Skip to main content
Log in

Enhancing stress tolerance by overexpression of a methionine sulfoxide reductase A (MsrA) gene in Pleurotus ostreatus

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Proteins are subjected to modification by reactive oxygen species (ROS), and oxidation of specific amino acid residues can impair their biological functions. Methionine as a sulfur-containing amino acid is easily oxidized to methionine sulfoxide (MetSO). The modified methionine can be repaired by methionine sulfoxide reductase (Msr), an enzyme that reverses oxidation of methionine in proteins. In this study, a methionine sulfoxide reductase A (PoMsrA) gene from Pleurotus ostreatus was cloned and characterized. Furthermore, the function of PoMsrA gene was analyzed by overexpression in P. ostreatus via Agrobacterium-mediated transformation. Stable integration of the target gene into the genome of P. ostreatus was confirmed by PCR, fluorescence observation, and Southern blot hybridization. qRT-PCR analysis showed that PoMsrA was highly expressed in the stage of mature and young fruiting bodies as well as the osmotic stress condition of 0.3 M NaCl. Additionally, the transgenic strains with PoMsrA overexpression exhibited an enhanced tolerance to high temperature, high osmotic stress, and oxidative stress. This suggests that PoMsrA is an active player in the protection of the cellular proteins from oxidative stress damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arias DG, Cabeza MS, Erben ED, Carranza PG, Lujan HD, Téllez Iñón MT, Iglesias AA, Guerrero SA (2011) Functional characterization of methionine sulfoxide reductase A from Trypanosoma spp. Free Radic Biol Med 50:37–46

    Article  CAS  PubMed  Google Scholar 

  • Boschi-Muller S, Gand A, Branlant G (2008) The methionine sulfoxide reductases: Catalysis and substrate specificities. Arch Biochem Biophys 474:266–273

    Article  CAS  PubMed  Google Scholar 

  • Cabreiro F, Picot CR, Perichon M, Friguet B, Petropoulos I (2009) Overexpression of methionine sulfoxide reductases A and B2 protects MOLT-4 cells against zinc-induced oxidative stress. Antioxid Redox Signal 11:215–225

    Article  CAS  PubMed  Google Scholar 

  • Ding Y, Liang S, Lei J, Chen L, Kothe E, Ma A (2011) Agrobacterium tumefaciens mediated fused egfp-hph gene expression under the control of gpd promoter in Pleurotus ostreatus. Microbiol Res 166:314–322

    Article  CAS  PubMed  Google Scholar 

  • Erickson JR, Joiner ML, Guan X, Kutschke W, Yang J, Oddis CV, Bartlett RK, Lowe JS, O’Donnell SE, Aykin-Burns N, Zimmerman MC, Zimmerman K, Ham AJ, Weiss RM, Spitz DR, Shea MA, Colbran RJ, Mohler PJ, Anderson ME (2008) A dynamic pathway for calcium-independent activation of CaMKII by methionine oxidation. Cell 133:462–474

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ezraty B, Aussel L, Barras F (2005) Methionine sulfoxide reductases in prokaryotes. Biochim Biophys Acta 1703:221–229

    Article  CAS  PubMed  Google Scholar 

  • García-Santamarina S, Boronat S, Ayté J, Hidalgo E (2013) Methionine sulphoxide reductases revisited: Free methionine as a primary target of H2O2 stress in auxotrophic fission yeast. Mol Microbiol 90:1113–1124

    Article  PubMed  Google Scholar 

  • Guo X, Wu Y, Wang Y, Chen Y, Chu C (2009) OsMSRA4.1 and OsMSRB1.1, two rice plastidial methionine sulfoxide reductases, are involved in abiotic stress responses. Planta 230:227–238

    Article  CAS  PubMed  Google Scholar 

  • Gurr SJ, Unkles SE, Kinghorn JR (1987) The structure and organization of nuclear genes in filamentous fungi. In: Kinghorn JR (ed) Gene structure in eukaryotic microbes. IRL Press, Oxford, pp 93–139

    Google Scholar 

  • Haenold R, Wassef R, Hansel A, Heinemann SH, Hoshi T (2007) Identification of a new functional splice variant of the enzyme methionine sulphoxide reductase A (MSRA) expressed in rat vascular smooth muscle cells. Free Radic Res 41:1233–1245

    Article  CAS  PubMed  Google Scholar 

  • Kantorow M, Hawse JR, Cowell TL, Benhamed S, Pizarro GO, Reddy VN, Hejtmancik JF (2004) Methionine sulfoxide reductase a is important for lens cell viability and resistance to oxidative stress. Proc Natl Acad Sci U S A 101:9654–9659

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kantorow M, Lee W, Chauss D (2012) Focus on molecules: Methionine sulfoxide reductase A. Exp Eye Res 100:110–111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kauffmann B, Aubry A, Favier F (2005) The three-dimensional structures of peptide methionine sulfoxide reductases: Current knowledge and open questions. Biochim Biophys Acta 1703:249–260

    Article  CAS  PubMed  Google Scholar 

  • Kaya A, Koc A, Lee BC, Fomenko DE, Rederstorff M, Krol A, Lescure A, Gladyshev VN (2010) Compartmentalization and regulation of mitochondrial function by methionine sulfoxide reductases in yeast. Biochemistry 49:8618–8625

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim G, Cole NB, Lim JC, Zhao H, Levine RL (2010) Dual sites of protein initiation control the localization and myristoylation of methionine sulfoxide reductase A. J Biol Chem 285:18085–18094

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim HY (2013) The methionine sulfoxide reduction system: Selenium utilization and methionine sulfoxide reductase enzymes and their functions. Antioxid Redox Signal 19:958–969

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim HY, Gladyshev VN (2005) Role of structural and functional elements of mouse methionine-S-sulfoxide reductase in its subcellular distribution. Biochemistry 44:8059–8067

    Article  CAS  PubMed  Google Scholar 

  • Kim HY, Gladyshev VN (2006) Alternative first exon splicing regulates subcellular distribution of methionine sulfoxide reductases. BMC Mol Biol 7:11

    Article  PubMed Central  PubMed  Google Scholar 

  • Kim HY, Gladyshev VN (2007) Methionine sulfoxide reductases: selenoprotein forms and roles in antioxidant protein repair in mammals. Biochem J 407:321–329

    Article  CAS  PubMed  Google Scholar 

  • Le HT, Chaffotte AF, Demey-Thomas E, Vinh J, Friguet B, Mary J (2009) Impact of hydrogen peroxide on the activity, structure, and conformational stability of the oxidized protein repair enzyme methionine sulfoxide reductase A. J Mol Biol 393:58–66

    Article  CAS  PubMed  Google Scholar 

  • Lee BC, Dikiy A, Kim HY, Gladyshev VN (2009) Functions and evolution of selenoprotein methionine sulfoxide reductases. Biochim Biophys Acta 1790:1471–1477

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee BC, Fomenko DE, Gladyshev VN (2011) Selective reduction of methylsulfinyl-containing compounds by mammalian MsrA suggests a strategy for improved drug efficacy. ACS Chem Biol 6:1029–1035

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee JW, Gordiyenko NV, Marchetti M, Tserentsoodol N, Sagher D, Alam S, Weissbach H, Kantorow M, Rodriguez IR (2006) Gene structure, localization and role in oxidative stress of methionine sulfoxide reductase A (MSRA) in the monkey retina. Exp Eye Res 82:816–827

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Levine RL, Mosoni L, Berlett BS, Stadtman ER (1996) Methionine residues as endogenous antioxidants in proteins. Proc Natl Acad Sci U S A 93:15036–15040

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lin Z, Johnson LC, Weissbach H, Brot N, Lively MO, Lowther WT (2007) Free methionine-(R)-sulfoxide reductase from Escherichia coli reveals a new GAF domain function. Proc Natl Acad Sci U S A 104:9597–9602

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−△△Ct method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lowther WT, Brot N, Weissbach H, Honek JF, Matthews BW (2000) Thiol-disulfide exchange is involved in the catalytic mechanism of peptide methionine sulfoxide reductase. Proc Natl Acad Sci U S A 97:6463–6468

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ma XX, Guo PC, Shi WW, Luo M, Tan XF, Chen Y, Zhou CZ (2011) Structural plasticity of the thioredoxin recognition site of yeast methionine S-sulfoxide reductase Mxr1. J Biol Chem 286:13430–13437

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marchetti MA, Lee W, Cowell TL, Wells TM, Weissbach H, Kantorow M (2006) Silencing of the methionine sulfoxide reductase A gene results in loss of mitochondrial membrane potential and increased ROS production in human lens cells. Exp Eye Res 83:1281–1286

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moskovitz J, Oien DB (2010) Protein carbonyl and the methionine sulfoxide reductase system. Antioxid Redox Signal 12:405–415

    Article  CAS  PubMed  Google Scholar 

  • Moskovitz J, Rahman MA, Strassman J, Yancey SO, Kushner SR, Brot N, Weissbach H (1995) Escherichia coli peptide methionine sulfoxide reductase gene: Regulation of expression and role in protecting against oxidative damage. J Bacteriol 177:502–507

    PubMed Central  CAS  PubMed  Google Scholar 

  • Moskovitz J, Berlett BS, Poston JM, Stadtman ER (1997) The yeast peptide-methionine sulfoxide reductase functions as an antioxidant in vivo. Proc Natl Acad Sci U S A 94:9585–9589

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moskovitz J, Flescher E, Berlett BS, Azare J, Poston JM, Stadtman ER (1998) Overexpression of peptide-methionine sulfoxide reductase in Saccharomyces cerevisiae and human T cells provides them with high resistance to oxidative stress. Proc Natl Acad Sci U S A 95:14071–14075

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moskovitz J, Bar-Noy S, Williams WM, Requena J, Berlett BS, Stadtman ER (2001) Methionine sulfoxide reductase (MsrA) is a regulator of antioxidant defense and lifespan in mammals. Proc Natl Acad Sci U S A 98:12920–12925

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oha JE, Hong SW, Lee Y, Koh EJ, Kim K, Seo YW, Chung N, Jeong M, Jang CS, Lee B, Kim KH, Lee H (2005) Modulation of gene expressions and enzyme activities of methionine sulfoxide reductases by cold, ABA or high salt treatments in Arabidopsis. Plant Sci 169:1030–1036

    Article  Google Scholar 

  • Oien DB, Osterhaus GL, Latif SA, Pinkston JW, Fulks J, Johnson M, Fowler SC, Moskovitz J (2008) MsrA knockout mouse exhibits abnormal behavior and brain dopamine levels. Free Radic Biol Med 45:193–200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Picot CR, Petropoulos I, Perichon M, Moreau M, Nizard C, Friguet B (2005) Overexpression of MsrA protects WI-38 SV40 human fibroblasts against H2O2-mediated oxidative stress. Free Radic Biol Med 39:1332–1341

    Article  CAS  PubMed  Google Scholar 

  • Rhee SG (2006) H2O2, a necessary evil for cell signaling. Science 312:1882–1883

    Article  PubMed  Google Scholar 

  • Romero HM, Berlett BS, Jensen PJ, Pell EJ, Tien M (2004) Investigations into the role of the plastidial peptide methionine sulfoxide reductase in response to oxidative stress in Arabidopsis. Plant Physiol 136:3784–3794

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Romsang A, Atichartpongkul S, Trinachartvanit W, Vattanaviboon P, Mongkolsuk S (2013) Gene expression and physiological role of Pseudomonas aeruginosa methionine sulfoxide reductases during oxidative stress. J Bacteriol 195:3299–3308

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ruan H, Tang XD, Chen ML, Joiner ML, Sun G, Brot N, Weissbach H, Heinemann SH, Iverson L, Wu CF, Hoshi T (2002) High-quality life extension by the enzyme peptide methionine sulfoxide reductase. Proc Natl Acad Sci U S A 99:2748–2753

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sánchez C (2010) Cultivation of Pleurotus ostreatus and other edible mushrooms. Appl Microbiol Biotechnol 85:1321–1337

    Article  PubMed  Google Scholar 

  • Sansom FM, Tang L, Ralton JE, Saunders EC, Naderer T, McConville MJ (2013) Leishmania major methionine sulfoxide reductase A is required for resistance to oxidative stress and efficient replication in macrophages. PLoS ONE 8:e56064

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Simonian NA, Coyle JT (1996) Oxidative stress in neurodegenerative diseases. Annu Rev Pharmacol Toxicol 36:83–106

    Article  CAS  PubMed  Google Scholar 

  • Soriani FM, Kress MR, Fagundes de Gouvêa P, Malavazi I, Savoldi M, Gallmetzer A, Strauss J, Goldman MH, Goldman GH (2009) Functional characterization of the Aspergillus nidulans methionine sulfoxide reductases (msrA and msrB). Fungal Genet Biol 46:410–417

    Article  CAS  PubMed  Google Scholar 

  • Sreekumar PG, Hinton DR, Kannan R (2011) Methionine sulfoxide reductase A: Structure, function and role in ocular pathology. World J Biol Chem 2:184–192

    Article  PubMed Central  PubMed  Google Scholar 

  • Vougier S, Mary J, Friguet B (2003) Subcellular localization of methionine sulphoxide reductase A (MsrA): evidence for mitochondrial and cytosolic isoforms in rat liver cells. Biochem J 373:531–537

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Weissbach H, Resnick L, Brot N (2005) Methionine sulfoxide reductases: History and cellular role in protecting against oxidative damage. Biochim Biophys Acta 1703:203–212

    Article  CAS  PubMed  Google Scholar 

  • Yermolaieva O, Xu R, Schinstock C, Brot N, Weissbach H, Heinemann SH, Hoshi T (2004) Methionine sulfoxide reductase A protects neuronal cells against brief hypoxia/reoxygenation. Proc Natl Acad Sci U S A 101:1159–1164

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yin C, Chen Y, Zhu H, Lei J, Ma A (2012) Cloning and quantitative analysis of genes specifically expressed in mycelium and primordium of Pleurotus ostreatus. In: Zhang J, Wang H, Chen M (eds) Mushroom Science XVIII: Proceedings of the 18th Congress of the International Society for Mushroom Science. China Agriculture Press, Beijing, pp 161–167

    Google Scholar 

  • Yin C, Zhao W, Zheng L, Chen L, Tan Q, Shang X, Ma A (2014a) High-level expression of a manganese superoxide dismutase (PoMn-SOD) from Pleurotus ostreatus in Pichia pastoris. Appl Biochem Biotechnol 174:259–269

    Article  CAS  PubMed  Google Scholar 

  • Yin C, Zheng L, Chen L, Tan Q, Shang X, Ma A (2014b) Cloning, expression and characterization of a milk-clotting aspartic protease gene (Po-Asp) from Pleurotus ostreatus. Appl Biochem Biotechnol 172:2119–2131

    Article  CAS  PubMed  Google Scholar 

  • Yin C, Zhao W, Zhu JH, Zheng L, Chen L, Ma A (2015) Cloning and characterization of a differentially expressed mitochondrial manganese superoxide dismutase gene from Pleurotus ostreatus. Ann Microbiol. doi:10.1007/s13213-014-0999-4

    Google Scholar 

  • Zhang C, Jia P, Jia Y, Weissbach H, Webster KA, Huang X, Lemanski SL, Achary M, Lemanski LF (2010) Methionine sulfoxide reductase A (MsrA) protects cultured mouse embryonic stem cells from H2O2-mediated oxidative stress. J Cell Biochem 111:94–103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang XH, Weissbach H (2008) Origin and evolution of the protein-repairing enzymes methionine sulphoxide reductases. Biol Rev Camb Philos Soc 83:249–257

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (No. 31172011 and No. 30771502). We thank Hanyu Zhu for critical reading and Huanjing Zhao for assistance during the stress experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aimin Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, C., Zheng, L., Zhu, J. et al. Enhancing stress tolerance by overexpression of a methionine sulfoxide reductase A (MsrA) gene in Pleurotus ostreatus . Appl Microbiol Biotechnol 99, 3115–3126 (2015). https://doi.org/10.1007/s00253-014-6365-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6365-4

Keywords

Navigation