Skip to main content
Log in

Coproduction of bacterial cellulose and pear vinegar by fermentation of pear peel and pomace

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Bacterial cellulose (BC)-derived materials are given significant attention due to their porous fibrous texture, high crystallinity and extraordinary physico-mechanical properties. The main reason for the restricted use of BC is its high production cost. To reduce the production cost, the suitability of pear residue for the production of BC and pear vinegar was investigated. Komagataeibacter rhaeticus and Komagataeibacter intermedius with high fermentation ability screened from the surface of vinegar film of millet fermentation were used to produce BC and pear vinegar simultaneously. Through response surface optimization, the maximum yield of BC from pear residue medium was 10.94 ± 0.42 g/L, which was higher than the synthesis medium generally used for Acetobacter strains. When pear residue medium was incubated at 30 °C for 7 days, the contents of total acid and soluble solids were greater than 0.3 g/100 mL and 3%, respectively, which met the standard requirements for fruit vinegar. The flavour components of pear vinegar were determined using gas chromatography–mass spectrometry. The pear vinegar showed similar flavour characteristics to conventional fruit vinegar. This research not only solved the utilization of agricultural resources but also avoided the discharge of waste liquid when producing BC. In addition, a more environmentally friendly and less expensive way to produce BC and pear vinegar was achieved.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article (and its supplementary information files).

References

  1. Sagar NA, Pareek S, Sharma S, Yahia EM, Lobo MG (2018) Fruit and vegetable waste: Bioactive compounds, their extraction, and possible utilization. Compr Rev Food Sci Food Saf 17(3):512–531. https://doi.org/10.1111/1541-4337.12330

    Article  CAS  PubMed  Google Scholar 

  2. Vendruscolo F, Albuquerque PM, Streit F, Esposito E, Ninow JL (2008) Apple pomace: a versatile substrate for biotechnological applications. Crit Rev Biotechnol 28(1):1–12. https://doi.org/10.1080/07388550801913840

    Article  CAS  PubMed  Google Scholar 

  3. Saipetch, K.S., 2004. Separation and quantitation of limonoids and flavonoids injuice and by-products of sweet orange (Citrus sinensis) (Doctoral dissertation. Michigan State University). https://search.proquest.com/openview/b8af64b04554189c99b533727debabe2/1?pq-origsite=gscholar&cbl=18750&diss=y

  4. Li B, Qiao M, Lu F (2012) Composition, nutrition, and utilization of okara (soybean residue). Food Rev Int 28(3):231–252. https://doi.org/10.1080/87559129.2011.595023

    Article  CAS  Google Scholar 

  5. Rabetafika HN, Bchir B, Blecker C, Paquot M, Wathelet B (2014) Comparative study of alkaline extraction process of hemicelluloses from pear pomace. Biomass Bioenerg 61:254–264. https://doi.org/10.1016/j.biombioe.2013.12.022

    Article  CAS  Google Scholar 

  6. Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose—artificial blood vessels for microsurgery. Prog Polym Sci 26(9):1561–1603. https://doi.org/10.1016/S0079-6700(01)00021-1

    Article  CAS  Google Scholar 

  7. Islam MU, Ullah MW, Khan S, Shah N, Park JK (2017) Strategies for cost-effective and enhanced production of bacterial cellulose. Int J Biol Macromol 102:1166–1173. https://doi.org/10.1016/j.ijbiomac.2017.04.110

    Article  CAS  PubMed  Google Scholar 

  8. Ul-Islam M, Khan T, Park JK (2012) Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification. Carbohyd Polym 88(2):596–603. https://doi.org/10.1016/j.carbpol.2012.01.006

    Article  CAS  Google Scholar 

  9. Gorgieva S, Trček J (2019) Bacterial cellulose: production, modification and perspectives in biomedical applications. Nanomaterials-Baseln 9(10):1352. https://doi.org/10.3390/nano9101352

    Article  CAS  Google Scholar 

  10. Stoica-Guzun A, Stroescu M, Jinga S, Jipa I, Dobre T, Dobre L (2012) Ultrasound influence upon calcium carbonate precipitation on bacterial cellulose membranes. Ultrason Sonochem 19(4):909–915. https://doi.org/10.1016/j.ultsonch.2011.12.002

    Article  CAS  PubMed  Google Scholar 

  11. Ahmed J, Gultekinoglu M, Edirisinghe M (2020) Bacterial cellulose micro-nano fibres for wound healing applications. Biotechnol Adv 41:107549. https://doi.org/10.1016/j.biotechadv.2020.107549

    Article  CAS  Google Scholar 

  12. Chen S, Shen W, Yu F, Wang H (2009) Kinetic and thermodynamic studies of adsorption of Cu 2+ and Pb 2+ onto amidoximated bacterial cellulose. Polym Bull 63(2):283–297. https://doi.org/10.1007/s00289-009-0088-1

    Article  CAS  Google Scholar 

  13. Azeredo H, Barud HS, Farinas CS, Vasconcellos VM, Claro AM (2019) Bacterial cellulose as a raw material for food and food materials packaging applications. Front Sustain Food Syst 3:7. https://doi.org/10.3389/fsufs.2019.00007

    Article  Google Scholar 

  14. Hestrin S, Schramm M (1954) Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J 58(2):345. https://doi.org/10.1042/bj0580345

  15. Ha JH, Shah N, Ul-Islam M, Khan T, Park JK (2011) Bacterial cellulose production from a single sugar α-linked glucuronic acid-based oligosaccharide. Process Biochem 46(9):1717–1723. https://doi.org/10.1016/j.procbio.2011.05.024

    Article  CAS  Google Scholar 

  16. Hungund B, Prabhu S, Shetty C, Acharya S, Prabhu V, Gupta SG (2013) Production of bacterial cellulose from Gluconacetobacter persimmonis GH-2 using dual and cheaper carbon sources. J Microb Biochem Technol 5(2). https://doi.org/10.4172/1948-5948.1000095

  17. Fan X, Gao Y, He W, Hu H, Tian M, Wang K, Pan S (2016) Production of nano bacterial cellulose from beverage industrial waste of citrus peel and pomace using Komagataeibacter xylinus. Carbohyd Polym 151:1068–1072. https://doi.org/10.1016/j.carbpol.2016.06.062

    Article  CAS  Google Scholar 

  18. Gomes FP, Silva NH, Trovatti E, Serafim LS, Duarte MF, Silvestre AJ, Freire CS (2013) Production of bacterial cellulose by Gluconacetobacter sacchari using dry olive mill residue. Biomass Bioenerg 55(55):205–211. https://doi.org/10.1016/j.biombioe.2013.02.004

    Article  CAS  Google Scholar 

  19. Algar I, Fernandes SC, Mondragon G, Castro C, Garcia-Astrain C, Gabilondo N, Eceiza A (2015) Pineapple agroindustrial residues for the production of high value bacterial cellulose with different morphologies. J Appl Polym Sci 132(1):41237. https://doi.org/10.1002/app.41237

    Article  CAS  Google Scholar 

  20. Huang C, Yang X, Xiong L, Guo H, Luo J, Wang B, Chen X (2015) Evaluating the possibility of using acetone-butanol-ethanol (ABE) fermentation wastewater for bacterial cellulose production by Gluconacetobacter xylinus. Lett Appl Microbiol 60(5):491–496. https://doi.org/10.1111/lam.12396

    Article  CAS  PubMed  Google Scholar 

  21. Bilgi E, Bayir E, Sendemirurkmez A, Hames E (2016) Optimization of bacterial cellulose production by Gluconacetobacter xylinus using carob and haricot bean. Int J Biol Macromol 90:2–10. https://doi.org/10.1016/j.ijbiomac.2016.02.052

    Article  CAS  PubMed  Google Scholar 

  22. Xia T, Zhang B, Duan W, Zhang J, Wang M (2020) Nutrients and bioactive components from vinegar: a fermented and functional food. J Funct Foods 64:103681. https://doi.org/10.1016/j.jff.2019.103681

    Article  CAS  Google Scholar 

  23. Beres C, Costa GN, Cabezudo I, da Silva-James NK, Teles AS, Cruz AP, Freitas SP (2017) Towards integral utilization of grape pomace from winemaking process: a review. Waste Manage 68:581–594. https://doi.org/10.1016/j.wasman.2017.07.017

    Article  Google Scholar 

  24. Cejudo-Bastante MJ, Durán E, Castro R, Rodríguez-Dodero MC, Natera R, García-Barroso C (2013) Study of the volatile composition and sensory characteristics of new Sherry vinegar-derived products by maceration with fruits. LWT-Food Sci Technol 50(2):469–479. https://doi.org/10.1016/j.lwt.2012.08.022

    Article  CAS  Google Scholar 

  25. Brenner DJ, Krieg NR, Staley JT (2004) Bergeys manual of systematic bacteriology Garrity George, editor. https://sc.panda321.com/scholar?cluster=401872127345294740&hl=zh-CN&as_sdt=2005&sciodt=0,5

  26. Cai MY, Dong XZ (2001) Common bacterial system identification manual Beijing: Science Press. https://sc.panda321.com/scholar?hl=zh-CN&as_sdt=0%2C5&q=Common+bacterial+system+identification+manual&btnG=

  27. Wei YY, Guo JL (2016) Application of evaluation test method in sensory evaluation of vinegar. Chinese condiments 41(12): 98–99. (Chinese) https://en.cnki.com.cn/Article_en/CJFDTotal-ZGTW201303023.htm

  28. Barud HS, de Araújo JAM, Santos DB, de Assunção RM, Meireles CS, Huang HC, Chen LC, Lin SB, Hsu CP, Chen HH (2010) In situ modification of bacterial cellulose network structure by adding interfering substances during fermentation. Bioresource Technol 101(15):6084–6091. https://doi.org/10.1016/j.biortech.2010.03.031

    Article  CAS  Google Scholar 

  29. Huang HC, Chen LC, Lin SB, Hsu CP, Chen HH (2010) In situ modification of bacterial cellulose network structure by adding interfering substances during fermentation. Bioresource Technol 101(15):6084–6091. https://doi.org/10.1016/j.biortech.2010.03.031

  30. Mohammadkazemi F, Azin M, Ashori A (2015) Production of bacterial cellulose using different carbon sources and culture media. Carbohyd Polym 117:518–523. https://doi.org/10.1016/j.carbpol.2014.10.008

    Article  CAS  Google Scholar 

  31. Khan H, Kadam A, Dutt D (2020) Studies on bacterial cellulose produced by a novel strain of Lactobacillus genus. Carbohyd Polym 229:115513. https://doi.org/10.1016/j.carbpol.2019.115513

    Article  CAS  Google Scholar 

  32. Chen SQ, Lopez-Sanchez P, Wang D, Mikkelsen D, Gidley MJ (2018) Mechanical properties of bacterial cellulose synthesised by diverse strains of the genus Komagataeibacter. Food Hydrocolloid 81:87–95. https://doi.org/10.1016/j.foodhyd.2018.02.031

    Article  CAS  Google Scholar 

  33. Li Z, Wang L, Hua J, Jia S, Zhang J, Liu H (2015) Production of nano bacterial cellulose from waste water of candied jujube-processing industry using Acetobacter xylinum. Carbohyd Polym 120:115–119. https://doi.org/10.1016/j.carbpol.2014.11.061

    Article  CAS  Google Scholar 

  34. Roda A, Lucini L, Torchio F, Dordoni R, De Faveri DM, Lambri M (2017) Metabolite profiling and volatiles of pineapple wine and vinegar obtained from pineapple waste. Food Chem 229:734–742. https://doi.org/10.1016/j.foodchem.2017.02.111

    Article  CAS  PubMed  Google Scholar 

  35. Singh R, Singh S (2007) Design and development of batch type acetifier for wine-vinegar production. Indian J Microbiol 47(2):153–159. https://doi.org/10.1007/s12088-007-0029-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tanamool V, Chantarangsee M, Soemphol W (2020) Simultaneous vinegar fermentation from a pineapple by-product using the co-inoculation of yeast and thermotolerant acetic acid bacteria and their physiochemical properties. 3 Biotech 10(3):1–11. https://doi.org/10.1007/s13205-020-2119-4

    Article  Google Scholar 

  37. Özen M, Özdemir N, Filiz BE, Budak NH, Kök-Taş T (2020) Sour cherry (Prunus cerasus L.) vinegars produced from fresh fruit or juice concentrate: Bioactive compounds, volatile aroma compounds and antioxidant capacities. Food Chem 309:125664. https://doi.org/10.1016/j.foodchem.2019.125664

    Article  CAS  PubMed  Google Scholar 

  38. Ubeda C, Callejón RM, Hidalgo C, Torija MJ, Mas A, Troncoso AM, Morales ML (2011) Determination of major volatile compounds during the production of fruit vinegars by static headspace gas chromatography–mass spectrometry method. Food Res Int 44(1):259–268. https://doi.org/10.1016/j.foodres.2010.10.025

    Article  CAS  Google Scholar 

  39. Dou TX, Shi JF, Li Y, Bi FC, Gao HJ, Hu CH, He WD (2020) Influence of harvest season on volatile aroma constituents of two banana cultivars by electronic nose and HS-SPME coupled with GC-MS. Sci Hortic-Amsterdam 265:109214. https://doi.org/10.1016/j.scienta.2020.109214

    Article  CAS  Google Scholar 

  40. Marrufo-Curtido A, Cejudo-Bastante MJ, Rodríguez-Dodero MC, Natera-Marín R, Castro-Mejías R, García-Barroso C, Durán-Guerrero E (2015) Novel vinegar-derived product enriched with dietary fiber: effect on polyphenolic profile, volatile composition and sensory analysis. J Food Sci Technol 52:7608–7624. https://doi.org/10.1007/s13197-015-1908-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen Y, Huang Y, Bai Y, Fu C, Zhou M, Gao B, Xu N (2017) Effects of mixed cultures of Saccharomyces cerevisiae and Lactobacillus plantarum in alcoholic fermentation on the physicochemical and sensory properties of citrus vinegar. LWT 84:753–763. https://doi.org/10.1016/j.lwt.2017.06.032

    Article  CAS  Google Scholar 

  42. Ho CW, Lazim AM, Fazry S, Zaki UKHH, Lim SJ (2017) Varieties, production, composition and health benefits of vinegars: a review. Food Chem 221:1621–1630. https://doi.org/10.1016/j.foodchem.2016.10.128

    Article  CAS  PubMed  Google Scholar 

  43. Krystynowicz A, Czaja W, Wiktorowska-Jezierska A, Gonçalves-Miśkiewicz M, Turkiewicz M, Bielecki S (2002) Factors affecting the yield and properties of bacterial cellulose. J Ind Microbiol Biot 29(4):189–195. https://doi.org/10.1038/sj.jim.7000303

    Article  CAS  Google Scholar 

  44. Arvanitoyannis IS, Varzakas TH (2008) Fruit/fruit juice waste management: treatment methods and potential uses of treated waste. Waste Manag Food Ind 2:569–628. https://doi.org/10.1016/b978-012373654-3.50012-2

    Article  Google Scholar 

  45. Kennedy M, List, Lu Y, Foo L Y, Newman R H, Sims I M, Fenton G (1999) Apple pomace and products derived from apple pomace: uses, composition and analysis. In Analysis of plant waste materials. Springer, Berlin, Heidelberg, pp 75–119) https://link.springer.com/chapter/https://doi.org/10.1007/978-3-662-03887-1_4

  46. Ghozali M, Meliana Y, Chalid M (2021) Synthesis and characterization of bacterial cellulose by Acetobacter xylinum using liquid tapioca waste. Mater Today Proc 44:2131–2134. https://doi.org/10.1016/j.matpr.2020.12.274

    Article  CAS  Google Scholar 

  47. Aydin YA, Aksoy ND (2009) Isolation of cellulose producing bacteria from wastes of vinegar fermentation. In Proceedings of the world congress on engineering and computer science (Vol. 1, pp. 20–22). http://www.iaeng.org/publication/WCECS2009/WCECS2009_pp99-102.pdf

  48. Yang Y, Jia J, Xing J, Chen J, Lu S (2013) Isolation and characteristics analysis of a novel high bacterial cellulose producing strain Gluconacetobacter intermedius CIs26. Carbohyd Polym 92(2):2012–2017. https://doi.org/10.1016/j.carbpol.2012.11.065

    Article  CAS  Google Scholar 

  49. Carreira P, Mendes JA, Trovatti E, Serafim LS, Freire CS, Silvestre AJ, Neto CP (2011) Utilization of residues from agro-forest industries in the production of high value bacterial cellulose. Biores Technol 102(15):7354–7360. https://doi.org/10.1016/j.biortech.2011.04.081

Download references

Author information

Authors and Affiliations

Authors

Contributions

XM: writing—original draft; HJY: writing—original draft; HW: data curation. HYY: supervision.

Corresponding author

Correspondence to Haiyan Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Yuan, H., Wang, H. et al. Coproduction of bacterial cellulose and pear vinegar by fermentation of pear peel and pomace. Bioprocess Biosyst Eng 44, 2231–2244 (2021). https://doi.org/10.1007/s00449-021-02599-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-021-02599-3

Keywords

Navigation