013) Ultralight, flexible, and fire-resistant carbon nanofiber aerogels from bacterial cellulose. Angew Chem Int Ed Engl 52:2925–2929. doi:10.1002/anie.201209676

    Article  CAS  PubMed  Google Scholar 

  • Yamada (2013) List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 63:1–5. doi:10.1099/ijs.0.049312-0

    Article  Google Scholar 

  • Yamada Y, Yukphan P, Lan Vu HT, Muramatsu Y, Ochaikul D, Tanasupawat S, Nakagawa Y (2012) Description of Komagataeibacter gen. nov., with proposals of new combinations (Acetobacteraceae). J Gen Appl Microbiol 58:397–404. doi:10.2323/jgam.58.397

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Jia J, Xing J, Chen J, Lu S (2013) Isolation and characteristics analysis of a novel high bacterial cellulose producing strain Gluconacetobacter intermedius CIs26. Carbohydr Polym 92:2012–2017. doi:10.1016/j.carbpol.2012.11.065

    Article  CAS  PubMed  Google Scholar 

  • Zakaria J, Nazeri MA (2012) Optimization of bacterial cellulose production from pineapple waste: effect of temperature, pH and concentration. In: EnCon 2012, 5th engineering conference, “Engineering towards change — empowering green solutions,” 10–12th July 2012, Kuching, Sarawak

  • Zhang T, Wang W, Zhang D, Zhang X, Ma Y, Zhou Y, Qi L (2010) Biotemplated synthesis of gold nanoparticle-bacteria cellulose nanofiber nanocomposites and their application in biosensing. Adv Funct Mater 20:1152–1160. doi:10.1002/adfm.200902104

    Article  CAS  Google Scholar 

  • Zhang X, Fang Y, Chen W (2013) Preparation of silver/bacterial cellulose composite membrane and study on its antimicrobial activity. Synth React Inorganic Met Nano-Metal Chem 43:907–913. doi:10.1080/15533174.2012.750674

    Article  Google Scholar 

  • Zhu H, Jia S, Yang H, Tang W, Jia Y, Tan Z (2010) Characterization of bacteriostatic sausage casing: a composite of bacterial cellulose embedded with ε-polylysine. Food Sci Biotechnol 19:1479–1484. doi:10.1007/s10068-010-0211-y

    Article  CAS  Google Scholar 

Download references

Acknowledgments

JVK is thankful to CSIR, Govt. of India, New Delhi for providing research fellowship. Authors acknowledge financial support from DST, Govt. of India, New Delhi for carrying out the research.

Conflict of interest

None

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jyutika Milind Rajwade or Kishore Madhukar Paknikar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumbhar, J.V., Rajwade, J.M. & Paknikar, K.M. Fruit peels support higher yield and superior quality bacterial cellulose production. Appl Microbiol Biotechnol 99, 6677–6691 (2015). https://doi.org/10.1007/s00253-015-6644-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6644-8

Keywords

Navigation