Skip to main content

Advertisement

Log in

22q11 Deletion Syndrome: A Role for TBX1 in Pharyngeal and Cardiovascular Development

  • Riley Symposium
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

Tbx1 is a member of the Tbox family of binding domain transcription factors. TBX1 maps within the region of 22q11 deleted in humans with DiGeorge or velocardiofacial syndrome. Mice haploinsufficient for Tbx1 have phenotypes that recapitulate major features of the syndrome, notably abnormal growth and remodelling of the pharyngeal arch arteries. The Tbx1 haploinsufficiency phenotype is modified by genetic background and by mutations in putative downstream targets. Homozygous null mutations of Tbx1 have more severe defects including failure of outflow tract septation, and absence of the caudal pharyngeal arches. Tbx1 is a transcriptional activator, and loss of this activity has been linked to alterations in the expression of various genes involved in cardiovascular morphogenesis. In particular, Fgf and retinoic acid signalling are dysregulated in Tbx1 mutants. This article summarises the tissue specific and temporal requirements for Tbx1, and attempts to synthesis what is know about the developmental pathways under its control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Aggarwal VS, Morrow BE (2008) Genetic modifiers of the physical malformations in velo-cardio-facial syndrome/DiGeorge syndrome. Dev Disabil Res Rev 14:19–25

    Article  PubMed  Google Scholar 

  2. Aggarwal VS, Liao J, Bondarev A, Schimmang T, Lewandoski M, Locker J, Shanske A, Campione M, Morrow BE (2006) Dissection of Tbx1 and Fgf interactions in mouse models of 22q11DS suggests functional redundancy. Hum Mol Genet 15:3219–3228

    Article  CAS  PubMed  Google Scholar 

  3. Arnold JS, Werling U, Braunstein EM, Liao J, Nowotschin S, Edelmann W, Hebert JM, Morrow BE (2006) Inactivation of Tbx1 in the pharyngeal endoderm results in 22q11DS malformations. Development 133:977–987

    Article  CAS  PubMed  Google Scholar 

  4. Ataliotis P, Ivins S, Mohun TJ, Scambler PJ (2005) XTbx1 is a transcriptional activator involved in head and pharyngeal arch development in Xenopus laevis. Dev Dyn 232:979–991

    Article  CAS  PubMed  Google Scholar 

  5. Bachiller D, Klingensmith J, Shneyder N, Tran U, Anderson R, Rossant J, De Robertis EM (2003) The role of chordin/Bmp signals in mammalian pharyngeal development and DiGeorge syndrome. Development 130:3567–3578

    Article  CAS  PubMed  Google Scholar 

  6. Bergman A, Blennow E (2000) Inv dup(22), del(22)(q11) and r(22) in the father of a child with DiGeorge syndrome. Eur J Hum Genet 8:801–804

    Article  CAS  PubMed  Google Scholar 

  7. Braunstein EM, Crenshaw Iii EB, Morrow BE, Adams JC (2008) Cooperative Function of Tbx1 and Brn4 in the Periotic Mesenchyme is Necessary for Cochlea Formation. J Assoc Res Otolaryngol 9:33–43

    Article  PubMed  Google Scholar 

  8. Braunstein EM, Monks DC, Aggarwal VS, Arnold JS, Morrow BE (2009) Tbx1 and Brn4 regulate retinoic acid metabolic genes during cochlear morphogenesis. BMC Dev Biol 9:31

    Article  PubMed  CAS  Google Scholar 

  9. Brown CB, Wenning JM, Lu MM, Epstein DJ, Meyers EN, Epstein JA (2004) Cremediated excision of Fgf8 in the Tbx1 expression domain reveals a critical role for Fgf8 in cardiovascular development in the mouse. Dev Biol 267:190–202

    Article  CAS  PubMed  Google Scholar 

  10. Byrd NA, Meyers EN (2005) Loss of Gbx2 results in neural crest cell patterning and pharyngeal arch artery defects in the mouse embryo. Dev Biol 284:233–245

    Article  CAS  PubMed  Google Scholar 

  11. Cabuk F, Karabulut HG, Tuncali T, Karademir S, Bozdayi M, Tukun A (2007) TBX1 gene mutation screening in patients with non-syndromic Fallot tetralogy. Turk J Pediatr 49:61–68

    PubMed  Google Scholar 

  12. Calmont A, Ivins S, Van Bueren KL, Papangeli I, Kyriakopoulou V, Andrews WD, Martin JF, Moon AM, Illingworth EA, Basson MA, Scambler PJ (2009) Tbx1 controls cardiac neural crest cell migration during arch artery development by regulating Gbx2 expression in the pharyngeal ectoderm. Development 136:3173–3183

    Article  CAS  PubMed  Google Scholar 

  13. Carelle-Calmels N, Saugier-Veber P, Girard-Lemaire F, Rudolf G, Doray B, Guerin E, Kuhn P, Arrive M, Gilch C, Schmitt E, Fehrenbach S, Schnebelen A, Frebourg T, Flori E (2009) Genetic compensation in a human genomic disorder. N Engl J Med 360:1211–1216

    Google Scholar 

  14. Carey AH, Kelly D, Halford S, Wadey R, Wilson D, Goodship J, Burn J, Paul T, Sharkey A, Dumanski J, Nordenskjold M, Williamson R, Scambler PJ (1992) Molecular genetic study of the frequency of monosomy 22q11 in DiGeorge syndrome. Am J Hum Genet 51:964–970

    CAS  PubMed  Google Scholar 

  15. Caterino M, Ruoppolo M, Fulcoli G, Huynth T, Orru S, Baldini A, Salvatore F (2009) Transcription factor TBX1 overexpression induces downregulation of proteins involved in retinoic acid metabolism: a comparative proteomic analysis. J Proteome Res 8(3):1515–1526

    Google Scholar 

  16. Chen L, Fulcoli FG, Tang S, Baldini A (2009) Tbx1 regulates proliferation and differentiation of multipotent heart progenitors. Circ Res 105:842–851

    Article  CAS  PubMed  Google Scholar 

  17. Chieffo C, Garvey N, Gong W, Roe B, Zhang G, Silver L, Emanuel BS, Budarf ML (1997) Isolation and characterization of a gene from the DiGeorge chromosomal region homologous to the mouse Tbx1 gene. Genomics 43:267–277

    Article  CAS  PubMed  Google Scholar 

  18. Choi M, Klingensmith J (2009) Chordin is a modifier of Tbx1 for the craniofacial malformations of 22q11 deletion syndrome phenotypes in mouse. PLoS Genet 5:e1000395

    Article  PubMed  CAS  Google Scholar 

  19. Conti E, Grifone N, Sarkozy A, Tandoi C, Marino B, Digilio MC, Mingarelli R, Pizzuti A, Dallapiccola B (2003) DiGeorge subtypes of nonsyndromic conotruncal defects: evidence against a major role of TBX1 Gene. Eur J Hum Genet 11:349–351

    Article  CAS  PubMed  Google Scholar 

  20. DiGeorge AM (1965) Discussion. J Pediatr 67:907

    Article  Google Scholar 

  21. Du Montcel ST, Mendizabal H, Ayme S, Levy A, Philip N (1996) Prevalence of 22q11 microdeletion. J Med Genet 33:719

    Article  Google Scholar 

  22. Edelmann L, Pandita R, Spiteri E, Funke B, Goldberg R, Palanisamy N, Chaganti RSK, Magenis RE, Shprintzen RJ, Morrow BE (1999) A common molecular basis for rearrangement disorders on chromosome 22q11. Hum Mol Genet 8:1157–1167

    Article  CAS  PubMed  Google Scholar 

  23. Emanuel BS, Budarf BS, Scambler PJ (1998) The genetic basis of conotruncal heart defects: the chromosome 22q11.2 deletion. In: Rosenthal N, Harvey R (eds) Heart development. Academic Press, London, pp 463–478

    Google Scholar 

  24. Feiner L, Webber AL, Brown CB, Lu MM, Jia L, Feinstein P, Mombaerts P, Epstein JA, Raper JA (2001) Targeted disruption of semaphorin 3C leads to persistent truncus arteriosus and aortic arch interruption. Development 128:3061–3070

    CAS  PubMed  Google Scholar 

  25. Feller SM (2001) Crk family adaptors-signalling complex formation and biological roles. Oncogene 20:6348–6371

    Article  CAS  PubMed  Google Scholar 

  26. Franco D, Campione M (2003) The role of Pitx2 during cardiac development. Linking left-right signaling and congenital heart diseases. Trends Cardiovasc Med 13:157–163

    Article  CAS  PubMed  Google Scholar 

  27. Frank DU, Fotheringham LK, Brewer JA, Muglia LJ, Tristani-Firouzi M, Capecchi MR, Moon AM (2002) An Fgf8 mouse mutant phenocopies human 22q11 deletion syndrome. Development 129:4591–4603

    CAS  PubMed  Google Scholar 

  28. Gong W, Gottlieb S, Collins J, Blescia A, Dietz H, Goldmuntz E, McDonald-McGinn DM, Zackai EH, Emanuel BS, Driscoll DA, Budarf ML (2001) Mutation analysis of TBX1 in non-deleted patients with features of DGS/VCFS or isolated cardiovascular defects. J Med Genet 38:E45

    Article  CAS  PubMed  Google Scholar 

  29. Goodship J, Cross I, Scambler P, Burn J (1995) Monozygotic twins with chromosome 22q11 deletion and discordant phenotype. J Med Genet 32:746–748

    Article  CAS  PubMed  Google Scholar 

  30. Guris DL, Fantes J, Tara D, Druker BJ, Imamoto A (2001) Mice lacking the homologue of the human 22q11.2 gene CRKL phenocopy neurocristopathies of DiGeorge syndrome. Nat Genet 27:293–298

    Article  CAS  PubMed  Google Scholar 

  31. Guris DL, Duester G, Papaioannou VE, Imamoto A (2006) Dose-dependent interaction of Tbx1 and Crkl and locally aberrant RA signaling in a model of del22q11 syndrome. Dev Cell 10:81–92

    Article  CAS  PubMed  Google Scholar 

  32. Halford S, Lindsay E, Nayudu M, Carey AH, Baldini A, Scambler PJ (1993) Low-copy-repeat sequences flank the DiGeorge/velo-cardio-facial syndrome loci at 22q11. Hum Mol Genet 2:191–196

    Article  CAS  PubMed  Google Scholar 

  33. Hu T, Yamagishi H, Maeda J, McAnally J, Yamagishi C, Srivastava D (2004) Tbx1 regulates fibroblast growth factors in the anterior heart field through a reinforcing autoregulatory loop involving forkhead transcription factors. Development 131:5491–5502

    Article  CAS  PubMed  Google Scholar 

  34. Huynh T, Chen L, Terrell P, Baldini A (2007) A fate map of Tbx1 expressing cells reveals heterogeneity in the second cardiac field. Genesis 45:470–475

    Article  CAS  PubMed  Google Scholar 

  35. Ivins S, Lammerts van Beuren K, Roberts C, James C, Lindsay E, Baldini A, Ataliotis P, Scambler PJ (2005) Microarray analysis detects differentially expressed genes in the pharyngeal region of mice lacking Tbx1. Dev Biol 285:554–569

    Article  CAS  PubMed  Google Scholar 

  36. Jerome LA, Papaioannou VE (2001) DiGeorge syndrome phenotype in mice mutant for the T-box gene, Tbx1. Nat Genet 27:286–291

    Article  CAS  PubMed  Google Scholar 

  37. Jia L, Cheng L, Raper J (2005) Slit/Robo signaling is necessary to confine early neural crest cells to the ventral migratory pathway in the trunk. Dev Biol 282:411–421

    Article  CAS  PubMed  Google Scholar 

  38. Jones CA, London NR, Chen H, Park KW, Sauvaget D, Stockton RA, Wythe JD, Suh W, Larrieu-Lahargue F, Mukouyama YS, Lindblom P, Seth P, Frias A, Nishiya N, Ginsberg MH, Gerhardt H, Zhang K, Li DY (2008) Robo4 stabilizes the vascular network by inhibiting pathologic angiogenesis and endothelial hyperpermeability. Nat Med 14:448–453

    Article  CAS  PubMed  Google Scholar 

  39. Kelly RG, Papaioannou VE (2007) Visualization of outflow tract development in the absence of Tbx1 using an FgF10 enhancer trap transgene. Dev Dyn 236:821–828

    Article  CAS  PubMed  Google Scholar 

  40. Kita A, Imayoshi I, Hojo M, Kitagawa M, Kokubu H, Ohsawa R, Ohtsuka T, Kageyama R, Hashimoto N (2007) Hes1 and Hes5 control the progenitor pool, intermediate lobe specification, and posterior lobe formation in the pituitary development. Mol Endocrinol 21:1458–1466

    Article  CAS  PubMed  Google Scholar 

  41. Kobayashi T, Mizuno H, Imayoshi I, Furusawa C, Shirahige K, Kageyama R (2009) The cyclic gene Hes1 contributes to diverse differentiation responses of embryonic stem cells. Genes Dev 23:1870–1875

    Article  CAS  PubMed  Google Scholar 

  42. Lammer EJ, Chen DT, Hoar ND, Agnish PJ, Benke JT, Braun CJ, Curry PM, Fernhoff AW, Grix AT, Lott JM, Richard JM, Sun SC (1986) Retinoic acid embryopathy. A new human teratogen and a mechanistic hypothesis. N Engl J Med 313:837–841

    Article  Google Scholar 

  43. Larsson H, Klint P, Landgren E, Claesson-Welsh L (1999) Fibroblast growth factor receptor-1-mediated endothelial cell proliferation is dependent on the Src homology (SH) 2/SH3 domain-containing adaptor protein Crk. J Biol Chem 274:25726–25734

    Article  CAS  PubMed  Google Scholar 

  44. Layman WS, McEwen DP, Beyer LA, Lalani SR, Fernbach SD, Oh E, Swaroop A, Hegg CC, Raphael Y, Martens JR, Martin DM (2009) Defects in neural stem cell proliferation and olfaction in Chd7 deficient mice indicate a mechanism for hyposmia in human CHARGE syndrome. Hum Mol Genet 18:1909–1923

    Article  CAS  PubMed  Google Scholar 

  45. Lewin MB, Lindsay EA, Jurecic V, Goytia V, Towbin JA, Baldini A (1997) A genetic etiology for interruption of the aortic arch type B. Am J Cardiol 80:493–497

    Article  CAS  PubMed  Google Scholar 

  46. Li JY, Lao Z, Joyner AL (2002) Changing requirements for Gbx2 in development of the cerebellum and maintenance of the mid/hindbrain organizer. Neuron 36:31–43

    Article  CAS  PubMed  Google Scholar 

  47. Liao J, Kochilas L, Nowotschin S, Arnold JS, Aggarwal VS, Epstein JA, Brown MC, Adams J, Morrow BE (2004) Full spectrum of malformations in velo-cardio-facial syndrome/DiGeorge syndrome mouse models by altering Tbx1 dosage. Hum Mol Genet 13:1577–1585

    Article  CAS  PubMed  Google Scholar 

  48. Liao J, Aggarwal VS, Nowotschin S, Bondarev A, Lipner S, Morrow BE (2008) Identification of downstream genetic pathways of Tbx1 in the second heart field. Dev Biol 316:524–537

    Article  CAS  PubMed  Google Scholar 

  49. Lindsay EA, Baldini A (2001) Recovery from arterial growth delay reduces penetrance of cardiovascular defects in mice deleted for the DiGeorge syndrome region. Hum Mol Genet 10:997–1002

    Article  CAS  PubMed  Google Scholar 

  50. Lindsay EA, Botta A, Jurecic V, Carattini-Rivera S, Cheah Y-C, Rosenblatt HM, Bradley A, Baldini A (1999) Congenital heart disease in mice deficient for the DiGeorge syndrome region. Nature 401:379–383

    CAS  PubMed  Google Scholar 

  51. Lindsay EA, Vitelli F, Su H, Morishima M, Huynh T, Pramparo T, Jurecic V, Ogunrinu G, Sutherland HF, Scambler PJ, Bradley A, Baldini A (2001) Tbx1 haploinsufficiency identified by functional scanning of the DiGeorge syndrome region is the cause of aortic arch defects in mice. Nature 401:97–101

    Article  Google Scholar 

  52. Merscher S, Funke B, Epstein JA, Heyer J, Puech A, Lu MM, Xavier RJ, Demay MB, Russell RG, Factor S, Tokooya K, St. Jore B, Lopez M, Pandita RK, Lia M, Carrion D, Schorle H, Kobler JR, Scambler PJ, Wynshaw-Boris A, Skoultchi A, Morrow BE, Kucherlapati R (2001) TBX1 is responsible for the cardiovascular defects in velo-cardio-facial/DiGeorge syndrome. Cell 104:619–629

    Article  CAS  PubMed  Google Scholar 

  53. Meyers EN, Lewandoski M, Martin GR (1998) An Fgf8 mutant allelic series generated by Cre- and Flp-mediated recombination. Nat Genet 18:136–141

    Article  CAS  PubMed  Google Scholar 

  54. Moon AM, Guris DL, Seo JH, Li L, Hammond J, Talbot A, Imamoto A (2006) Crkl deficiency disrupts Fgf8 signaling in a mouse model of 22q11 deletion syndromes. Dev Cell 10:71–80

    Article  CAS  PubMed  Google Scholar 

  55. Murphy KC (2002) Schizophrenia and velo-cardio-facial syndrome. Lancet 359:426–430

    Article  PubMed  Google Scholar 

  56. Nowotschin S, Liao J, Gage PJ, Epstein JA, Campione M, Morrow BE (2006) Tbx1 affects asymmetric cardiac morphogenesis by regulating Pitx2 in the secondary heart field. Development 133:1565–1573

    Article  CAS  PubMed  Google Scholar 

  57. Okano J, Sakai Y, Shiota K (2008) Retinoic acid down-regulates Tbx1 expression and induces abnormal differentiation of tongue muscles in fetal mice. Dev Dyn 237:3059–3070

    Article  CAS  PubMed  Google Scholar 

  58. Park EJ, Ogden LA, Talbot A, Evans S, Cai CL, Black BL, Frank DU, Moon AM (2006) Required, tissue-specific roles for Fgf8 in outflow tract formation and remodeling. Development 133:2419–2433

    Article  CAS  PubMed  Google Scholar 

  59. Paylor R, Glaser B, Mupo A, Ataliotis P, Spencer C, Sobotka A, Sparks C, Choi CH, Oghalai J, Curran S, Murphy KC, Monks S, Williams N, O’Donovan MC, Owen MJ, Scambler PJ, Lindsay E (2006) Tbx1 haploinsufficiency is linked to behavioral disorders in mice and humans: implications for 22q11 deletion syndrome. Proc Natl Acad Sci USA 103:7729–7734

    Article  CAS  PubMed  Google Scholar 

  60. Piotrowski T, Ahn DG, Schilling TF, Nair S, Ruvinsky I, Geisler R, Rauch GJ, Haffter P, Zon LI, Zhou Y, Foott H, Dawid IB, Ho RK (2003) The zebrafish van gogh mutation disrupts tbx1, which is involved in the DiGeorge deletion syndrome in humans. Development 130:5043–5052

    Article  CAS  PubMed  Google Scholar 

  61. Prescott K, Woodfine K, Stubbs P, Super M, Kerr B, Palmer R, Carter NP, Scambler P (2005) A novel 5q11.2 deletion detected by microarray comparative genomic hybridisation in a child referred as a case of suspected 22q11 deletion syndrome. Hum Genet 116:83–90

    Article  CAS  PubMed  Google Scholar 

  62. Raft S, Nowotschin S, Liao J, Morrow BE (2004) Suppression of neural fate and control of inner ear morphogenesis by Tbx1. Development 131:1801–1812

    Article  CAS  PubMed  Google Scholar 

  63. Randall V, McCue K, Roberts C, Kyriakopoulou V, Beddow S, Barrett AN, Vitelli F, Prescott K, Shaw-Smith C, Devriendt K, Bosman E, Steffes G, Steel KP, Simrick S, Basson MA, Illingworth E, Scambler PJ (2009) Great vessel development requires biallelic expression of Chd7 and Tbx1 in pharyngeal ectoderm in mice. J Clin Invest 119:3301–3310

    CAS  PubMed  Google Scholar 

  64. Rauch A, Devriendt K, Koch A, Rauch R, Gewillig M, Kraus C, Weyand M, Singer H, Reis A, Hofbeck M (2004) Assessment of association between variants and haplotypes of the remaining TBX1 gene and manifestations of congenital heart defects in 22q11.2 deletion patients. J Med Genet 41:e40

    Article  CAS  PubMed  Google Scholar 

  65. Roberts C, Ivins SM, James CT, Scambler PJ (2005) Retinoic acid down-regulates Tbx1 expression in vivo and in vitro. Dev Dyn 232:928–938

    Article  CAS  PubMed  Google Scholar 

  66. Roberts C, Ivins S, Cook AC, Baldini A, Scambler PJ (2006) Cyp26 genes a1, b1 and c1 are down-regulated in Tbx1 null mice and inhibition of Cyp26 enzyme function produces a phenocopy of DiGeorge Syndrome in the chick. Hum Mol Genet 15:3394–3410

    Article  CAS  PubMed  Google Scholar 

  67. Ryan AK, Goodship JA, Wilson DI, Philip N, Levy A, Siedel H, Schuffenhauer S, Oechsler H, Belohradsky B, Priur M, Aurias A, Raymond FL, Clayton-Smith J, Hatchwell E, McKeown C, Beemer FA, Dallapiccola B, Novelli G, Hurst J, Ignatius J, Green AJ, Winter RM, Breuton L, Brondum-Neilsen K, Stewart F, Van Essen T, Patton M, Patterson J, Scambler PJ (1997) Spectrum of clinical features associated with interstitial chromosome 22q11 deletions: a European collaborative study. J Med Genet 34:798–804

    Article  CAS  PubMed  Google Scholar 

  68. Ryckebusch L, Bertrand N, Bajolie F, Niederreither K, Kelly RG, Zaffran S (2009) Decreased levels of embryonic retinoic acid synthesis accelerates recovery from arterial growth delay in a mouse model of DIGeorge syndrome. Weinstein cardiovascular development conference, 87 pp. Ref Type: Abstract

  69. Sakai Y, Meno C, Fujii H, Nishino J, Shiratori H, Saijoh Y, Rossant J, Hamada H (2001) The retinoic acid-inactivating enzyme CYP26 is essential for establishing an uneven distribution of retinoic acid along the anterio-posterior axis within the mouse embryo. Genes Dev 15:213–225

    Article  CAS  PubMed  Google Scholar 

  70. Scambler PJ (2000) The 22q11 deletion syndromes. Hum Mol Genet 9:2421–2426

    Article  CAS  PubMed  Google Scholar 

  71. Shaikh TH, Kurahashi H, Emanuel BS (2001) Evolutionarily conserved low copy repeats (LCRs) in 22q11 mediate deletions, duplications, translocations, and genomic instability: an update and literature review. Genet Med 3:6–13

    Article  CAS  PubMed  Google Scholar 

  72. Shprintzen RJ (2008) Velo-cardio-facial syndrome: 30 Years of study. Dev Disabil Res Rev 14:3–10

    Article  PubMed  Google Scholar 

  73. Stalmans I, Lambrechts D, De Smet F, Jansen S, Wang J, Maity S, Kneer P, Von Der OM, Swillen A, Maes C, Gewillig M, Molin DG, Hellings P, Boetel T, Haardt M, Compernolle V, Dewerchin M, Plaisance S, Vlietinck R, Emanuel B, Gittenberger-de Groot AC, Scambler P, Morrow B, Driscol DA, Moons L, Esguerra CV, Carmeliet G, Behn-Krappa A, Devriendt K, Collen D, Conway SJ, Carmeliet P (2003) VEGF: a modifier of the del22q11 (DiGeorge) syndrome? Nat Med 9:173–182

    Article  CAS  PubMed  Google Scholar 

  74. Stoller JZ, Epstein JA (2005) Identification of a novel nuclear localization signal in Tbx1 that is deleted in DiGeorge syndrome patients harboring the 1223delC mutation. Hum Mol Genet 14:885–892

    Article  CAS  PubMed  Google Scholar 

  75. Taddei I, Morishima M, Huynh T, Lindsay EA (2001) Genetic factors are major determinants of phenotypic variability in a mouse model of the DiGeorge/del22q11 syndromes. Proc Natl Acad Sci USA 98:11428–11431

    Article  CAS  PubMed  Google Scholar 

  76. Torres-Juan L, Rosell J, Morla M, Vidal-Pou C, Garcia-Algas F, de la Fuente MA, Juan M, Tubau A, Bachiller D, Bernues M, Perez-Granero A, Govea N, Busquets X, Heine-Suner D (2007) Mutations in TBX1 genocopy the 22q11.2 deletion and duplication syndromes: a new susceptibility factor for mental retardation. Eur J Hum Genet 15:658–663

    Article  CAS  PubMed  Google Scholar 

  77. Vitelli F, Morishima M, Taddei I, Lindsay EA, Baldini A (2002) Tbx1 mutation causes multiple cardiovascular defects and disrupts neural crest and cranial nerve migratory pathways. Hum Mol Genet 11:915–922

    Article  CAS  PubMed  Google Scholar 

  78. Vitelli F, Taddei I, Morishima M, Meyers EN, Lindsay EA, Baldini A (2002) A genetic link between Tbx1 and fibroblast growth factor signaling. Development 129:4605–4611

    CAS  PubMed  Google Scholar 

  79. Vitelli F, Zhang Z, Huynh T, Sobotka A, Mupo A, Baldini A (2006) Fgf8 expression in the Tbx1 domain causes skeletal abnormalities and modifies the aortic arch but not the outflow tract phenotype of Tbx1 mutants. Dev Biol 295:559–570

    Article  CAS  PubMed  Google Scholar 

  80. Vitelli F, Huynh T, Baldini A (2009) Gain of function of Tbx1 affects pharyngeal and heart development in the mouse. Genesis 47:188–195

    Article  CAS  PubMed  Google Scholar 

  81. Wilson DI, Cross IE, Wren C, Scambler PJ, Burn J, Goodship J (1994) Minimum prevalence of chromosome 22q11 deletions. Am J Hum Genet 55:A169

    Google Scholar 

  82. Xu H, Morishima M, Wylie JN, Schwartz RJ, Bruneau BG, Lindsay EA, Baldini A (2004) Tbx1 has a dual role in the morphogenesis of the cardiac outflow tract. Development 131:3217–3227

    Article  CAS  PubMed  Google Scholar 

  83. Xu H, Cerrato F, Baldini A (2005) Timed mutation and cell-fate mapping reveal reiterated roles of Tbx1 during embryogenesis, and a crucial function during segmentation of the pharyngeal system via regulation of endoderm expansion. Development 132:4387–4395

    Article  CAS  PubMed  Google Scholar 

  84. Xu H, Viola A, Zhang Z, Gerken CP, Lindsay-Illingworth EA, Baldini A (2006) Tbx1 regulates population, proliferation and cell fate determination of otic epithelial cells. Dev Biol 302:670–682

    Article  PubMed  CAS  Google Scholar 

  85. Yagi H, Furutani Y, Hamada H, Sasaki T, Asakawa S, Minoshima S, Ichida F, Joo K, Kimura M, Imamura S, Kamatani N, Momma K, Takao A, Nakazawa M, Shimizu N, Matsuoka R (2003) Role of TBX1 in human del22q11.2 syndrome. Lancet 362:1366–1373

    Article  CAS  PubMed  Google Scholar 

  86. Yashiro K, Shiratori H, Hamada H (2007) Haemodynamics determined by a genetic programme govern asymmetric development of the aortic arch. Nature 450:285–288

    Article  CAS  PubMed  Google Scholar 

  87. Yobb TM, Somerville MJ, Willatt L, Firth HV, Harrison K, Mackenzie J, Gallo N, Morrow BE, Shaffer LG, Babcock M, Chernos J, Bernier F, Sprysak K, Christiansen J, Haase S, Elyas B, Lilley M, Bamforth S, McDermid HE (2005) Microduplication and triplication of 22q11.2: a highly variable syndrome. Am J Hum Genet 76:865–876

    Article  CAS  PubMed  Google Scholar 

  88. Zhang Z, Baldini A (2008) In vivo response to high-resolution variation of Tbx1 mRNA dosage. Hum Mol Genet 17:150–157

    Article  CAS  PubMed  Google Scholar 

  89. Zhang Z, Cerrato F, Xu H, Vitelli F, Morishima M, Vincentz J, Furuta Y, Ma L, Martin JF, Baldini A, Lindsay E (2005) Tbx1 expression in pharyngeal epithelia is necessary for pharyngeal arch artery development. Development 132:5307–5315

    Article  CAS  PubMed  Google Scholar 

  90. Zhang Z, Huynh T, Baldini A (2006) Mesodermal expression of Tbx1 is necessary and sufficient for pharyngeal arch and cardiac outflow tract development. Development 133:3587–3595

    Article  CAS  PubMed  Google Scholar 

  91. Zhang LF, Gui YH, Zhong T, Wang YX, Qian LX, Dong YX, Jiang Q, Sun SN, Song HY (2007) Effect of external retinoic acid on Tbx1 gene during zebrafish embryogenesis. Zhonghua Er Ke Za Zhi 45:267–271

    PubMed  Google Scholar 

  92. Zweier C, Sticht H, ydin-Yaylagul I, Campbell CE, Rauch A (2007) Human TBX1 missense mutations cause gain of function resulting in the same phenotype as 22q11.2 deletions. Am J Hum Genet 80:510–517

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The BHF and EU Framework 7 Programme EuroGeNet provided generous support.

Financial support

British Heart Foundation; EU Framework 7: CardioGeNet.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Scambler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scambler, P.J. 22q11 Deletion Syndrome: A Role for TBX1 in Pharyngeal and Cardiovascular Development. Pediatr Cardiol 31, 378–390 (2010). https://doi.org/10.1007/s00246-009-9613-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-009-9613-0

Keywords

Navigation