Skip to main content

Advertisement

Log in

Contaminant Concentrations in Sediments, Aquatic Invertebrates, and Fish in Proximity to Rail Tracks Used for Coal Transport in the Pacific Northwest (USA): A Baseline Assessment

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Railway transport of coal poses an environmental risk, because coal dust contains polycyclic aromatic hydrocarbons (PAHs), mercury, and other trace metals. In the Pacific Northwest of the United States, proposed infrastructure projects could result in an increase in coal transport by train through the Columbia River corridor. Baseline information is needed on current distributions, levels, and spatial patterns of coal dust-derived contaminants in habitats and organisms adjacent to existing coal transport lines. To that end, we collected aquatic surface sediments, aquatic insects, and juvenile fish in 2014 and 2015 from Horsethief Lake State Park and Steigerwald National Wildlife Refuge, both located in Washington state close to the rail line and within the Columbia River Gorge National Scenic Area. Two subsites in each area were selected: one close to the rail line and one far from the rail line. Detected PAH concentrations were relatively low compared with those measured at more urbanized areas. Some contaminants were measured at higher concentrations at the subsites close to the rail line, but it was not possible to link the contaminants to a definitive source. Trace metal concentrations were only slightly higher than background concentrations, but a few of the more sensitive benchmarks were exceeded, including those for arsenic, lead, and selenium in fish tissue and fluoranthene, cadmium, copper, manganese, nickel, zinc, iron, and arsenic in sediments. At Horsethief Lake, Chinook salmon and yellow perch showed lower total mercury body burdens than other species, but PAH body burdens did not differ significantly among species. Differences in the species caught among subsites and the low number of invertebrate samples rendered food web comparisons difficult, but these data show that the PAHs and trace metals, including mercury, are accumulating in these wetland sites and in some resident organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Achten C, Andersson JT (2015) Overview of polycyclic aromatic compounds (PAC). Polycyclic Aromat Compd 35(2–4):177–186

    Article  CAS  Google Scholar 

  • Achten C, Hofmann T (2009) Native polycyclic aromatic hydrocarbons (PAH) in coals: a hardly recognized source of environmental contamination. Sci Total Environ 407(8):2461–2473

    Article  CAS  Google Scholar 

  • Ahrens MJ, Morrisey DJ (2005) Biological effects of unburnt coal in the marine environment. Oceanogr Mar Biol Ann Rev 43:69–122

    Google Scholar 

  • Authman MM, Zaki MS et al (2015) Use of fish as bio-indicator of the effects of heavy metals pollution. J Aquaculture Res Development 2015

  • Baruya P (2012) Losses in the coal supply chain. IEA Clean Coal Centre, 66 pp. ISBN 978-92-9029-532-7

  • Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67(1):1–48

    Article  Google Scholar 

  • Berrojalbiz N, Lacorte S et al (2009) Accumulation and cycling of polycyclic aromatic hydrocarbons in zooplankton. Environ Sci Technol 43:2295–2301

    Article  CAS  Google Scholar 

  • Berry KLE, Hoogenboom MO et al (2016) Simulated coal spill causes mortality and growth inhibition in tropical marine organisms. Sci Rep 6:25894

    Article  CAS  Google Scholar 

  • Billiard SM, Querbach K et al (1999) Toxicity of retene to early life stages of two freshwater fish species. Environ Toxicol Chem 18(9):2070–2077

    Article  CAS  Google Scholar 

  • Boening DW (2000) Ecological effects, transport, and fate of mercury: a general review. Chemosphere 40(12):1335–1351

    Article  CAS  Google Scholar 

  • Brette F, Shiels HA, Galli GL, Cros C, Incardona JP, Scholz NL, Block BA (2017) A novel cardiotoxic mechanism for a pervasive global pollutant. Sci Rep 7:41476

    Article  CAS  Google Scholar 

  • Brinkworth LC, Hodson PV et al (2003) CYP1A induction and blue sac disease in early developmental stages of rainbow trout (Oncorhynchus mykiss) exposed to retene. J Toxicol Environ Health A 66(7):627–646

    Article  CAS  Google Scholar 

  • Brown GK, Zaugg SD et al (1999) Wastewater analysis by gas chromatography/mass spectrometry. In: Proceedings of the US geological survey toxic substances hydrology program technical meeting, contamination of hydrologic systems and related ecosystems, March, Citeseer

  • Buchman MF (2008) NOAA screening quick reference tables, NOAA OR&R Report 08-1, Seattle WA, Office of Response and Restoration Division, National Oceanic and Atmospheric Administration.

  • Buckland-Nicks A, Hillier KN et al (2014) Mercury bioaccumulation in Dragonflies (Odonata: Anisoptera): examination of life stages and body regions. Environ Toxicol Chem 33(9):2047–2054

    Article  CAS  Google Scholar 

  • Campbell PM, Devlin RH (1997) Increased CYP1A1 and ribosomal protein L5 gene expression in a teleost: the response of juvenile chinook salmon to coal dust exposure. Aquat Toxicol 38(1–3):1–15

    Article  CAS  Google Scholar 

  • Chasar LC, Scudder BC et al (2009) Mercury cycling in stream ecosystems. 3. Trophic dynamics and methylmercury bioaccumulation. Environ Sci Technol 43(8):2733–2739

    Article  CAS  Google Scholar 

  • Chen QY, Liu JL et al (2016) Biologic risk and source diagnose of 16 PAHs from Haihe River Basin China. Front Environ Sci Eng 10(1):46–52

    Article  CAS  Google Scholar 

  • Clements W, Oris J et al (1994) Accumulation and food chain transfer of fluoranthene and benzo [a] pyrene in Chironomus riparius and Lepomis macrochirus. Arch Environ Contam Toxicol 26(3):261–266

    Article  CAS  Google Scholar 

  • Collier TK, Anulacion BF et al (2014) Effects on fish of polycyclic aromatic hydrocarbons (PAHs) and naphthenic acid exposures. Fish Physiol Org Chem Toxicol Fishes 33:195–255

    Article  Google Scholar 

  • Counihan TD, Waite IR et al (2014) A survey of benthic sediment contaminants in reaches of the Columbia River Estuary based on channel sedimentation characteristics. Sci Total Environ 484:331–343

    Article  CAS  Google Scholar 

  • Eagles-Smith CA, Ackerman JT et al (2016) Spatial and temporal patterns of mercury concentrations in freshwater fish across the Western United States and Canada. Sci Total Environ 568:1171–1184

    Article  CAS  Google Scholar 

  • Eisler R (1987) Polycyclic aromatic hydrocarbon hazards to fish, wildlife, and invertebrates: a synoptic review. US Fish Wildlife Serv Biol Rep 85(11):81

    Google Scholar 

  • Ellis MS (2002) Quality of economically extractable coal beds in the Gillette Coal Field as compared with other tertiary coal beds in the Powder River Basin, Wyoming and Montana

  • Ferreira AD, Vaz PA (2004) Wind tunnel study of coal dust release from train wagons. J Wind Eng Ind Aerodyn 92:565–577.

    Article  Google Scholar 

  • Ferreira AD, Viegas DX, Sousa ACM (2003) Full-scale measurements for evaluation of coal dust release from train wagons with two different shelter covers. J Wind Eng Ind Aerodyn 91:1271–1283

    Article  Google Scholar 

  • Goldstein RM, Brigham ME et al (1996) Comparison of mercury concentrations in liver, muscle, whole bodies, and composites of fish from the Red River of the North. Can J Fish Aquat Sci 53(2):244–252

    Article  Google Scholar 

  • Guerrero-Castilla A, Olivero-Verbel J, Sandoval IT, Jones DA (2019) Toxic effects of a methanolic coal dust extract on fish early life stage. Chemosphere 227:100–108

    Article  CAS  Google Scholar 

  • Häkkinen J, Vehniäinen E, Oikari A (2004) High sensitivity of northern pike larvae to UV-B but no UV-photoinduced toxicity of retene. Aquat Toxicol 66:393–404

    Article  CAS  Google Scholar 

  • Hamilton PB, Cowx IG, Oleksiak MF et al (2016) Population-level consequences for wild fish exposed to sublethal concentrations of chemicals–a critical review. Fish Fisheries 17:545–566

    Article  Google Scholar 

  • Harmon SM, Wiley FE (2008) Effects of pollution on freshwater organisms. Water Environ Res 80(10):1892–1917

    Article  CAS  Google Scholar 

  • Hawkins SA et al (2002) Altering cytochrome P4501A activity affects polycyclic aromatic hydrocarbon metabolism and toxicity in rainbow trout (Oncorhynchus mykiss). Environ Toxicol Chem 21:1845–1853

    Article  CAS  Google Scholar 

  • Hogan NS, Lee KS et al (2010) The effects of the alkyl polycyclic aromatic hydrocarbon retene on rainbow trout (Oncorhynchus mykiss) immune response. Aquatic Toxicol 100(3):246–254

    Article  CAS  Google Scholar 

  • Hom T, Collier TK et al (2008). Assessing seafood safety in the aftermath of Hurricane Katrina. In: American fisheries society symposium

  • Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biometrical J 50(3):346–363

    Article  Google Scholar 

  • Incardona JP, Collier TK et al (2004) Defects in cardiac function precede morphological abnormalities in fish embryos exposed to polycyclic aromatic hydrocarbons. Toxicol Appl Pharmacol 196(2):191–205

    Article  CAS  Google Scholar 

  • International Energy Association (2016) Key coal trends. Excerpt from Coal Information (2016 edn) Available at: http://www.iea.org/publications/freepublications/publication/KeyCoalTrends.pdf. Accessed 18 Jan 2017

  • Irwin RJ (ed) (1997) Environmental Contaminants Encyclopedia: Fluoranthene Entry. U.S. National Park Service Water Resources Divisions, Water Operations Branch: Ft. Collins, CO

  • Jaffe D, Putz J et al (2015) Diesel particulate matter and coal dust from trains in the Columbia River Gorge, Washington State, USA. Atmos Pollut Res 6(6):946–952

    Article  Google Scholar 

  • Jakimska A, Konieczka P et al (2011) Bioaccumulation of metals in tissues of marine animals, Part I: the role and impact of heavy metals on organisms. Pol J Environ Stud 20(5):1117–1125

    CAS  Google Scholar 

  • Johnson R, Bustin RM (2006) Coal dust dispersal around a marine coal terminal (1977–1999), British Columbia: the fate of coal dust in the marine environment. Int J Coal Geol 68(1):57–69

    Article  CAS  Google Scholar 

  • Johnson LL, Collier TK et al (2002) An analysis in support of sediment quality thresholds for polycyclic aromatic hydrocarbons (PAHs) to protect estuarine fish. Aquatic Conserv Marine Freshwater Ecosyst 12(5):517–538

    Article  Google Scholar 

  • Johnson LL, Ylitalo GM et al (2007) Contaminant exposure in outmigrant juvenile salmon from Pacific Northwest estuaries of the United States. Environ Monitor Assess 124(1–3):167–194

    Article  CAS  Google Scholar 

  • Johnson LL, Arkoosh MR et al (2008) The effects of polycyclic aromatic hydrocarbons in fish from Puget Sound, Washington. In: di Giulio RT, Hinton DE (eds) The toxicology of fishes. CRC Press, Boca Raton, pp 873–919

    Google Scholar 

  • Johnson LL, Ylitalo GM, Myers MS, Anulacion BF, Buzitis J, Reichert WL, Collier TK (2009) Polycyclic aromatic hydrocarbons and fish health indicators in the marine ecosystem in Kitimat, British Columbia. NOAA Technical Memorandum NMFS-NWFSC-98

  • Johnson LL, Ylitalo GM, Myers MS, Anulacion BF, Buzitis J, Collier TK (2015) Aluminum smelter-derived polycyclic aromatic hydrocarbons and flatfish health in the Kitimat marine ecosystem, British Columbia, Canada. Sci Total Environ 512:227–239

    Article  CAS  Google Scholar 

  • Kohler M et al (2000) Inventory and emission factors of creosote, polycyclic aromatic hydrocarbons (PAH), and phenols from railroad ties treated with creosote. Environ Sci Technol 34:4766–4772

    Article  CAS  Google Scholar 

  • Kolpin DW, Skopec M et al (2004) Urban contribution of pharmaceuticals and other organic wastewater contaminants to streams during differing flow conditions. Sci Total Environ 328(1):119–130

    Article  CAS  Google Scholar 

  • Lanctôt C, Wilson SF et al (2016) Comparative sensitivity of aquatic invertebrate and vertebrate species to wastewater from an operational coal mine in central Queensland, Australia. Ecotoxicol Environ Saf 129:1–9

    Article  CAS  Google Scholar 

  • Lane SL, Radtke DB, Wilde FD, Myers DN (2005) National field manual for the collection of water-quality data. U.S. Geological Survey 2005; Techniques of Water-Resources Investigations Book 9; https://water.usgs.gov/owq/FieldManual/index.html

  • Laumann S, Micić V, Kruge MA, Achten C, Sachsenhofer RF, Schwarzbauer J, Hofmann T (2011) Variations in concentrations and compositions of polycyclic aromatic hydrocarbons (PAHs) in coals related to the coal rank and origin. Environ Pollut 159(10):2690–2697

    Article  CAS  Google Scholar 

  • Legendre P, Legendre L (eds) (1998) Numerical ecology, 3rd edn. Elsevier, Amsterdam, p 1006

    Google Scholar 

  • Lenth RV (2016) Least-squares means: the R Package lsmeans. J Stat Softw 69(1):1–33

    Article  Google Scholar 

  • Leppänen H, Oikari A (2001) Retene and resin acid concentrations in sediment profiles of a lake recovering from exposure to pulp mill effluents. J Paleolimnol 25(3):367–374

    Article  Google Scholar 

  • Levengood JM, Heske EJ et al (2015). Polyaromatic hydrocarbons and elements in sediments associated with a suburban railway. Environ Monitor Assess 187(8)

  • Lewis K (1973) The effect of suspended coal particles on the life forms of the aquatic moss Eurhynchium riparioides (Hedw.). Freshwater Biol 3(3):251–257

    Article  Google Scholar 

  • Lian JJ, Li CL, Ren Y, Cheng TT, Chen JM (2009) Determination of alkyl polycyclic aromatic hydrocarbons in dustfall by supercritical fluid extraction followed by gas chromatography/mass spectrum. Bull Environ Contam Toxicol 82:189–193

    Article  CAS  Google Scholar 

  • Lima AC, Farrington JW, Reddy CM (2005) Combustion-derived polycyclic aromatic hydrocarbons in the environment—a review. Environ Forensics 6(2):109–131

    Article  CAS  Google Scholar 

  • Liu H, Chen LP et al (2009) Heavy metal contamination in soil alongside mountain railway in Sichuan China. Environ Monitor Assess 152(1–4):25–33

    Article  CAS  Google Scholar 

  • Long ER (1992) Ranges in chemical concentrations in sediments associated with adverse biological effects. Mar Pollut Bull 24(1):38–45

    Article  CAS  Google Scholar 

  • Lotufo GR (1998) Bioaccumulation of sediment-associated fluoranthene in benthic copepods: uptake, elimination and biotransformation. Aquat Toxicol 44(1):1–15

    Article  CAS  Google Scholar 

  • Lotufo GR, Fleeger JW (1997) Effects of sediment-associated phenanthrene on survival, development and reproduction of two species of meiobenthic copepods. Mar Ecol Progr Ser 151:91–102

    Article  CAS  Google Scholar 

  • Lovette J (2013) Effects of coal transportation on heavy metal contamination in wetland environments along the Virginia Peninsula

  • MacCoy DE, Black RW (1998) Organic compounds and trace elements in freshwater streambed sediment and fish from the Puget Sound Basin. US Department of the Interior, US Geological Survey

    Book  Google Scholar 

  • Mahler BJ, Van Metre PC et al (2005) Parking lot sealcoat: an unrecognized source of urban polycyclic aromatic hydrocarbons. Environ Sci Technol 39(15):5560–5566

    Article  CAS  Google Scholar 

  • May TW, Brumbaugh WG (2007) Determination of total mercury in whole-body fish and fish muscle plugs collected from the South Fork of the Humboldt River, Nevada, September 2005, Geological Survey (US)

  • Meador J, Stein J et al (1995) Bioaccumulation of polycyclic aromatic hydrocarbons by marine organisms. Rev Environ Contam Toxicol 79-165

  • Meador JP, Buzitis J, Bravo CF (2008) Using fluorescent aromatic compounds in bile from juvenile salmonids to predict exposure to polycyclic aromatic hydrocarbons. Environ Toxicol Chem 27(4):845–853

    Article  CAS  Google Scholar 

  • Meador JP, Warne MSJ et al (2014) Tissue-based environmental quality benchmarks and standards. Environ Sci Pollut Res 21(1):28–32

    Article  CAS  Google Scholar 

  • Meriläinen P, Oikari A (2008) Uptake of organic xenobiotics by benthic invertebrates from sediment contaminated by the pulp and paper industry. Water Res 42(6):1715–1725

    Article  CAS  Google Scholar 

  • Messinger T (2004) Polycyclic Aromatic Hydrocarbons in Bottom Sediment and Bioavailability in Streams in the New River Gorge National River and Gauley River National Recreation Area, West Virginia, 2002. US Department of the Interior, US Geological Survey

    Book  Google Scholar 

  • Morace JL (2012) Reconnaissance of contaminants in selected wastewater-treatment-plant effluent and stormwater runoff entering the Columbia River, Columbia River Basin, Washington and Oregon, 2008–10. US Department of the Interior, US Geological Survey

    Book  Google Scholar 

  • Moret S, Purcaro G, Conte LS (2007) Polycyclic aromatic hydrocarbon (PAH) content of soil and olives collected in areas contaminated with creosote released from old railway ties. Sci Total Environ 386:1–8

    Article  CAS  Google Scholar 

  • Myers MS, Anulacion BF, French BL et al (2008) Improved flatfish health following remediation of a PAH-contaminated site in Eagle Harbor Washington. Aquat Toxicol 88(4):277–288

    Article  CAS  Google Scholar 

  • Naidoo G, Chirkoot D (2004) The effects of coal dust on photosynthetic performance of the mangrove, Avicennia marina in Richards Bay South Africa. Environ Pollut 127(3):359–366

    Article  CAS  Google Scholar 

  • National Oceanic and Atmospheric Administration (NOAA) (2016). NOAA’s National Status and Trends Data: Mussel Watch Program

  • Neff JM, Stout SA et al (2005) Ecological risk assessment of polycyclic aromatic hydrocarbons in sediments: identifying sources and ecological hazard. Integr Environ Assess Manage 1(1):22–33

    Article  CAS  Google Scholar 

  • Newman MC (2014) Fundamentals of ecotoxicology: the science of pollution. CRC Press, Boca Raton

    Book  Google Scholar 

  • Nikkilä A, Kukkonen JV et al (2001) Sediment-associated retene bioavailability of sediment-associated retene to an oligochaete wormlumbriculus variegatus. J Soils Sediments 1(3):137–145

    Article  Google Scholar 

  • Nilsen EB, Black R et al (2017) A baseline assessment of contaminant concentrations in sediment and biota in proximity to coal transport tracks in the Pacific Northwest (2014) U.S. Geological Survey data release. https://doi.org/10.5066/F7KD1WDJ

  • Nilsen EB, Hapke WB et al (2015) Reconnaissance of contaminants in larval Pacific lamprey (Entosphenus tridentatus) tissues and habitats in the Columbia River Basin, Oregon and Washington, USA. Environ Pollut 201:121–130

    Article  CAS  Google Scholar 

  • Nkpaa KW, Wegwu MO et al (2013) Assessment of polycyclic aromatic hydrocarbons (PAHs) levels in two commercially important fish species from crude oil polluted waters of Ogoniland and their carcinogenic health risks. J Environ Earth Sci ISSN 2225-0948 (online) 3(8)

  • Nowell LH, Moran PW et al (2013) Contaminants in stream sediments from seven United States metropolitan areas: part I: distribution in relation to urbanization. Arch Environ Contam Toxicol 64(1):32–51

    Article  CAS  Google Scholar 

  • Nyarko E, Klubi B (2011) Polycyclic aromatic hydrocarbons (PAHs) levels in two commercially important fish species from the coastal waters of Ghana and their carcinogenic health risks. West African J Appl Ecol 19(1)

  • Oikari A, Fragoso N et al (2002) Bioavailability to juvenile rainbow trout (Oncorynchus mykiss) of retene and other m/ixed-function oxygenase-active compounds from sediments. Environ Toxicol Chem 21(1):121–128

    Article  CAS  Google Scholar 

  • Oregon Department of Environmental Quality (ODEQ) (2007) Guidance for Assessing Bioaccumulative Chemicals of Concern in Sediment. Environmental Cleanup Program

  • Peterson SA, Van Sickle J et al (2007) Mercury concentration in fish from streams and rivers throughout the western United States. Environ Sci Technol 41(1):58–65

    Article  CAS  Google Scholar 

  • Radtke DB (2005) Bottom-Material Samples: U.S. Geological, Techniques of Water-Resources Investigations 9-A8, 55 pp. Available at: http://pubs.water.usgs.gov/twri9A8/

  • Reichert WL, Le Eberhart BT et al (1985) Exposure of two species of deposit-feeding amphipods to sediment-associated [3H] benzo [a] pyrene: uptake, metabolism and covalent binding to tissue macromolecules. Aquat Toxicol 6(1):45–56

    Article  CAS  Google Scholar 

  • Ribeiro J, Silva T et al (2012) Polycyclic aromatic hydrocarbons (PAHs) in burning and non-burning coal waste piles. J Hazard Mater 199:05–110

    Google Scholar 

  • Rocher V, Azimi S et al (2004) Hydrocarbons and heavy metals in the different sewer deposits in the ‘Le Marais’ catchment (Paris, France): stocks, distributions and origins. Sci Total Environ 323(1):107–122

    Article  CAS  Google Scholar 

  • Rochman CM, Manzano C et al (2013) Polystyrene plastic: a source and sink for polycyclic aromatic hydrocarbons in the marine environment. Environ Sci Technol 47(24):13976–13984

    Article  CAS  Google Scholar 

  • Sazykin IS et al (2015) Distribution of polycyclic aromatic hydrocarbons in surface sediments of lower reaches of the Don River (Russia) and their ecotoxicologic assessment by bacterial lux-biosensors. Environ Monitor Assess 187:277

    Article  CAS  Google Scholar 

  • Schuler LJ, Landrum PF et al (2004) Time-dependent toxicity of fluoranthene to freshwater invertebrates and the role of biotransformation on lethal body residues. Environ Sci Technol 38(23):6247–6255

    Article  CAS  Google Scholar 

  • Sloan CA, Brown DW et al (2006) Quality assurance plan for analyses of environmental samples for polycyclic aromatic compounds, persistent organic pollutants, fatty acids, stable isotope ratios, lipid classes, and metabolites of polycyclic aromatic compounds. U.S. Department of Commerce, NOAA. Seattle, WA: 30

  • Sloan CA, Anulacion BF et al (2014) Northwest Fisheries Science Center’s Analyses of Tissue, Sediment, and Water Samples for Organic Contaminants by Gas Chromatography/mass Spectrometry and Analyses of Tissue for Lipid Classes by Thin Layer Chromatography/flame Ionization Detection. Department of Commerce, NOAA. Seattle, WA, U.S

    Google Scholar 

  • Soclo HH, Garrigues P et al (2000) Origin of polycyclic aromatic hydrocarbons (PAHs) in coastal marine sediments: case studies in Cotonou (Benin) and Aquitaine (France) areas. Mar Pollut Bull 40(5):387–396

    Article  CAS  Google Scholar 

  • Stewart K, Thompson R (1995) Fluoranthene as a model toxicant in sediment studies with Chironomus riparius. J Aquatic Ecosystem Health 4(4):231–238

    Article  Google Scholar 

  • Stogiannidis E, Laane R (2015) Source characterization of polycyclic aromatic hydrocarbons by using their molecular indices: an overview of possibilities. Rev Enviro Contam Toxicol 234:49–133

    Article  CAS  Google Scholar 

  • Stout SA, Emsbo-Mattingly SD (2008) Concentration and character of PAHs and other hydrocarbons in coals of varying rank: implications for environmental studies of soils and sediments containing particulate coal. Organic Geochem 39(7):801–819

    Article  CAS  Google Scholar 

  • Stout SA, Graan TP (2010) Quantitative source apportionment of PAHs in sediments of Little Menomonee River, Wisconsin: weathered creosote versus urban background. Environ Sci Technol 44(2010):2932–2939

    Article  CAS  Google Scholar 

  • Stout SA, Uhler AD et al (2004) Comparative evaluation of background anthropogenic hydrocarbons in surficial sediments from nine urban waterways. Environ Sci Technol 38(11):2987–2994

    Article  CAS  Google Scholar 

  • R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: http://www.R-project.org/

  • Thorsen WA, Cope WG et al (2004) Bioavailability of PAHs: effects of soot carbon and PAH source. Environ Sci Technol 38(7):2029–2037

    Article  CAS  Google Scholar 

  • Tobiszewski M, Namiesnik J (2012) PAH diagnostic ratios for the identification of pollution emission sources. Environ Pollut 162:110–119

    Article  CAS  Google Scholar 

  • U.S. Bureau of Land Management (BLM) (2009) South Gillette Area Coal Lease Applications Final Environmental Impact Statement BLM Casper Field Office. Casper, WY. 1:649

  • U.S. Energy Information Administration (2013) 25% of U.S. coal exports go to Asia, but remain a small share of Asia’s total coal imports. Today in Energy, June 21, 2013. Available at: http://www.eia.gov/todayinenergy/detail.php?id=11791. Accessed 18 Jan 2017

  • U.S. Energy Information Administration (2015) China and India drive recent changes in world coal trade. Today in Energy, Nov. 20, 2015. Available at: http://www.eia.gov/todayinenergy/detail.php?id=23852. Accessed 18 Jan 2017

  • U.S. Energy Information Administration (2016) Annual Coal Report. Available at: http://www.eia.gov/coal/annual/. Accessed 18 Jan 2017

  • U.S. Energy Information Administration (2017) Coal: coal explained and the environment. Available at: http://www.eia.gov/energyexplained/?page=coal_environment. Accessed 18 Jan 2017

  • U.S. Environmental Protection Agency (U.S. EPA) (2000a) Guidance for assessing chemical contaminant data for use in fish advisories. Office of Science and Technology, Office of Water. Washington, DC. 1

  • U.S. Environmental Protection Agency (U.S. EPA) (2000b) Method 7473, Mercury in solids and solutions by thermal decomposition, amalgamation, and atomic absorption spectrometry: U.S. Environmental Protection Agency, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, Update IVA

  • U.S. Environmental Protection Agency (U.S. EPA) (2001) Method 1630: Methyl mercury in water by distillation, aqueous ethylation, purge and trap, and CVAFS. Draft January 2001. US Environmental Protection Agency, Office of Water, Office of Science and Technology Engineering and Analysis Division (4303) Washington, DC. pp. 1–41

  • U.S. Environmental Protection Agency (U.S. EPA) (2002) Columbia River Basin Fish Contaminant Survey 1996-1998. R. 10. Seattle, WA

  • U.S. Environmental Protection Agency (U.S. EPA) (2014) Priority Pollutant List: 2

  • U.S. Environmental Protection Agency (U.S. EPA) (2015) National Recommended Water Quality Criteria - Human Health Criteria Table. U.S. EPA

  • U.S. Fish and Wildlife Service (2006) Steigerwald Lake, Franz Lake, and Pierce National Wildlife Refuges Comprehensive Conservation Plan. Ridgefield, WA

    Google Scholar 

  • van der Oost R, van Gastel L et al (1994) Biochemical markers in feral roach (Rutilus rutilus) in relation to the bioaccumulation of organic trace pollutants. Chemosphere 29(4):801–817

    Article  Google Scholar 

  • van der Oost R, Beyer J et al (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13(2):57–149

    Article  Google Scholar 

  • Vane CH, Kim AW et al (2014) Polycyclic aromatic hydrocarbons (PAH) and polychlorinated biphenyls (PCB) in urban soils of Greater London, UK. Appl Geochem 51:303–314

    Article  CAS  Google Scholar 

  • Varanasi U, Stein J et al (1992) Chlorinated and aromatic hydrocarbons in bottom sediments, fish and marine mammals in US coastal waters: laboratory and field studies of metabolism and accumulation. Persistent Pollut Mar Ecosys 83–119

  • Wan Michael T (1994) Utility right-of-way contaminants: polycyclic aromatic hydrocarbons. J Environ Qual 23:1297–1304

    Article  CAS  Google Scholar 

  • Wang R, Liu G (2015) Variations of concentration and composition of polycyclic aromatic hydrocarbons in coals in response to dike intrusion in the Huainan coalfield in eastern China. Org Geochem 83:202–214

    Article  CAS  Google Scholar 

  • Ward JR, Harr CA (1990) Methods for collection and processing of surface-water and bed- material samples for physical and chemical analyses. USGS Open-File Report 90-14

  • Washington Department of Ecology (WDOE) (1996) Gibbons Creek Remnant Channel Receiving Water Study. Olympia, WA: 83

  • Washington Department of Ecology (WDOE) (2012) National toxics rule human health criteria for water and equivalent fish tissue concentrations

  • Washington Department of Ecology (WDOE) (2013) Sediment management standards. Olympia, WA

    Google Scholar 

  • Washington Department of Ecology (WDOE) (2016) environmental information management system

  • Western Organizations of Resource Councils (WORC) (2012) Heavy traffic ahead: rail impacts of Powder River Basin coal to Asia by way of Pacific Northwest terminals. Available at: http://www.worc.org/media/Heavy-Traffic-Ahead-web.pdf

  • Wilkomirski B, Sudnik-Wojcikowska B et al (2011) Railway transportation as a serious source of organic and inorganic pollution. Water Air Soil Pollut 218(1–4):333–345

    Article  CAS  Google Scholar 

  • Yanagida GK, Anulacion BF et al (2012) Polycyclic aromatic hydrocarbons and risk to threatened and endangered Chinook salmon in the Lower Columbia River estuary. Arch Environ Contam Toxicol 62(2):282–295

    Article  CAS  Google Scholar 

  • Ylitalo GM, Collier TK, Anulacion BF, Juaire K, Boyer RH, da Silva DAM, Keene JL, Stacy BA (2017) Determining oil and dispersant exposure in sea turtles from the northern Gulf of Mexico resulting from the Deepwater Horizon oil spill. Endang Species Res 33:9–24

    Article  Google Scholar 

  • Yunker MB, Macdonald RW et al (2002) PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org Geochem 33(4):489–515

    Article  CAS  Google Scholar 

  • Yunker MB, Perreault A et al (2012) Source apportionment of elevated PAH concentrations in sediments near deep marine outfalls in Esquimalt and Victoria, BC, Canada: is coal from an 1891 shipwreck the source? Org Geochem 46:12–37

    Article  CAS  Google Scholar 

  • Zemo DA (2009) Use of parent polycyclic aromatic hydrocarbon (PAH) proportions to attribute PAH sources in sediments: a case study from the Pacific Northwest. Environ Forensics 10(3):229–239

    Article  CAS  Google Scholar 

  • Zhang W, Zhang SC et al (2008) Source diagnostics of polycyclic aromatic hydrocarbons in urban road runoff, dust, rain and canopy throughfall. Environ Pollut 153(3):594–601

    Article  CAS  Google Scholar 

  • Zhang H, Wang Z et al (2012) The effects of the Qinghai-Tibet railway on heavy metals enrichment in soils. Sci Total Environ 439:240–248

    Article  CAS  Google Scholar 

  • Zhang G, Pan Z et al (2015) Distribution and accumulation of polycyclic aromatic hydrocarbons (PAHs) in the food web of Nansi Lake China. Environ Monitor Assess 187(4):1–12

    Google Scholar 

  • Zhang L, Bai YS, Wang JZ, Peng SC, Chen TH, Yin DQ (2016) Identification and determination of the contribution of iron–steel manufacturing industry to sediment-associated polycyclic aromatic hydrocarbons (PAHs) in a large shallow lake of eastern China. Environ Sci Pollut Res 23(21):22037–22046

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding for this study was provided by US Geological Survey Northwest Region. This manuscript was greatly improved by thoughtful input from several peer reviewers. Findings and conclusions herein are those of the authors and do not necessarily represent the views of all of the sponsoring organizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena B. Nilsen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hapke, W.B., Black, R.W., Eagles-Smith, C.A. et al. Contaminant Concentrations in Sediments, Aquatic Invertebrates, and Fish in Proximity to Rail Tracks Used for Coal Transport in the Pacific Northwest (USA): A Baseline Assessment. Arch Environ Contam Toxicol 77, 549–574 (2019). https://doi.org/10.1007/s00244-019-00667-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-019-00667-0

Navigation