Skip to main content

Advertisement

Log in

The Potential Impact and Timeline of Engineering on Congenital Interventions

  • Review Article
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

Congenital interventional cardiology has seen rapid growth in recent decades due to the expansion of available medical devices. Percutaneous interventions have become standard of care for many common congenital conditions. Unfortunately, patients with congenital heart disease often require multiple interventions throughout their lifespan. The availability of transcatheter devices that are biodegradable, biocompatible, durable, scalable, and can be delivered in the smallest sized patients will rely on continued advances in engineering. The development pipeline for these devices will require contributions of many individuals in academia and industry including experts in material science and tissue engineering. Advances in tissue engineering, bioresorbable technology, and even new nanotechnologies and nitinol fabrication techniques which may have an impact on the field of transcatheter congenital device in the next decade are summarized in this review. This review highlights recent advances in the engineering of transcatheter-based therapies and discusses future opportunities for engineering of transcatheter devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3 
Fig. 4

Similar content being viewed by others

References

  1. Langer R, Vacanti JP (1993) Tissue engineering. Science 260(5110):920–926

    Article  CAS  Google Scholar 

  2. VeDepo MC, Detamore MS, Hopkins RA, Converse GL (2017) Recellularization of decellularized heart valves: progress toward the tissue-engineered heart valve. J Tissue Eng 8:2041731417726327. https://doi.org/10.1177/2041731417726327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cebotari S, Tudorache I, Ciubotaru A, Boethig D, Sarikouch S, Goerler A, Lichtenberg A, Cheptanaru E, Barnaciuc S, Cazacu A, Maliga O, Repin O, Maniuc L, Breymann T, Haverich A (2011) Use of fresh decellularized allografts for pulmonary valve replacement may reduce the reoperation rate in children and young adults: early report. Circulation 124(11 Suppl):S115–123. https://doi.org/10.1161/CIRCULATIONAHA.110.012161

    Article  PubMed  Google Scholar 

  4. Sarikouch S, Horke A, Tudorache I, Beerbaum P, Westhoff-Bleck M, Boethig D, Repin O, Maniuc L, Ciubotaru A, Haverich A, Cebotari S (2016) Decellularized fresh homografts for pulmonary valve replacement: a decade of clinical experience. Eur J Cardiothorac Surg 50(2):281–290. https://doi.org/10.1093/ejcts/ezw050

    Article  PubMed  PubMed Central  Google Scholar 

  5. da Costa FD, Costa AC, Prestes R, Domanski AC, Balbi EM, Ferreira AD, Lopes SV (2010) The early and midterm function of decellularized aortic valve allografts. Ann Thorac Surg 90(6):1854–1860. https://doi.org/10.1016/j.athoracsur.2010.08.022

    Article  PubMed  Google Scholar 

  6. Hopkins RA, Bert AA, Hilbert SL, Quinn RW, Brasky KM, Drake WB, Lofland GK (2013) Bioengineered human and allogeneic pulmonary valve conduits chronically implanted orthotopically in baboons: hemodynamic performance and immunologic consequences. J Thorac Cardiovasc Surg 145(4):1098–1107. https://doi.org/10.1016/j.jtcvs.2012.06.024

    Article  PubMed  Google Scholar 

  7. Cebotari S, Lichtenberg A, Tudorache I, Hilfiker A, Mertsching H, Leyh R, Breymann T, Kallenbach K, Maniuc L, Batrinac A, Repin O, Maliga O, Ciubotaru A, Haverich A (2006) Clinical application of tissue engineered human heart valves using autologous progenitor cells. Circulation 114(1 Suppl):I132–137. https://doi.org/10.1161/CIRCULATIONAHA.105.001065

    Article  PubMed  Google Scholar 

  8. Theodoridis K, Tudorache I, Calistru A, Cebotari S, Meyer T, Sarikouch S, Bara C, Brehm R, Haverich A, Hilfiker A (2015) Successful matrix guided tissue regeneration of decellularized pulmonary heart valve allografts in elderly sheep. Biomaterials 52:221–228. https://doi.org/10.1016/j.biomaterials.2015.02.023

    Article  CAS  PubMed  Google Scholar 

  9. Williams JK, Miller ES, Lane MR, Atala A, Yoo JJ, Jordan JE (2015) Characterization of CD133 antibody-directed recellularized heart valves. J Cardiovasc Transl Res 8(7):411–420. https://doi.org/10.1007/s12265-015-9651-3

    Article  PubMed  Google Scholar 

  10. Voges I, Brasen JH, Entenmann A, Scheid M, Scheewe J, Fischer G, Hart C, Andrade A, Pham HM, Kramer HH, Rickers C (2013) Adverse results of a decellularized tissue-engineered pulmonary valve in humans assessed with magnetic resonance imaging. Eur J Cardiothorac Surg 44(4):e272–279. https://doi.org/10.1093/ejcts/ezt328

    Article  PubMed  Google Scholar 

  11. Gopinathan J, Noh I (2018) Recent trends in bioinks for 3D printing. Biomater Res 22:11. https://doi.org/10.1186/s40824-018-0122-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hospodiuk M, Dey M, Sosnoski D, Ozbolat IT (2017) The bioink: a comprehensive review on bioprintable materials. Biotechnol Adv 35(2):217–239. https://doi.org/10.1016/j.biotechadv.2016.12.006

    Article  CAS  PubMed  Google Scholar 

  13. Negro A, Cherbuin T, Lutolf MP (2018) 3D Inkjet Printing of Complex. Cell-Laden Hydrogel Struct Sci Rep 8(1):17099. https://doi.org/10.1038/s41598-018-35504-2

    Article  CAS  Google Scholar 

  14. Klebe RJ (1988) Cytoscribing: a method for micropositioning cells and the construction of two- and three-dimensional synthetic tissues. Exp Cell Res 179(2):362–373

    Article  CAS  Google Scholar 

  15. Cui X, Boland T, D'Lima DD, Lotz MK (2012) Thermal inkjet printing in tissue engineering and regenerative medicine. Recent Pat Drug Deliv Formul 6(2):149–155

    Article  CAS  Google Scholar 

  16. Panwar A, Tan LP (2016) Current status of bioinks for micro-extrusion-based 3D bioprinting. Molecules. https://doi.org/10.3390/molecules21060685

    Article  PubMed  PubMed Central  Google Scholar 

  17. Duan B, Hockaday LA, Kang KH, Butcher JT (2013) 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J Biomed Mater Res A 101(5):1255–1264. https://doi.org/10.1002/jbm.a.34420

    Article  CAS  PubMed  Google Scholar 

  18. Capulli AK, Emmert MY, Pasqualini FS, Kehl D, Caliskan E, Lind JU, Sheehy SP, Park SJ, Ahn S, Weber B, Goss JA, Hoerstrup SP, Parker KK (2017) JetValve: Rapid manufacturing of biohybrid scaffolds for biomimetic heart valve replacement. Biomaterials 133:229–241. https://doi.org/10.1016/j.biomaterials.2017.04.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Guillemot F, Souquet A, Catros S, Guillotin B (2010) Laser-assisted cell printing: principle, physical parameters versus cell fate and perspectives in tissue engineering. Nanomedicine (Lond) 5(3):507–515. https://doi.org/10.2217/nnm.10.14

    Article  Google Scholar 

  20. Kucukgul C, Ozler SB, Inci I, Karakas E, Irmak S, Gozuacik D, Taralp A, Koc B (2015) 3D bioprinting of biomimetic aortic vascular constructs with self-supporting cells. Biotechnol Bioeng 112(4):811–821. https://doi.org/10.1002/bit.25493

    Article  CAS  PubMed  Google Scholar 

  21. Cui X, Boland T (2009) Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials 30(31):6221–6227. https://doi.org/10.1016/j.biomaterials.2009.07.056

    Article  CAS  PubMed  Google Scholar 

  22. Hockaday LA, Kang KH, Colangelo NW, Cheung PY, Duan B, Malone E, Wu J, Girardi LN, Bonassar LJ, Lipson H, Chu CC, Butcher JT (2012) Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds. Biofabrication 4(3):035005. https://doi.org/10.1088/1758-5082/4/3/035005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jia H, Gu S-Y, Chang K (2018) 3D printed self-expandable vascular stents from biodegradable shape memory polymer. Adv Polym Technol. https://doi.org/10.1002/adv.22091

    Article  Google Scholar 

  24. Vukicevic M, Mosadegh B, Min JK, Little S (2017) Cardiac 3D printing and its future directions. J Am Coll Cardiol. https://doi.org/10.1016/j.jcmg.2016.12.001

    Article  Google Scholar 

  25. Shah F, Snis A, Matic A, Thomsen P, Palmquist A (2015) 3D printed Ti6Al4V implant surface promotes bone maturation and retains a higher density of less aged osteocytes at the bone-implant interface. Acta Biomater. https://doi.org/10.1016/j.actbio.2015.11.013

    Article  PubMed  Google Scholar 

  26. Sodian R, Schmauss D, Schmitz C, Bigdeli A, Haeberle S, Schmoeckel M, Markert M, Lueth T, Freudenthal F, Reichart B, Kozlik-Feldmann R (2009) 3-Dimensional printing of models to create custom-made devices for coil embolization of an anastomotic leak after aortic arch replacement. Ann Thorac Surg. https://doi.org/10.1016/j.athoracsur.2009.03.014

    Article  PubMed  Google Scholar 

  27. Pandey L, Roy A, Saxena V (2018) 3D printing for cardiovascular tissue engineering: a review. Mater Technol. https://doi.org/10.1080/10667857.2018.1456616

    Article  Google Scholar 

  28. Braghirolli DI, Steffens D, Pranke P (2014) Electrospinning for regenerative medicine: a review of the main topics. Drug Discov Today 19(6):743–753. https://doi.org/10.1016/j.drudis.2014.03.024

    Article  CAS  PubMed  Google Scholar 

  29. Jun I, Han HS, Edwards JR, Jeon H (2018) Electrospun fibrous scaffolds for tissue engineering: viewpoints on architecture and fabrication. Int J Mol Sci. https://doi.org/10.3390/ijms19030745

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ji W, Sun Y, Yang F, van den Beucken JJ, Fan M, Chen Z, Jansen JA (2011) Bioactive electrospun scaffolds delivering growth factors and genes for tissue engineering applications. Pharm Res 28(6):1259–1272. https://doi.org/10.1007/s11095-010-0320-6

    Article  CAS  PubMed  Google Scholar 

  31. Hinderer S, Seifert J, Votteler M, Shen N, Rheinlaender J, Schaffer TE, Schenke-Layland K (2014) Engineering of a bio-functionalized hybrid off-the-shelf heart valve. Biomaterials 35(7):2130–2139. https://doi.org/10.1016/j.biomaterials.2013.10.080

    Article  CAS  PubMed  Google Scholar 

  32. Kluin J, Talacua H, Smits AI, Emmert MY, Brugmans MC, Fioretta ES, Dijkman PE, Sontjens SH, Duijvelshoff R, Dekker S, Janssen-van den Broek MW, Lintas V, Vink A, Hoerstrup SP, Janssen HM, Dankers PY, Baaijens FP, Bouten CV (2017) In situ heart valve tissue engineering using a bioresorbable elastomeric implant - From material design to 12 months follow-up in sheep. Biomaterials 125:101–117. https://doi.org/10.1016/j.biomaterials.2017.02.007

    Article  CAS  PubMed  Google Scholar 

  33. Bennink G, Torii S, Brugmans M, Cox M, Svanidze O, Ladich E, Carrel T, Virmani R (2018) A novel restorative pulmonary valved conduit in a chronic sheep model: Mid-term hemodynamic function and histologic assessment. J Thorac Cardiovasc Surg 155(6):2591–2601. https://doi.org/10.1016/j.jtcvs.2017.12.046

    Article  PubMed  Google Scholar 

  34. Masoumi N, Larson BL, Annabi N, Kharaziha M, Zamanian B, Shapero KS, Cubberley AT, Camci-Unal G, Manning KB, Mayer JE Jr, Khademhosseini A (2014) Electrospun PGS:PCL microfibers align human valvular interstitial cells and provide tunable scaffold anisotropy. Adv Healthc Mater 3(6):929–939. https://doi.org/10.1002/adhm.201300505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Motta SE, Fioretta ES, Dijkman PE, Lintas V, Behr L, Hoerstrup SP, Emmert MY (2018) Development of an off-the-shelf tissue-engineered sinus valve for transcatheter pulmonary valve replacement: a proof-of-concept study. J Cardiovasc Transl Res 11(3):182–191. https://doi.org/10.1007/s12265-018-9800-6

    Article  PubMed  Google Scholar 

  36. Wang H, Leinwand LA, Anseth KS (2014) Cardiac valve cells and their microenvironment–insights from in vitro studies. Nat Rev Cardiol 11(12):715–727. https://doi.org/10.1038/nrcardio.2014.162

    Article  PubMed  PubMed Central  Google Scholar 

  37. Schleicher M, Wendel HP, Fritze O, Stock UA (2009) In vivo tissue engineering of heart valves: evolution of a novel concept. Regen Med 4(4):613–619. https://doi.org/10.2217/rme.09.22

    Article  CAS  PubMed  Google Scholar 

  38. Sutherland FW, Perry TE, Yu Y, Sherwood MC, Rabkin E, Masuda Y, Garcia GA, McLellan DL, Engelmayr GC Jr, Sacks MS, Schoen FJ, Mayer JE Jr (2005) From stem cells to viable autologous semilunar heart valve. Circulation 111(21):2783–2791. https://doi.org/10.1161/CIRCULATIONAHA.104.498378

    Article  PubMed  Google Scholar 

  39. Jana S, Tranquillo RT, Lerman A (2016) Cells for tissue engineering of cardiac valves. J Tissue Eng Regen Med 10(10):804–824. https://doi.org/10.1002/term.2010

    Article  CAS  PubMed  Google Scholar 

  40. Schmidt D, Breymann C, Weber A, Guenter CI, Neuenschwander S, Zund G, Turina M, Hoerstrup SP (2004) Umbilical cord blood derived endothelial progenitor cells for tissue engineering of vascular grafts. Ann Thorac Surg 78(6):2094–2098. https://doi.org/10.1016/j.athoracsur.2004.06.052

    Article  PubMed  Google Scholar 

  41. Bischoff J, Aikawa E (2011) Progenitor cells confer plasticity to cardiac valve endothelium. J Cardiovasc Transl Res 4(6):710–719. https://doi.org/10.1007/s12265-011-9312-0

    Article  PubMed  Google Scholar 

  42. Jover E, Fagnano M, Angelini G, Madeddu P (2018) Cell sources for tissue engineering strategies to treat calcific valve disease. Front Cardiovasc Med 5:155. https://doi.org/10.3389/fcvm.2018.00155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schmidt D, Dijkman PE, Driessen-Mol A, Stenger R, Mariani C, Puolakka A, Rissanen M, Deichmann T, Odermatt B, Weber B, Emmert MY, Zund G, Baaijens FP, Hoerstrup SP (2010) Minimally-invasive implantation of living tissue engineered heart valves: a comprehensive approach from autologous vascular cells to stem cells. J Am Coll Cardiol 56(6):510–520. https://doi.org/10.1016/j.jacc.2010.04.024

    Article  PubMed  Google Scholar 

  44. Wissing TB, Bonito V, Bouten CVC, Smits A (2017) Biomaterial-driven in situ cardiovascular tissue engineering-a multi-disciplinary perspective. NPJ Regen Med 2:18. https://doi.org/10.1038/s41536-017-0023-2

    Article  PubMed  PubMed Central  Google Scholar 

  45. MacGrogan D, Luxan G, Driessen-Mol A, Bouten C, Baaijens F, de la Pompa JL (2014) How to make a heart valve: from embryonic development to bioengineering of living valve substitutes. Cold Spring Harbor Perspect Med 4(11):a013912. https://doi.org/10.1101/cshperspect.a013912

    Article  Google Scholar 

  46. Bouten CVC, Smits A, Baaijens FPT (2018) Can we grow valves inside the heart? perspective on material-based in situ heart valve tissue engineering. Front Cardiovasc Med 5:54. https://doi.org/10.3389/fcvm.2018.00054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Driessen-Mol A, Emmert MY, Dijkman PE, Frese L, Sanders B, Weber B, Cesarovic N, Sidler M, Leenders J, Jenni R, Grunenfelder J, Falk V, Baaijens FPT, Hoerstrup SP (2014) Transcatheter implantation of homologous "off-the-shelf" tissue-engineered heart valves with self-repair capacity: long-term functionality and rapid in vivo remodeling in sheep. J Am Coll Cardiol 63(13):1320–1329. https://doi.org/10.1016/j.jacc.2013.09.082

    Article  PubMed  Google Scholar 

  48. Weber B, Dijkman PE, Scherman J, Sanders B, Emmert MY, Grunenfelder J, Verbeek R, Bracher M, Black M, Franz T, Kortsmit J, Modregger P, Peter S, Stampanoni M, Robert J, Kehl D, van Doeselaar M, Schweiger M, Brokopp CE, Walchli T, Falk V, Zilla P, Driessen-Mol A, Baaijens FP, Hoerstrup SP (2013) Off-the-shelf human decellularized tissue-engineered heart valves in a non-human primate model. Biomaterials 34(30):7269–7280. https://doi.org/10.1016/j.biomaterials.2013.04.059

    Article  CAS  PubMed  Google Scholar 

  49. Berry JL, Steen JA, Koudy Williams J, Jordan JE, Atala A, Yoo JJ (2010) Bioreactors for development of tissue engineered heart valves. Ann Biomed Eng 38(11):3272–3279. https://doi.org/10.1007/s10439-010-0148-6

    Article  PubMed  Google Scholar 

  50. Humphrey JD, Dufresne ER, Schwartz MA (2014) Mechanotransduction and extracellular matrix homeostasis. Nat Rev Mol Cell Biol 15(12):802–812. https://doi.org/10.1038/nrm3896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Palomo AB, Lucas M, Dilley RJ, McLenachan S, Chen FK, Requena J, Sal MF, Lucas A, Alvarez I, Jaraquemada D, Edel MJ (2014) The power and the promise of cell reprogramming: personalized autologous body organ and cell transplantation. J Clin Med 3(2):373–387. https://doi.org/10.3390/jcm3020373

    Article  CAS  PubMed  Google Scholar 

  52. Carrier RL, Papadaki M, Rupnick M, Schoen FJ, Bursac N, Langer R, Freed LE, Vunjak-Novakovic G (1999) Cardiac tissue engineering: cell seeding, cultivation parameters, and tissue construct characterization. Biotechnol Bioeng 64(5):580–589

    Article  CAS  Google Scholar 

  53. Avolio E, Caputo M, Madeddu P (2015) Stem cell therapy and tissue engineering for correction of congenital heart disease. Front Cell Dev Biol 3:39. https://doi.org/10.3389/fcell.2015.00039

    Article  PubMed  PubMed Central  Google Scholar 

  54. Sun L, Rajamannan NM, Sucosky P (2011) Design and validation of a novel bioreactor to subject aortic valve leaflets to side-specific shear stress. Ann Biomed Eng 39(8):2174–2185. https://doi.org/10.1007/s10439-011-0305-6

    Article  PubMed  PubMed Central  Google Scholar 

  55. Sodian R, Hoerstrup SP, Sperling JS, Daebritz SH, Martin DP, Schoen FJ, Vacanti JP, Mayer JE Jr (2000) Tissue engineering of heart valves: in vitro experiences. Ann Thorac Surg 70(1):140–144

    Article  CAS  Google Scholar 

  56. Hildebrand DK, Wu ZJ, Mayer JE Jr, Sacks MS (2004) Design and hydrodynamic evaluation of a novel pulsatile bioreactor for biologically active heart valves. Ann Biomed Eng 32(8):1039–1049

    Article  Google Scholar 

  57. Serruys P, Ormiston J, Onuma Y, Regar E, Gonzalo N, Garcia-Garcia H, Nieman K, Bruining N, Dorange C, Miquel-Hebert K, Veldhof S, Webster M, Thuesen L, Dudek D (2009) A bioabsorbable everolimus-eluting coronary stent system (ABSORB): 2-year outcomes and results from multiple imaging methods. Lancet. https://doi.org/10.1016/S0140-6736(09)60325-1

    Article  PubMed  Google Scholar 

  58. Nair LS, Laurencin CT (2006) Polymers as biomaterials for tissue engineering and controlled drug delivery, vol 102. Springer, Berlin. https://doi.org/10.1007/b137240

    Book  Google Scholar 

  59. Eppley B, Morales L, Wood R, Pensler J, Goldstein J, Havlik RJ, Habal M, Losken A, Kerwin J, Burstein F, Rozzelle AA, Michael Sadove A (2004) Resorbable PLLA-PGA plate and screw fixation in pediatric craniofacial surgery: clinical experience in 1883 patients. Plast Reconstr Sur. https://doi.org/10.1097/01.PRS.0000132856.69391.43

    Article  Google Scholar 

  60. Ertel S, Kohn J (1994) Evaluation of tyrosine-derived polycarbonates as degradable biomaterials. J Biomed Mater Res. https://doi.org/10.1002/jbm.820280811

    Article  PubMed  Google Scholar 

  61. Middleton JC, Tipton AJ (2000) Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21:2335–2346

    Article  CAS  Google Scholar 

  62. Griffith LG (1994) Polymeric biomaterials. Acta Mater. https://doi.org/10.1016/S1359-6454(99)00299-2

    Article  Google Scholar 

  63. Athanasiou K, Agrawal CM, Barber FA, Burkhart SS (1998) Orthopaedic application for PLA–PGA biodegradable polymers. Arthroscopy. https://doi.org/10.1016/S0749-8063(98)70099-4

    Article  PubMed  Google Scholar 

  64. Suganuma J, Alexander H, Traub J, Ricci J (2011) Biological response of intramedullary bone to poly-L-lactic acid. Cambridge University Press, Cambridge. https://doi.org/10.1557/PROC-252-339

    Book  Google Scholar 

  65. Ali ZA, Gao R, Kimura T, Onuma Y, Kereiakes DJ, Ellis SG, Chevalier B, Vu MT, Zhang Z, Simonton CA, Serruys PW, Stone GW (2018) Three-year outcomes with the absorb bioresorbable scaffold: individual-patient-data meta-analysis from the absorb randomized trials. Circulation 137(5):464–479. https://doi.org/10.1161/CIRCULATIONAHA.117.031843

    Article  PubMed  Google Scholar 

  66. McCrossan BA, McMahon CJ, Walsh KP (2016) First reported use of drug-eluting bioabsorbable vascular scaffold in congenital heart disease. Catheter Cardiovasc Interv 87(2):324–328. https://doi.org/10.1002/ccd.25768

    Article  CAS  PubMed  Google Scholar 

  67. Herbert CE, Veeram Reddy S, Welch T, Wang J, Richardson JA, Forbess JM, Nugent A (2016) Bench and initial preclinical results of a novel 8 mm diameter double opposed helical biodegradable stent. Catheter Cardiovasc Interv. https://doi.org/10.1002/ccd.26647

    Article  PubMed  Google Scholar 

  68. Veeram Reddy SR, Welch T, Wang J, Richardson JA, Forbess JM, Riegel M, Nugent A (2015) A novel design biodegradable stent for use in congenital heart disease: mid-term results in rabbit descending aorta. Catheter Cardiovas Interv. https://doi.org/10.1002/ccd.25648

    Article  Google Scholar 

  69. Veeram Reddy SR, Welch T, Wang J, Bernstein F, Richardson JA, Forbess M, Nugent JA (2014) A Novel Biodegradable Stent Applicable for Use in Congenital Heart Disease: Bench Testing and Feasibility Results in a Rabbit Model. Catheterization and Cardiovascular Interventions. https://doi.org/10.1002/ccd.24936

    Article  PubMed  Google Scholar 

  70. Mostaed E, Sikora-Jasinska M, Drelich J, Vedani M (2018) Zinc-based alloys for degradable vascular stent applications. Acta Biomater. https://doi.org/10.1016/j.actbio.2018.03.005

    Article  PubMed  PubMed Central  Google Scholar 

  71. Peuster M, Hesse C, Schloo T, Fink C, Beerbaum P, von Schnakenburg C (2006) Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta. Biomaterials. https://doi.org/10.1016/j.biomaterials.2006.05.029

    Article  PubMed  Google Scholar 

  72. Erbel R, Di Mario C, Bartunek J, Bonnier J, de Bruyne B, Eberli FR, Erne P, Haude M, Heublein B, Horrigan M, Ilsley C, Böse D, Koolen J, Lüscher TF, Weissman N, Waksman R (2007) Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial. Lancet. https://doi.org/10.1016/S0140-6736(07)60853-8

    Article  PubMed  Google Scholar 

  73. Bowen P, Drelich J, Goldman J (2013) Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents. Adv Mater. https://doi.org/10.1002/adma.201300226

    Article  PubMed  Google Scholar 

  74. Drelich A, Zhao S, Guillory Ii R, Drelich J, Goldman J (2017) Long-term surveillance of zinc implant in murine artery: Surprisingly steady biocorrosion rate. Acta Biomater. https://doi.org/10.1016/j.actbio.2017.05.045

    Article  PubMed  PubMed Central  Google Scholar 

  75. Bosiers M, Peeters P, d'Archambeau O, Hendriks J, Pilger E, Düber C, Zeller T, Gussmann A, Lohle PNM, Minar E, Scheinert D, Hausegger K, Schulte K-L, Verbist J, Deloose K, Lammer J (2009) AMS INSIGHT—absorbable metal stent implantation for treatment of below-the-knee critical limb ischemia: 6-month analysis. Cardiovas Interv Radiol. https://doi.org/10.1007/s00270-009-9530-x

    Article  Google Scholar 

  76. Zartner P, Cesnjevar R, Singer H, Weyand M (2005) First successful implantation of a biodegradable metal stent into the left pulmonary artery of a preterm baby. Catheter Cardiovasc Interv. https://doi.org/10.1002/ccd.20520

    Article  PubMed  Google Scholar 

  77. Schranz D, Zartner P, Michel-Behnke I, Akinturk H (2006) Bioabsorbable metal stents for percutaneous treatment of critical recoarctation of the aorta in a newborn. Catheter Cardiovasc Interv 67(5):671–673. https://doi.org/10.1002/ccd.20756

    Article  PubMed  Google Scholar 

  78. Rapetto C, Leoncini M (2017) Magmaris: a new generation metallic sirolimus-eluting fully bioresorbable scaffold: present status and future perspectives. J Thorac Dis 9(Suppl 9):S903–S913. https://doi.org/10.21037/jtd.2017.06.34

    Article  PubMed  PubMed Central  Google Scholar 

  79. Tapiero H, Tew K (2003) Trace elements in human physiology and pathology: Zinc and metallothioneins. Biomed Pharmacother. https://doi.org/10.1016/S0753-3322(03)00081-7

    Article  PubMed  PubMed Central  Google Scholar 

  80. Hehrlein C, Schorch B, Kress N, Arab A, von Zur MC, Bode C, Epting T, Haberstroh J, Mey L, Schwarzbach H, Kinscherf R, Stachniss V, Schiestel S, Kovacs A, Fischer H, Nennig E (2019) Zn-alloy provides a novel platform for mechanically stable bioresorbable vascular stents. PLoS ONE 14(1):e0209111. https://doi.org/10.1371/journal.pone.0209111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Morgan G, Lee K-J, Chaturvedi R, Benson L (2010) A biodegradable device (BioSTAR™) for atrial septal defect closure in children. Catheter Cardiovasc Interv. https://doi.org/10.1002/ccd.22517

    Article  PubMed  Google Scholar 

  82. Pavcnik D, Tekulve K, Uchida B, Luo Z-H, Jeromel M, Van Alstine W, Keller FS, Rösch J (2012) Double BioDisk: a new bioprosthetic device for transcatheter closure of atrial septal defects—a feasibility study in adult sheep. Radiol Oncol. https://doi.org/10.2478/v10019-012-0029-8

    Article  PubMed  PubMed Central  Google Scholar 

  83. Sigler M, Soderberg B, Schmitt B, Mellmann A, Bernhard J (2018) Carag bioresorbable septal occluder (CBSO): histopathology of experimental implants. EuroIntervention 13(14):1655–1661. https://doi.org/10.4244/EIJ-D-17-00006

    Article  PubMed  Google Scholar 

  84. Wu W, Yip J, Tang Y-D, Khoo V, Kong J, Duong-Hong D, Boey F, Venkatraman SS (2011) A novel biodegradable septal defect occluder the “Chinese Lantern” design proof of concept. Innovations. https://doi.org/10.1177/155698451100600403

    Article  PubMed  Google Scholar 

  85. Armitage DA, Parker TL, Grant DM (2003) Biocompatibility and hemocompatibility of surface-modified NiTi alloys. J Biomed Mater Res A 66(1):129–137. https://doi.org/10.1002/jbm.a.10549

    Article  CAS  PubMed  Google Scholar 

  86. Tepe G, Wendel HP, Khorchidi S, Schmehl J, Wiskirchen J, Pusich B, Claussen CD, Duda SH (2002) Thrombogenicity of various endovascular stent types: an in vitro evaluation. J Vasc Interv Radiol 13(10):1029–1035

    Article  Google Scholar 

  87. Thierry B, Merhi Y, Bilodeau L, Trepanier C, Tabrizian M (2002) Nitinol versus stainless steel stents: acute thrombogenicity study in an ex vivo porcine model. Biomaterials 23(14):2997–3005

    Article  CAS  Google Scholar 

  88. Thanopoulos BV, Rigby ML, Karanasios E, Stefanadis C, Blom N, Ottenkamp J, Zarayelyan A (2007) Transcatheter closure of perimembranous ventricular septal defects in infants and children using the Amplatzer perimembranous ventricular septal defect occluder. Am J Cardiol 99(7):984–989. https://doi.org/10.1016/j.amjcard.2006.10.062

    Article  PubMed  Google Scholar 

  89. Turner DR, Owada CY, Sang CJ Jr, Khan M, Lim DS (2017) Closure of secundum atrial septal defects with the AMPLATZER septal occluder: a prospective, Multicenter, Post-Approval Study. Circulation. https://doi.org/10.1161/CIRCINTERVENTIONS.116.004212

    Article  PubMed  PubMed Central  Google Scholar 

  90. Zahn EM, Peck D, Phillips A, Nevin P, Basaker K, Simmons C, McRae ME, Early T, Garg R (2016) Transcatheter Closure of Patent Ductus Arteriosus in Extremely Premature Newborns: Early Results and Midterm Follow-Up. JACC 9(23):2429–2437. https://doi.org/10.1016/j.jcin.2016.09.019

    Article  PubMed  Google Scholar 

  91. Stepan LL, Levi DS, Carman GP (2005) A thin film nitinol heart valve. J Biomech Eng 127(6):915–918

    Article  Google Scholar 

  92. Levi DS, Williams RJ, Liu J, Danon S, Stepan LL, Panduranga MK, Fishbein MC, Carman GP (2008) Thin film nitinol covered stents: design and animal testing. ASAIO J 54(3):221–226. https://doi.org/10.1097/MAT.0b013e31816b43b0

    Article  CAS  PubMed  Google Scholar 

  93. Chun Y, Kealey CP, Levi DS, Rigberg DA, Chen Y, Tillman BW, Mohanchandra KP, Shayan M, Carman GP (2017) An in vivo pilot study of a microporous thin film nitinol-covered stent to assess the effect of porosity and pore geometry on device interaction with the vessel wall. J Biomater Appl 31(8):1196–1202. https://doi.org/10.1177/0885328216682691

    Article  CAS  PubMed  Google Scholar 

  94. Duke C, Rosenthal E, Qureshi SA (2003) The efficacy and safety of stent redilatation in congenital heart disease. Heart 89(8):905–912

    Article  CAS  Google Scholar 

  95. Cutlip DE, Garratt KN, Novack V, Barakat M, Meraj P, Maillard L, Erglis A, Jauhar R, Popma JJ, Stoler R, Silber S, Pz FSTI (2017) 9-Month Clinical and Angiographic Outcomes of the COBRA Polyzene-F NanoCoated Coronary Stent System. JACC 10(2):160–167. https://doi.org/10.1016/j.jcin.2016.10.037

    Article  PubMed  Google Scholar 

  96. Cui H, Webber MJ, Stupp SI (2010) Self-assembly of peptide amphiphiles: from molecules to nanostructures to biomaterials. Biopolymers 94(1):1–18. https://doi.org/10.1002/bip.21328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Bellis SL (2011) Advantages of RGD peptides for directing cell association with biomaterials. Biomaterials 32(18):4205–4210. https://doi.org/10.1016/j.biomaterials.2011.02.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Blindt R, Vogt F, Astafieva I, Fach C, Hristov M, Krott N, Seitz B, Kapurniotu A, Kwok C, Dewor M, Bosserhoff AK, Bernhagen J, Hanrath P, Hoffmann R, Weber C (2006) A novel drug-eluting stent coated with an integrin-binding cyclic Arg-Gly-Asp peptide inhibits neointimal hyperplasia by recruiting endothelial progenitor cells. J Am Coll Cardiol 47(9):1786–1795. https://doi.org/10.1016/j.jacc.2005.11.081

    Article  CAS  PubMed  Google Scholar 

  99. Sidney LE, Branch MJ, Dunphy SE, Dua HS, Hopkinson A (2014) Concise review: evidence for CD34 as a common marker for diverse progenitors. Stem Cells 32(6):1380–1389. https://doi.org/10.1002/stem.1661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Silber S, Damman P, Klomp M, Beijk MA, Grisold M, Ribeiro EE, Suryapranata H, Wojcik J, Hian Sim K, Tijssen JG, de Winter RJ (2011) Clinical results after coronary stenting with the genous bio-engineered R stent: 12-month outcomes of the e-HEALING (healthy endothelial accelerated lining inhibits Neointimal Growth) worldwide registry. EuroIntervention 6(7):819–825. https://doi.org/10.4244/EIJV6I7A141

    Article  PubMed  Google Scholar 

  101. Johnson TW, Wu YX, Herdeg C, Baumbach A, Newby AC, Karsch KR, Oberhoff M (2005) Stent-based delivery of tissue inhibitor of metalloproteinase-3 adenovirus inhibits neointimal formation in porcine coronary arteries. Arterioscler Thromb Vasc Biol 25(4):754–759. https://doi.org/10.1161/01.ATV.0000157582.33180.a9

    Article  CAS  PubMed  Google Scholar 

  102. Fishbein I, Guerrero DT, Alferiev IS, Foster JB, Minutolo NG, Chorny M, Monteys AM, Driesbaugh KH, Nagaswami C, Levy RJ (2017) Stent-based delivery of adeno-associated viral vectors with sustained vascular transduction and iNOS-mediated inhibition of in-stent restenosis. Gene Ther 24(11):717–726. https://doi.org/10.1038/gt.2017.82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Brito LA, Chandrasekhar S, Little SR, Amiji MM (2010) Non-viral eNOS gene delivery and transfection with stents for the treatment of restenosis. Biomed Eng Online 9:56. https://doi.org/10.1186/1475-925X-9-56

    Article  PubMed  PubMed Central  Google Scholar 

  104. Mandawat A, Rao SV (2017) Percutaneous mechanical circulatory support devices in cardiogenic shock. Circ Cardiovasc Interv. https://doi.org/10.1161/CIRCINTERVENTIONS.116.004337

    Article  PubMed  PubMed Central  Google Scholar 

  105. Almond CS, Morales DL, Blackstone EH, Turrentine MW, Imamura M, Massicotte MP, Jordan LC, Devaney EJ, Ravishankar C, Kanter KR, Holman W, Kroslowitz R, Tjossem C, Thuita L, Cohen GA, Buchholz H, St Louis JD, Nguyen K, Niebler RA, Walters HL 3rd, Reemtsen B, Wearden PD, Reinhartz O, Guleserian KJ, Mitchell MB, Bleiweis MS, Canter CE, Humpl T (2013) Berlin heart EXCOR pediatric ventricular assist device for bridge to heart transplantation in US children. Circulation 127(16):1702–1711. https://doi.org/10.1161/CIRCULATIONAHA.112.000685

    Article  CAS  PubMed  Google Scholar 

  106. Weinstein S, Bello R, Pizarro C, Fynn-Thompson F, Kirklin J, Guleserian K, Woods R, Tjossem C, Kroslowitz R, Friedmann P, Jaquiss R (2014) The use of the Berlin Heart EXCOR in patients with functional single ventricle. J Thorac Cardiovasc Surg 147(2):697–704. https://doi.org/10.1016/j.jtcvs.2013.10.030 (discussion 704-695)

    Article  PubMed  Google Scholar 

  107. Rodefeld MD, Frankel S, Giridharan G (2011) Cavopulmonary assist: (Em)powering the univentricular fontan circulation, vol 14. WB Saunders, Philadelphia. https://doi.org/10.1053/j.pcsu.2011.01.015

    Book  Google Scholar 

  108. Rodefeld MD, Coats B, Fisher T, Giridharan G, Chen J, Brown J, Frankel S (2010) Cavopulmonary assist for the univentricular Fontan circulation: Von Kármán viscous impeller pump. J Thorac Cardiovasc Surg. https://doi.org/10.1016/j.jtcvs.2010.04.037

    Article  PubMed  PubMed Central  Google Scholar 

  109. Valdovinos J, Levi DS, Williams R, Carman GP (2012) Feasibility of using piezohydraulic pumps as motors for pediatric ventricular assist devices. Conf Proc IEEE Eng Med Biol Soc 2012:5590–5594. https://doi.org/10.1109/EMBC.2012.6347261

    Article  PubMed  Google Scholar 

  110. Maisano F, Taramasso M, Nickenig G, Hammerstingl C, Vahanian A, Messika-Zeitoun D, Baldus S, Huntgeburth M, Alfieri O, Colombo A, La Canna G, Agricola E, Zuber M, Tanner F, Topilsky Y, Kreidel F, Kuck K-H (2015) Cardioband, a transcatheter surgical-like direct mitral valve annuloplasty system: early results of the feasibility trial. Eur Heart J. https://doi.org/10.1093/eurheartj/ehv603

    Article  PubMed  Google Scholar 

  111. Gaspardone A, De Santis A, D'Ascoli E, Sgueglia G, Gioffrè G, Iamele M, Piccioni F, D'Errico F, Summaria F, Nobles A (2017) TCT-271 Percutaneous suture-mediated patent foramen ovale (PFO) closure: early results with NobleStitchEL device. J Am Coll Cardiol. https://doi.org/10.1016/j.jacc.2017.09.348

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel S. Levi.

Ethics declarations

Conflict of interest

The authors have no disclosures to report.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Russell, M.R., Blais, B., Nia, N. et al. The Potential Impact and Timeline of Engineering on Congenital Interventions. Pediatr Cardiol 41, 522–538 (2020). https://doi.org/10.1007/s00246-020-02335-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-020-02335-w

Keywords

Navigation