Skip to main content

Advertisement

Log in

Pressure treatment of Saccharomyces cerevisiae in low-moisture environments

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

We investigated the influence of cell hydration on the ability of Saccharomyces cerevisiae CBS 1171 to withstand extreme hydrostatic pressure in order to determine the mechanisms involved in cell resistance. Hydration conditions were modified in two different ways. We first modulated the chemical potential of water by adding glycerol in cell suspensions. Another procedure consisted in dehydrating cells aerobically and immersing them in perfluorooctane, an innocuous hydrophobic liquid used as a pressure-transmitting medium, prior to pressure treatments. This original method made it possible to transmit isostatic pressure to yeast powders without changing the initial water activity (a w) level at which cells had been equilibrated. The a w ranged between 0.11 and 0.99. Pressure treatments were applied at levels of up to 600 MPa for 10 min, 24 h, and 6 days. The dehydration of cells was found to strongly limit, or even prevent, cell inactivation under pressure. Notably, cells suspended in a water–glycerol mixture with a w levels of 0.71 or below were completely protected against all pressure treatments. Moreover, cells dehydrated aerobically survived for 6 days at 600 MPa even when a w levels were relatively high (up to 0.94). We highlighted the crucial role of water content in determining cellular damage under pressure. When water is available in a sufficient amount, high pressure induces membrane permeabilization, causing uncontrolled mass transfers that could lead to death during a prolonged holding under pressure. Possible mechanisms of membrane permeabilization are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ananta E, Heinz V, Knorr D (2004) Assessment of high pressure induced damage on Lactobacillus rhamnosus GG by flow cytometry. Food Microbiol 21:567–577

    Article  CAS  Google Scholar 

  • Bartlett DH (2002) Pressure effects on in vivo microbial processes. Biochim Biophys Acta 1595:367–381

    Article  CAS  PubMed  Google Scholar 

  • Bonafe CF, Villas-Boas M, Suarez MC, Silva JL (1991) Reassembly of a large multisubunit protein promoted by nonprotein factors. Effects of calcium and glycerol on the association of extracellular hemoglobin. J Biol Chem 266:13210–13216

    CAS  PubMed  Google Scholar 

  • Dreyfus G, Guimaraes-Motta H, Silva JL (1988) Effect of hydrostatic pressure on the mitochondrial ATP synthase. Biochemistry 27:6704–6710

    Article  CAS  PubMed  Google Scholar 

  • Dumay EM, Kalichevsky MT, Cheftel JC (1994) High-pressure unfolding and aggregation of beta-lactoglobulin and the baroprotective effects of sucrose. J Agric Food Chem 42:1861–1868

    Article  CAS  Google Scholar 

  • Gänzle MG, Vogel RF (2001) On-line fluorescence determination of pressure mediated outer membrane damage in Escherichia coli. Syst Appl Microbiol 24:477–485

    Article  PubMed  Google Scholar 

  • Gekko K, Timasheff SN (1981) Mechanism of protein stabilization by glycerol: preferential hydration in glycerol–water mixtures. Biochemistry 20:4667–4676

    Article  CAS  PubMed  Google Scholar 

  • Goossens K, Smeller L, Frank J, Heremans K (1996) Pressure-tuning the conformation of bovine pancreatic trypsin inhibitor studied by Fourier-transform infrared spectroscopy. Eur J Biochem 236:254–262

    Article  CAS  PubMed  Google Scholar 

  • Greenspan L (1977) Humidity fixed points of binary saturated aqueous solutions. J Res Nat Bur Stand 81A:89–96

    Article  Google Scholar 

  • Hayashi R (2002) High pressure in bioscience and biotechnology: pure science encompassed in pursuit of value. Biochim Biophys Acta 1595:397–399

    Article  CAS  PubMed  Google Scholar 

  • Hayman MM, Kouassi GK, Anantheswaran RC, Floros JD, Knabel SJ (2008) Effect of water activity on inactivation of Listeria monocytogenes and lactate dehydrogenase during high pressure processing. Int J Food Microbiol 124:21–26

    Article  CAS  PubMed  Google Scholar 

  • Heremans K (2005) Protein dynamics: hydration and cavities. Braz J Med Biol Res 38:1157–1165

    Article  CAS  PubMed  Google Scholar 

  • Horneck G, Stoffler D, Ott S, Hornemann U, Cockell CS, Moeller R, Meyer C, de Vera JP, Fritz J, Schade S, Artemieva NA (2008) Microbial rock inhabitants survive hypervelocity impacts on Mars-like host planets: first phase of lithopanspermia experimentally tested. Astrobiology 8:17–44

    Article  CAS  PubMed  Google Scholar 

  • Hummer G, Garde S, Garcia AE, Paulaitis ME, Pratt LR (1998) The pressure dependence of hydrophobic interactions is consistent with the observed pressure denaturation of proteins. Proc Natl Acad Sci USA 95:1552–1555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato M, Hayashi R, Tsuda T, Taniguchi K (2002) High pressure-induced changes of biological membrane: study on the membrane-bound Na+/K + -ATPase as a model system. Eur J Biochem 269:110–118

    Article  CAS  PubMed  Google Scholar 

  • Koseki S, Yamamoto K (2006) pH and solute concentration of suspension media affect the outcome of high hydrostatic pressure treatment of Listeria monocytogenes. Int J Food Microbiol 111:175–179

    Article  CAS  PubMed  Google Scholar 

  • Kowalski E, Ludwig H, Tauscher B (1992) Hydrostatischer Hochdruck zur Sterilisation von Lebensmitteln I: anwendung bei Pfeffer (Piper nigrum L.). Deut Lebensmi Rundsch 3:74–76

    Google Scholar 

  • Krus M, Kießl K (1998) Determination of the moisture storage characteristics of porous capillary active materials. Mat Struct 31:522–529

    Article  CAS  Google Scholar 

  • Lee JC, Timasheff SN (1981) The stabilization of proteins by sucrose. J Biol Chem 256:7193–7201

    CAS  PubMed  Google Scholar 

  • Macdonald AG (2002) Ion channels under high pressure. Comp Biochem Physiol A Mol Integr Physiol 131:587–593

    Article  CAS  PubMed  Google Scholar 

  • Marechal PA, de Maranon IM, Molin P, Gervais P (1995) Yeast cell responses to water potential variations. Int J Food Microbiol 28:277–287

    Article  CAS  PubMed  Google Scholar 

  • Molina-Höppner A, Doster W, Vogel RF, Gänzle MG (2004) Protective effect of sucrose and sodium chloride for Lactococcus lactis during sublethal and lethal high-pressure treatments. Appl Environ Microbiol 70:2013–2020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moussa M, Perrier-Cornet JM, Gervais P (2006) Synergistic and antagonistic effects of combined subzero temperature and high pressure on inactivation of Escherichia coli. Appl Environ Microbiol 72:150–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moussa M, Perrier-Cornet JM, Gervais P (2007) Damage in Escherichia coli cells treated with a combination of high hydrostatic pressure and subzero temperature. Appl Environ Microbiol 73:6508–6518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niven GW, Miles CA, Mackey BM (1999) The effects of hydrostatic pressure on ribosome conformation in Escherichia coli: an in vivo study using differential scanning calorimetry. Microbiology 145:419–425

    Article  CAS  PubMed  Google Scholar 

  • Norrish RS (1966) An equation for the activity coefficients and equilibrium relative humidities of water in confectionery syrups. J Food Technol 1:25–39

    Article  CAS  Google Scholar 

  • Oliveira AC, Gaspar LP, Da Poian AT, Silva JL (1994) Arc repressor will not denature under pressure in the absence of water. J Mol Biol 240:184–187

    Article  CAS  PubMed  Google Scholar 

  • Oxen P, Knorr D (1993) Baroprotective effects of high solute concentrations against inactivation of Rhodotorula rubra. Food Sci Technol Int 26:220–223

    Google Scholar 

  • Pagan R, Mackey B (2000) Relationship between membrane damage and cell death in pressure-treated Escherichia coli cells: differences between exponential- and stationary-phase cells and variation among strains. Appl Environ Microbiol 66:2829–2834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palou E, López-Malo A, Barbosa-Cánovas GV, Welti-Chanes J, Swanson BG (1997) Effect of water activity on high hydrostatic pressure inhibition of Zygosaccharomyces bailii. Lett Appl Microbiol 24:417–420

    Google Scholar 

  • Powalska E, Janosch S, Kinne-Saffran E, Kinne RK, Fontes CF, Mignaco JA, Winter R (2007) Fluorescence spectroscopic studies of pressure effects on Na+,K(+)-ATPase reconstituted into phospholipid bilayers and model raft mixtures. Biochemistry 46:1672–1683

    Article  CAS  PubMed  Google Scholar 

  • Ramaswamy HS, Jin H, Zhu S (2008) Effects of fat, casein and lactose on high-pressure destruction of Escherichia coli K12 (ATCC-29055) in milk. Food Bioprod Process 87:1–6

    Article  CAS  Google Scholar 

  • Rossi M, Ciaramella M, Cannio R, Pisani FM, Moracci M, Bartolucci S (2003) Extremophiles 2002. J Bacteriol 185:3683–3689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409:1092–1101

    Article  CAS  PubMed  Google Scholar 

  • Seki K, Toyoshima M (1998) Preserving tardigrades under pressure. Nature 395:853–854

    Article  CAS  Google Scholar 

  • Sharma A, Scott JH, Cody GD, Fogel ML, Hazen RM, Hemley RJ, Huntress WT (2002) Microbial activity at gigapascal pressures. Science 295:1514–1516

    Article  CAS  PubMed  Google Scholar 

  • Suzuki K (1960) Studies on the kinetics of protein denaturation under high pressure. Rev Phys Chem Jpn 29:91–98

    CAS  Google Scholar 

  • Timasheff SN (1993) The control of protein stability and association by weak interactions with water: how do solvents affect these processes? Annu Rev Biophys Biomol Struct 22:67–97

    Article  CAS  PubMed  Google Scholar 

  • Van Opstal I, Vanmuysen SCM, Michiels CW (2003) High sucrose concentration protects E. coli against high pressure inactivation but not against high pressure sensitization to the lactoperoxidase system. Int J Food Microbiol 88:1–9

    Article  PubMed  CAS  Google Scholar 

  • Winter R (2002) Synchrotron X-ray and neutron small-angle scattering of lyotropic lipid mesophases, model biomembranes and proteins in solution at high pressure. Biochim Biophys Acta 1595:160–184

    Article  CAS  PubMed  Google Scholar 

  • Winter R, Dzwolak W (2005) Exploring the temperature–pressure configurational landscape of biomolecules: from lipid membranes to proteins. Philos Transact A Math Phys Eng Sci 363:537–562

    Article  CAS  Google Scholar 

  • Wojda I, Alonso-Monge R, Bebelman JP, Mager WH, Siderius M (2003) Response to high osmotic conditions and elevated temperature in Saccharomyces cerevisiae is controlled by intracellular glycerol and involves coordinate activity of MAP kinase pathways. Microbiology 149:1193–1204

    Article  CAS  PubMed  Google Scholar 

  • Wolkers WF, Tablin F, Crowe JH (2002) From anhydrobiosis to freeze-drying of eukaryotic cells. Comp Biochem Physiol A Mol Integr Physiol 131:535–543

    Article  PubMed  Google Scholar 

  • Wroblowski B, Diaz JF, Heremans K, Engelborghs Y (1996) Molecular mechanisms of pressure induced conformational changes in BPTI. Proteins 25:446–455

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Marwen Moussa was supported by a grant provided by the Tunisian Mission of University Study in France. The authors are also especially grateful to Air Liquide for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Marie Perrier-Cornet.

Additional information

Marwen Moussa and Vincent Espinasse contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moussa, M., Espinasse, V., Perrier-Cornet, JM. et al. Pressure treatment of Saccharomyces cerevisiae in low-moisture environments. Appl Microbiol Biotechnol 85, 165–174 (2009). https://doi.org/10.1007/s00253-009-2126-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-2126-1

Keywords

Navigation