Skip to main content
Log in

OsMSRA4.1 and OsMSRB1.1, two rice plastidial methionine sulfoxide reductases, are involved in abiotic stress responses

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

In proteins, methionine residues are especially sensitive to oxidation, leading to the formation of S- and R-methionine sulfoxide diastereoisomers, and these two methionine sulfoxides can be specifically reversed by two types of methionine sulfoxide reductases (MSRs), MSRA and MSRB. Previously, we have identified a gene encoding a putative MSR from NaCl-treated roots of Brazilian upland rice (Oryza sativa L. cv. IAPAR 9) via subtractive suppression hybridization (Wu et al. in Plant Sci 168:847–853, 2005). Blast database analysis indicated that at least four MSRA and three MSRB orthologs exist in rice, and two of them, OsMSRA4.1 and OsMSRB1.1, were selected for further functional analysis. Expression analysis showed that both OsMSRA4.1 and OsMSRB1.1 are constitutively expressed in all organs and can be induced by various stress conditions. Subcellular localization and in vitro activity assay revealed that both OsMSR proteins are targeted to the chloroplast and have MSR activity. Overexpression of either OsMSRA4.1 or OsMSRB1.1 in yeast enhanced cellular resistance to oxidative stress. In addition, OsMSRA4.1-overexpressing transgenic rice plants also showed enhanced viability under salt treatment. Our results provide genetic evidence of the involvement of OsMSRs in the plant stress responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Met:

Methionine

MetSO:

Methionine sulfoxide

MSR:

Methionine sulfoxide reductase

ROS:

Reactive oxygen species

ER:

Endoplasmic reticulum

MDA:

Malondialdehyde

GFP:

Green fluorescent protein

HPLC:

High-performance liquid chromatography

PVP:

Polyvinylpyrrolidone

TFA:

Trifluoroacetic acid

References

  • Bechtold U, Murphy DJ, Mullineaux PM (2004) Arabidopsis peptide methionine sulfoxide reductase2 prevents cellular oxidative damage in long nights. Plant Cell 16:908–919

    Article  PubMed  CAS  Google Scholar 

  • Beckman KB, Ames BN (1997) Oxidative decay of DNA. J Biol Chem 272:19633–19636

    Article  PubMed  CAS  Google Scholar 

  • Berlett BS, Stadtman ER (1997) Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272:20313–20316

    Article  PubMed  CAS  Google Scholar 

  • Boschi-Muller S, Gand A, Branlant G (2008) The methionine sulfoxide reductases: catalysis and substrate specificities. Arch Biochem Biophys 474:266–273

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Brot N, Weissbach H (2000) Peptide methionine sulfoxide reductase: biochemistry and physiological role. Biopolymers 55:288–296

    Article  PubMed  CAS  Google Scholar 

  • Brot N, Weissbach L, Werth J, Weissbach H (1981) Enzymatic reduction of protein-bound methionine sulfoxide. Proc Natl Acad Sci USA 78:2155–2158

    Article  PubMed  CAS  Google Scholar 

  • Brot N, Fliss H, Coleman T, Weissbach H (1984) Enzymatic reduction of methionine sulfoxide residues in proteins and peptides. Methods Enzymol 107:352–360

    Article  PubMed  CAS  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  PubMed  CAS  Google Scholar 

  • Davies MJ (2005) The oxidative environment and protein damage. Biochim Biophys Acta 1703:93–109

    PubMed  CAS  Google Scholar 

  • Friguet B (2002) Protein repair and degradation during aging. Sci World J 2:248–254

    CAS  Google Scholar 

  • Gabbita SP, Aksenov MY, Lovell MA, Markesbery WR (1999) Decrease in peptide methionine sulfoxide reductase in Alzheimer’s disease brain. J Neurochem 73:1660–1666

    Article  PubMed  CAS  Google Scholar 

  • Glaser CB, Yamin G, Uversky VN, Fink AL (2005) Methionine oxidation, alpha-synuclein and Parkinson’s disease. Biochim Biophys Acta 1703:157–169

    PubMed  CAS  Google Scholar 

  • Grimaud R, Ezraty B, Mitchell JK, Lafitte D, Briand C, Derrick PJ, Barras F (2001) Repair of oxidized proteins: identification of a new methionine sulfoxide reductase. J Biol Chem 276:48915–48920

    Article  PubMed  CAS  Google Scholar 

  • Gustavsson N, Kokke BP, Harndahl U, Silow M, Bechtold U, Poghosyan Z, Murphy D, Boelens WC, Sundby C (2002) A peptide methionine sulfoxide reductase highly expressed in photosynthetic tissue in Arabidopsis thaliana can protect the chaperone-like activity of a chloroplast-localized small heat shock protein. Plant J 29:545–553

    Article  PubMed  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I: kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  PubMed  CAS  Google Scholar 

  • Hoshi T, Heinemann S (2001) Regulation of cell function by methionine oxidation and reduction. J Physiol 531:1–11

    Article  PubMed  CAS  Google Scholar 

  • Ito H, Fukuda Y, Murata K, Kimura A (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163–168

    PubMed  CAS  Google Scholar 

  • Kauffmann B, Aubry A, Favier F (2005) The three-dimensional structures of peptide methionine sulfoxide reductases: current knowledge and open questions. Biochim Biophys Acta 1703:249–260

    PubMed  CAS  Google Scholar 

  • Kim HY, Gladyshev VN (2004) Methionine sulfoxide reduction in mammals: characterization of methionine-R-sulfoxide reductases. Mol Biol Cell 15:1055–1064

    Article  PubMed  CAS  Google Scholar 

  • Kim HY, Gladyshev VN (2006) Alternative first exon splicing regulates subcellular distribution of methionine sulfoxide reductases. BMC Mol Biol 7:11

    Article  PubMed  Google Scholar 

  • Kryukov GV, Kumar RA, Koc A, Sun Z, Gladyshev VN (2002) Selenoprotein R is a zinc-containing stereo-specific methionine sulfoxide reductase. Proc Natl Acad Sci USA 99:4245–4250

    Article  PubMed  CAS  Google Scholar 

  • Kumar RA, Koc A, Cerny RL, Gladyshev VN (2002) Reaction mechanism, evolutionary analysis, and role of zinc in Drosophila methionine-R-sulfoxide reductase. J Biol Chem 277:37527–37535

    Article  PubMed  CAS  Google Scholar 

  • Kwon SJ, Kwon SI, Bae MS, Cho EJ, Park OK (2007) Role of the methionine sulfoxide reductase MsrB3 in cold acclimation in Arabidopsis. Plant Cell Physiol 48:1713–1723

    Article  PubMed  CAS  Google Scholar 

  • Lee BC, Le DT, Gladyshev VN (2008) Mammals reduce methionine-S-sulfoxide with MsrA and are unable to reduce methionine-R-sulfoxide, and this function can be restored with a yeast reductase. J Biol Chem 283:28361–28369

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Bai X, Wang X, Chu C (2007) OsWRKY71, a rice transcription factor, is involved in rice defense response. J Plant Physiol 164:969–979

    Article  PubMed  CAS  Google Scholar 

  • Lowther WT, Brot N, Weissbach H, Honek JF, Matthews BW (2000) Thiol-disulfide exchange is involved in the catalytic mechanism of peptide methionine sulfoxide reductase. Proc Natl Acad Sci USA 97:6463–6468

    Article  PubMed  CAS  Google Scholar 

  • Marchand C, Le Marechal P, Meyer Y, Miginiac-Maslow M, Issakidis-Bourguet E, Decottignies P (2004) New targets of Arabidopsis thioredoxins revealed by proteomic analysis. Proteomics 4:2696–2706

    Article  PubMed  CAS  Google Scholar 

  • Moskovitz J, Berlett BS, Poston JM, Stadtman ER (1997) The yeast peptide-methionine sulfoxide reductase functions as an antioxidant in vivo. Proc Natl Acad Sci USA 94:9585–9589

    Article  PubMed  CAS  Google Scholar 

  • Moskovitz J, Flescher E, Berlett BS, Azare J, Poston JM, Stadtman ER (1998) Overexpression of peptide-methionine sulfoxide reductase in Saccharomyces cerevisiae and human T cells provides them with high resistance to oxidative stress. Proc Natl Acad Sci USA 95:14071–14075

    Article  PubMed  CAS  Google Scholar 

  • Murray MB, Cape JN, Fowler D (1989) Quantification of frost damage in plant tissues by rates of electrolyte leakage. New Phytol 113:307–311

    Article  Google Scholar 

  • Oh JE, Hong SW, Lee Y, Koh EJ, Kim K, Seo YW, Chung N, Jeong M, Jang CS, Lee B, Kim KH, Lee H (2005) Modulation of gene expressions and enzyme activities of methionine sulfoxide reductases by cold, ABA or high salt treatments in Arabidopsis. Plant Sci 169:1030–1036

    Article  CAS  Google Scholar 

  • Olry A, Boschi-Muller S, Marraud M, Sanglier-Cianferani S, Van Dorsselear A, Branlant G (2002) Characterization of the methionine sulfoxide reductase activities of PILB, a probable virulence factor from Neisseria meningitidis. J Biol Chem 277:12016–12022

    Article  PubMed  CAS  Google Scholar 

  • Rey P, Cuine S, Eymery F, Garin J, Court M, Jacquot JP, Rouhier N, Broin M (2005) Analysis of the proteins targeted by CDSP32, a plastidial thioredoxin participating in oxidative stress responses. Plant J 41:31–42

    Article  PubMed  CAS  Google Scholar 

  • Romero HM, Berlett BS, Jensen PJ, Pell EJ, Tien M (2004) Investigations into the role of the plastidial peptide methionine sulfoxide reductase in response to oxidative stress in Arabidopsis. Plant Physiol 136:3784–3794

    Article  PubMed  CAS  Google Scholar 

  • Rouhier N, Dos Santos CV, Tarrago L, Rey P (2006) Plant methionine sulfoxide reductase A and B multigenic families. Photosynth Res 89:247–262

    Article  PubMed  CAS  Google Scholar 

  • Ruan H, Tang XD, Chen ML, Joiner ML, Sun G, Brot N, Weissbach H, Heinemann SH, Iverson L, Wu CF, Hoshi T (2002) High-quality life extension by the enzyme peptide methionine sulfoxide reductase. Proc Natl Acad Sci USA 99:2748–2753

    Article  PubMed  CAS  Google Scholar 

  • Sadanandom A, Poghosyan Z, Fairbairn DJ, Murphy DJ (2000) Differential regulation of plastidial and cytosolic isoforms of peptide methionine sulfoxide reductase in Arabidopsis. Plant Physiol 123:255–264

    Article  PubMed  CAS  Google Scholar 

  • Sagher D, Brunell D, Hejtmancik JF, Kantorow M, Brot N, Weissbach H (2006) Thionein can serve as a reducing agent for the methionine sulfoxide reductases. Proc Natl Acad Sci USA 103:8656–8661

    Article  PubMed  CAS  Google Scholar 

  • Schoneich C (2005) Methionine oxidation by reactive oxygen species: reaction mechanisms and relevance to Alzheimer’s disease. Biochim Biophys Acta 1703:111–119

    PubMed  Google Scholar 

  • Singh VK, Moskovitz J (2003) Multiple methionine sulfoxide reductase genes in Staphylococcus aureus: expression of activity and roles in tolerance of oxidative stress. Microbiology 149:2739–2747

    Article  PubMed  CAS  Google Scholar 

  • Stadtman ER, Moskovitz J, Levine RL (2003) Oxidation of methionine residues of proteins: biological consequences. Antioxid Redox Signal 5:577–582

    Article  PubMed  CAS  Google Scholar 

  • Tarrago L, Laugier E, Rey P (2009) Protein-repairing methionine sulfoxide reductases in photosynthetic organisms: gene organization, reduction mechanisms, and physiological roles. Mol Plant 2:202–217

    Article  CAS  Google Scholar 

  • Vieira Dos Santos C, Cuine S, Rouhier N, Rey P (2005) The Arabidopsis plastidial methionine sulfoxide reductase B proteins: sequence and activity characteristics, comparison of the expression with plastidial methionine sulfoxide reductase A, and induction by photooxidative stress. Plant Physiol 138:909–922

    Article  PubMed  Google Scholar 

  • Vieira Dos Santos C, Laugier E, Tarrago L, Massot V, Issakidis-Bourguet E, Rouhier N, Rey P (2007) Specificity of thioredoxins and glutaredoxins as electron donors to two distinct classes of Arabidopsis plastidial methionine sulfoxide reductases B. FEBS Lett 581:4371–4376

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Wang Q, Ma Y, Chu C (2005) Isolation and expression analysis of salt up-regulated ESTs in upland rice using PCR-based subtractive suppression hybridization method. Plant Sci 168:847–853

    Article  CAS  Google Scholar 

  • Zhang XH, Weissbach H (2008) Origin and evolution of the protein-repairing enzymes methionine sulphoxide reductases. Biol Rev 83:249–257

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Hwa-Young Kim and Vadim N. Gladyshev (Department of Biochemistry, University of Nebraska-Lincoln) for providing the substrates of two diastereomers of methionine sulfoxide and yeast mutant strain selR/msrA, and Dr. Jackob Moskovitz (Department of Pharmacology & Toxicology, University of Kansas) for yeast strain msrA. We also thank Mr. John Wallace Moore (Institute of Molecular Plant Sciences, Edinburgh University) for the critical reading of this manuscript. This work was supported by grants from the Chinese Academy of Sciences (KSCX2-YW-N-010) and National Natural Sciences Foundation of China (30671128, 30621001, 30670195).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengcai Chu.

Additional information

X. Guo and Y. Wu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, X., Wu, Y., Wang, Y. et al. OsMSRA4.1 and OsMSRB1.1, two rice plastidial methionine sulfoxide reductases, are involved in abiotic stress responses. Planta 230, 227–238 (2009). https://doi.org/10.1007/s00425-009-0934-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-009-0934-2

Keywords

Navigation