Skip to main content

Advertisement

Log in

3.0 Tesla normative diffusivity in 3rd trimester fetal brain

  • Paediatric Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

Apparent diffusion coefficient (ADC) values in the developing fetus provide valuable information on the diagnosis and prognosis of prenatal brain pathologies. Normative ADC data has been previously established in 1.5 T MR scanners but lacking in 3.0 T scanners. Our objective was to measure ADC values in various brain areas in a cohort of normal singleton fetuses scanned in a 3.0 T MR scanner.

Methods

DWI (diffusion-weighted imaging) was performed in 47 singleton fetuses with normal or questionably abnormal results on sonography followed by normal structural MR imaging. ADC values were measured in cerebral lobes (frontal, parietal, temporal lobes), basal ganglia, and pons. Regression analysis was used to examine gestational age-related changes in regional ADC.

Results

Median gestational age was 30.1 weeks (range, 26–34 weeks). There was a significant effect of region on ADC values, whereby ADC values were highest in cerebral lobes (parietal > frontal > temporal lobes), compared with basal ganglia. The lowest values were found in the pons. On regression analysis, there was a decrease in ADC values in basal ganglia and pons with increasing gestational age. ADC values in frontal, parietal, and temporal lobes were stable in our cohort.

Conclusion

Regional brain ADC values in 3.0 T scanners are comparable with previously reported values in 1.5 T scanners, with similar changes over gestational age. Using 3.0 T scanners is increasing worldwide. For fetal imaging, establishing normal ADC values is critical as DWI enables a sensitive and quantitative technique to evaluate normal and abnormal brain development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

GA:

Gestational age

SSFSE:

Single-shot fast spin echo

FOV:

Field-of-view

FSPGR:

Fast spoiled gradient echo

FL:

Frontal lobe

PL:

Parietal lobe

TL:

Temporal lobe

BG:

Basal ganglia

ICC:

Intraclass correlation coefficient

WM:

Cerebral white matter

References

  1. Schönberg N, Weisstanner C, Wiest R et al (2020) The influence of various cerebral and extracerebral pathologies on apparent diffusion coefficient values in the fetal brain. J Neuroimaging 30(4):477–485. https://doi.org/10.1111/jon.12727

    Article  PubMed  PubMed Central  Google Scholar 

  2. Moradi B, Nezhad ZA, Saadat NS, Shirazi M, Borhani A, Kazemi MA (2020) Apparent diffusion coefficient of different areas of brain in foetuses with intrauterine growth restriction. Polish J Radiol 85(1):e301–e308. https://doi.org/10.5114/pjr.2020.96950

    Article  Google Scholar 

  3. Victoria T, Johnson AM, Edgar JC, Zarnow DM, Vossough A, Jaramillo D (2016) Comparison between 1.5-T and 3-T MRI for fetal imaging: is there an advantage to imaging with a higher field strength? Am J Roentgenol. 206(1):195–201. https://doi.org/10.2214/AJR.14.14205

    Article  Google Scholar 

  4. Chapman T, Alazraki AL, Eklund MJ (2018) A survey of pediatric diagnostic radiologists in North America: current practices in fetal magnetic resonance imaging. Pediatr Radiol 48(13):1924–1935. https://doi.org/10.1007/s00247-018-4236-3

    Article  PubMed  Google Scholar 

  5. Chartier AL, Bouvier MJ, McPherson DR, Stepenosky JE, Taysom DA, Marks RM (2019) The safety of maternal and fetal MRI at 3 T. Am J Roentgenol 213(5):1170–1173. https://doi.org/10.2214/AJR.19.21400

    Article  Google Scholar 

  6. Jaimes C, Delgado J, Cunnane MB et al (2019) Does 3-T fetal MRI induce adverse acoustic effects in the neonate? A preliminary study comparing postnatal auditory test performance of fetuses scanned at 1.5 and 3 T. Pediatr Radiol. 49(1):37–45. https://doi.org/10.1007/s00247-018-4261-2

    Article  PubMed  Google Scholar 

  7. Hoffmann C, Weisz B, Lipitz S et al (2014) Regional apparent diffusion coefficient values in 3rd trimester fetal brain. Neuroradiology 56(7):561–567. https://doi.org/10.1007/s00234-014-1359-6

    Article  PubMed  Google Scholar 

  8. Schneider MM, Berman JI, Baumer FM et al (2009) Normative apparent diffusion coefficient values in the developing fetal brain. Am J Neuroradiol 30(9):1799–1803. https://doi.org/10.3174/ajnr.A1661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Han R, Huang L, Sun Z et al (2015) Assessment of apparent diffusion coefficient of normal fetal brain development from gestational age week 24 up to term age: a preliminary study. Fetal Diagn Ther 37(2):102–107. https://doi.org/10.1159/000363650

    Article  PubMed  Google Scholar 

  10. Boyer AC, Gonçalves LF, Lee W et al (2013) Magnetic resonance diffusion-weighted imaging: reproducibility of regional apparent diffusion coefficients for the normal fetal brain. Ultrasound Obstet Gynecol 41(2):190–197. https://doi.org/10.1002/uog.11219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Righini A, Bianchini E, Parazzini C et al (2003) Apparent diffusion coefficient determination in normal fetal brain: a prenatal MR imaging study. AJNR Am J Neuroradiol 24(5):799–804. http://www.ncbi.nlm.nih.gov/pubmed/12748074

  12. Berman JI, Hamrick SEG, McQuillen PS et al (2011) Diffusion-weighted imaging in fetuses with severe congenital heart defects. Am J Neuroradiol. 32(2):E21–E22. https://doi.org/10.3174/ajnr.A1975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Manganaro L, Perrone A, Savelli S et al (2007) Valutazione del normale sviluppo encefalico con risonanza magnetica fetale. Radiol Medica 112(3):444–455. https://doi.org/10.1007/s11547-007-0153-5

    Article  CAS  Google Scholar 

  14. Schneider JF, Confort-Gouny S, Le Fur Y et al (2007) Diffusion-weighted imaging in normal fetal brain maturation. Eur Radiol 17(9):2422–2429. https://doi.org/10.1007/s00330-007-0634-x

    Article  CAS  PubMed  Google Scholar 

  15. Matsuoka A, Minato M, Harada M et al (2008) Comparison of 3.0-and 1.5-tesla diffusion-weighted imaging in the visibility of breast cancer. Radiat Med - Med Imaging Radiat Oncol. 26(1):15–20. https://doi.org/10.1007/s11604-007-0187-6

    Article  Google Scholar 

  16. Saremi F, Jalili M, Sefidbakht S et al (2011) Diffusion-weighted imaging of the abdomen at 3 T: image quality comparison with 1.5-T magnet using 3 different imaging sequences. J Comput Assist Tomogr. 35(3):317–325. https://doi.org/10.1097/RCT.0b013e318213ccb0

    Article  PubMed  Google Scholar 

  17. Dale BM, Braithwaite AC, Boll DT, Merkle EM (2010) Field strength and diffusion encoding technique affect the apparent diffusion coefficient measurements in diffusion-weighted imaging of the abdomen. Invest Radiol 45(2):104–108. https://doi.org/10.1097/RLI.0b013e3181c8ceac

    Article  PubMed  Google Scholar 

  18. Rosenkrantz AB, Oei M, Babb JS, Niver BE, Taouli B (2011) Diffusion-weighted imaging of the abdomen at 3.0 Tesla: image quality and apparent diffusion coefficient reproducibility compared with 1.5 Tesla. J Magn Reson Imaging. 33(1):128–135. https://doi.org/10.1002/jmri.22395

    Article  PubMed  Google Scholar 

  19. Sasaki M, Yamada K, Watanabe Y et al (2008) Variability in absolute apparent diffusion coefficient values across different platforms may be substantial: a multivendor, multi-institutional comparison study. Radiology 249(2):624–630. https://doi.org/10.1148/radiol.2492071681

    Article  PubMed  Google Scholar 

  20. Tsujita N, Kai N, Fujita Y et al (2014) Interimager variability in ADC measurement of the human brain. Magn Reson Med Sci 13(2):81–87. https://doi.org/10.2463/mrms.2012-0098

    Article  PubMed  Google Scholar 

  21. Lavdas I, Miquel ME, McRobbie DW, Aboagye EO (2014) Comparison between diffusion-weighted MRI (DW-MRI) at 1.5 and 3 tesla: a phantom study. J Magn Reson Imaging. 40(3):682–690. https://doi.org/10.1002/jmri.24397

    Article  PubMed  Google Scholar 

  22. Yaniv G, Hoffmann C, Weisz B et al (2016) Region-specific reductions in brain apparent diffusion coefficient in cytomegalovirus-infected fetuses. Ultrasound Obstet Gynecol 47(5):600–607. https://doi.org/10.1002/uog.14737

    Article  CAS  PubMed  Google Scholar 

  23. Yaniv G, Katorza E, Bercovitz R et al (2016) Region-specific changes in brain diffusivity in fetal isolated mild ventriculomegaly. Eur Radiol 26(3):840–848. https://doi.org/10.1007/s00330-015-3893-y

    Article  PubMed  Google Scholar 

  24. Shrot S, Soares BP, Whitehead MT (2019) Cerebral diffusivity changes in fetuses with Chiari II malformation. Fetal Diagn Ther 45(4):268–274. https://doi.org/10.1159/000490102

    Article  PubMed  Google Scholar 

  25. Afacan O, Estroff JA, Yang E et al (2019) Fetal echoplanar imaging: promises and challenges. Top Magn Reson Imaging 28(5):245–254. https://doi.org/10.1097/RMR.0000000000000219

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kuhl CK, Textor J, Gieseke J et al (2005) Acute and subacute ischemic stroke at high-field-strength (3.0-T) diffusion-weighted MR imaging: intraindividual comparative study. Radiology. 234(2):509–516. https://doi.org/10.1148/radiol.2342031323

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Segev.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study was approved by the institutional research committee.

Informed consent

A waiver for informed consent was approved by the institutional research committee.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Segev, M., Djurabayev, B., Katorza, E. et al. 3.0 Tesla normative diffusivity in 3rd trimester fetal brain. Neuroradiology 64, 1249–1254 (2022). https://doi.org/10.1007/s00234-021-02863-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-021-02863-z

Keywords

Navigation