Skip to main content

Advertisement

Log in

Understanding brain resilience in superagers: a systematic review

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

Superagers are older adults presenting excellent memory performance that may reflect resilience to the conventional pathways of aging. Our contribution aims to shape the evidence body of the known distinctive biomarkers of superagers and their connections with the Brain and Cognitive Reserve and Brain Maintenance concepts.

Methods

We performed a systematic literature search in PubMed and ScienceDirect with no limit on publication date for studies that evaluated potential biomarkers in superagers classified by validated neuropsychological tests. Methodological quality was assessed using the QUADAS-2 tool.

Results

Twenty-one studies were included, the majority in neuroimaging, followed by histological, genetic, cognition, and a single one on blood plasma analysis. Superagers exhibited specific regions of cortical preservation, rather than global cortical maintenance, standing out the anterior cingulate and hippocampus regions. Both superagers and controls showed similar levels of amyloid deposition. Moreover, the functional oscillation patterns in superagers resembled those described in young adults. Most of the quality assessment for the included studies showed medium risks of bias.

Conclusion

This systematic review supports selective cortical preservation in superagers, comprehending regions of the default mode, and salience networks, overlapped by stronger functional connectivity. In this context, the anterior cingulate cortex is highlighted as an imaging and histologic signature of these subjects. Besides, the biomarkers included pointed out that the Brain and Cognitive Reserve and Brain Maintenance concepts are independent and complementary in the superagers’ setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ACC:

Anterior cingulate cortex

AMC:

Age-matched controls

DMN:

Default mode network

MAC:

Middle-age controls

PiB:

Pittsburgh Compound B

SA:

Superagers

SN:

Salience network

y:

Years old

YC:

young controls

References

  1. Borelli WV, Carmona KC, Studart-Neto A, Nitrini R, Caramelli P, da Costa JC (2018) Operationalized definition of older adults with high cognitive performance. Dement Neuropsychol 12:221–227. https://doi.org/10.1590/1980-57642018dn12-030001

    Article  PubMed  PubMed Central  Google Scholar 

  2. Stern Y (2009) Cognitive reserve. Neuropsychologia. 47:2015–2028. https://doi.org/10.1016/j.neuropsychologia.2009.03.004

    Article  PubMed  PubMed Central  Google Scholar 

  3. Nyberg L, Lövdén M, Riklund K, Lindenberger U, Bäckman L (2012) Memory aging and brain maintenance. Trends Cogn Sci 16:292–305. https://doi.org/10.1016/j.tics.2012.04.005

    Article  PubMed  Google Scholar 

  4. Solé-Padullés C, Bartrés-Faz D, Junqué C, Vendrell P, Rami L, Clemente IC, Bosch B, Villar A, Bargalló N, Jurado MA, Barrios M, Molinuevo JL (2009) Brain structure and function related to cognitive reserve variables in normal aging, mild cognitive impairment and Alzheimer’s disease. Neurobiol Aging 30:1114–1124. https://doi.org/10.1016/j.neurobiolaging.2007.10.008

    Article  CAS  PubMed  Google Scholar 

  5. Whalley LJ, Staff RT, Fox HC, Murray AD (2016) Cerebral correlates of cognitive reserve. Psychiatry Res Neuroimaging 247:65–70. https://doi.org/10.1016/j.pscychresns.2015.10.012

    Article  PubMed  Google Scholar 

  6. Harrison SL, Sajjad A, Bramer WM, Ikram MA, Tiemeier H, Stephan BCM (2015) Exploring strategies to operationalize cognitive reserve: a systematic review of reviews. J Clin Exp Neuropsychol 37:253–264. https://doi.org/10.1080/13803395.2014.1002759

    Article  PubMed  Google Scholar 

  7. Steffener J, Stern Y (2012) Exploring the neural basis of cognitive reserve in aging. Biochim Biophys Acta (BBA) Mol Basis Dis:467–473. https://doi.org/10.1016/j.bbadis.2011.09.012

  8. Harrison TM, Weintraub S, Mesulam M-M, Rogalski E (2012) Superior memory and higher cortical volumes in unusually successful cognitive aging. J Int Neuropsychol Soc 18:1081–1085. https://doi.org/10.1017/S1355617712000847

    Article  PubMed  PubMed Central  Google Scholar 

  9. Pudas S, Persson J, Josefsson M, de Luna X, Nilsson L-G, Nyberg L (2013) Brain characteristics of individuals resisting age-related cognitive decline over two decades. J Neurosci 33:8668–8677. https://doi.org/10.1523/JNEUROSCI.2900-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gefen T, Peterson M, Papastefan ST, Martersteck A, Whitney K, Rademaker A, Bigio EH, Weintraub S, Rogalski E, Mesulam MM, Geula C (2015) Morphometric and histologic substrates of cingulate integrity in elders with exceptional memory capacity. J Neurosci 35:1781–1791. https://doi.org/10.1523/JNEUROSCI.2998-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yang Z, Wen W, Jiang J, Crawford JD, Reppermund S, Levitan C, Slavin MJ, Kochan NA, Richmond RL, Brodaty H, Trollor JN, Sachdev PS (2016) Age-associated differences on structural brain MRI in nondemented individuals from 71 to 103 years. Neurobiol Aging 40:86–97. https://doi.org/10.1016/j.neurobiolaging.2016.01.006

    Article  PubMed  Google Scholar 

  12. Sun FW, Stepanovic MR, Andreano J, Barrett LF, Touroutoglou A, Dickerson BC (2016) Youthful brains in older adults: preserved neuroanatomy in the default mode and salience networks contributes to youthful memory in superaging. J Neurosci 36:9659–9668. https://doi.org/10.1523/JNEUROSCI.1492-16.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cook AH, Sridhar J, Ohm D, Rademaker A, Mesulam M-M, Weintraub S, Rogalski E (2017) Rates of cortical atrophy in adults 80 years and older with superior vs average episodic memory. JAMA. 317:1373–1375. https://doi.org/10.1001/jama.2017.0627

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lin F, Ren P, Mapstone M, Meyers SP, Porsteinsson A, Baran TM, Alzheimer's Disease Neuroimaging Initiative (2017) The cingulate cortex of older adults with excellent memory capacity. Cortex. 86:83–92. https://doi.org/10.1016/j.cortex.2016.11.009

    Article  PubMed  Google Scholar 

  15. Dekhtyar M, Papp KV, Buckley R, Jacobs HIL, Schultz AP, Johnson KA, Sperling RA, Rentz DM (2017) Neuroimaging markers associated with maintenance of optimal memory performance in late-life. Neuropsychologia. 100:164–170. https://doi.org/10.1016/j.neuropsychologia.2017.04.037

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wang X, Ren P, Baran TM, Raizada RDS, Mapstone M, Lin F et al (2017) Longitudinal functional brain mapping in Supernormals. Cereb Cortex 29(1):242–252. https://doi.org/10.1093/cercor/bhx322

  17. Harrison TM, Maass A, Baker SL, Jagust WJ (2018) Brain morphology, cognition, and β-amyloid in older adults with superior memory performance. Neurobiol Aging 67:162–170. https://doi.org/10.1016/j.neurobiolaging.2018.03.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Baran TM, Lin FV (2018) Alzheimer’s disease neuroimaging initiative. Amyloid and FDG PET of successful cognitive aging: Global and cingulate-specific differences. J Alzheimers Dis 66:307–318. https://doi.org/10.3233/JAD-180360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dang C, Yassi N, Harrington KD, Xia Y, Lim YY, Ames D et al (2019) Rates of age- and amyloid β-associated cortical atrophy in older adults with superior memory performance. Alzheimer’s Dement Diagn Assess Dis Monit:566–575. https://doi.org/10.1016/j.dadm.2019.05.005

  20. Zhang J, Andreano JM, Dickerson BC, Touroutoglou A, Barrett LF (2020) Stronger functional connectivity in the default mode and salience networks is associated with youthful memory in superaging. Cereb Cortex 30:72–84. https://doi.org/10.1093/cercor/bhz071

    Article  PubMed  Google Scholar 

  21. Janeczek M, Gefen T, Samimi M, Kim G, Weintraub S, Bigio E, Rogalski E, Mesulam MM, Geula C (2018) Variations in acetylcholinesterase activity within human cortical pyramidal neurons across age and cognitive trajectories. Cereb Cortex 28:1329–1337. https://doi.org/10.1093/cercor/bhx047

    Article  PubMed  Google Scholar 

  22. Gefen T, Papastefan ST, Rezvanian A, Bigio EH, Weintraub S, Rogalski E, Mesulam MM, Geula C (2018) Von Economo neurons of the anterior cingulate across the lifespan and in Alzheimer’s disease. Cortex. 99:69–77. https://doi.org/10.1016/j.cortex.2017.10.015

    Article  PubMed  Google Scholar 

  23. Rogalski E, Gefen T, Mao Q, Connelly M, Weintraub S, Geula C, Bigio EH, Mesulam MM (2019) Cognitive trajectories and spectrum of neuropathology in S uper A gers: the first 10 cases. Hippocampus. 29:458–467. https://doi.org/10.1002/hipo.22828

    Article  PubMed  Google Scholar 

  24. Gefen T, Shaw E, Whitney K, Martersteck A, Stratton J, Rademaker A, Weintraub S, Mesulam MM, Rogalski E (2014) Longitudinal neuropsychological performance of cognitive SuperAgers. J Am Geriatr Soc 62:1598–1600. https://doi.org/10.1111/jgs.12967

    Article  PubMed  PubMed Central  Google Scholar 

  25. Cook Maher A, Kielb S, Loyer E, Connelley M, Rademaker A, Mesulam M-M, Weintraub S, McAdams D, Logan R, Rogalski E (2017) Psychological well-being in elderly adults with extraordinary episodic memory. PLoS One 12:e0186413. https://doi.org/10.1371/journal.pone.0186413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rogalski EJ, Gefen T, Shi J, Samimi M, Bigio E, Weintraub S, Geula C, Mesulam MM (2013) Youthful memory capacity in old brains: anatomic and genetic clues from the Northwestern SuperAging Project. J Cogn Neurosci 25:29–36. https://doi.org/10.1162/jocn_a_00300

    Article  PubMed  PubMed Central  Google Scholar 

  27. Huentelman MJ, Piras IS, Siniard AL, De Both MD, Richholt RF, Balak CD et al (2018) Associations of MAP2K3 gene variants with superior memory in SuperAgers. Front Aging Neurosci 10:155. https://doi.org/10.3389/fnagi.2018.00155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mapstone M, Lin F, Nalls MA, Cheema AK, Singleton AB, Fiandaca MS, Federoff HJ (2017) What success can teach us about failure: the plasma metabolome of older adults with superior memory and lessons for Alzheimer’s disease. Neurobiol Aging 51:148–155. https://doi.org/10.1016/j.neurobiolaging.2016.11.007

    Article  CAS  PubMed  Google Scholar 

  29. Whiting PF, Rutjes AWS, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, Leeflang MM, Sterne JA, Bossuyt PM, QUADAS-2 Group (2011) QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155:529–536. https://doi.org/10.7326/0003-4819-155-8-201110180-00009

    Article  PubMed  Google Scholar 

  30. Barulli D, Stern Y (2013) Efficiency, capacity, compensation, maintenance, plasticity: emerging concepts in cognitive reserve. Trends Cogn Sci 17:502–509. https://doi.org/10.1016/j.tics.2013.08.012

    Article  PubMed  Google Scholar 

  31. Habeck C, Razlighi Q, Gazes Y, Barulli D, Steffener J, Stern Y (2017) Cognitive reserve and brain maintenance: orthogonal concepts in theory and practice. Cereb Cortex 27:3962–3969. https://doi.org/10.1093/cercor/bhw208

    Article  CAS  PubMed  Google Scholar 

  32. Raz N, Gunning-Dixon F, Head D, Rodrigue KM, Williamson A, Acker JD (2004) Aging, sexual dimorphism, and hemispheric asymmetry of the cerebral cortex: replicability of regional differences in volume. Neurobiol Aging 25:377–396. https://doi.org/10.1016/S0197-4580(03)00118-0

    Article  PubMed  Google Scholar 

  33. Walhovd KB, Westlye LT, Amlien I, Espeseth T, Reinvang I, Raz N, Agartz I, Salat DH, Greve DN, Fischl B, Dale AM, Fjell AM (2011) Consistent neuroanatomical age-related volume differences across multiple samples. Neurobiol Aging 32:916–932. https://doi.org/10.1016/j.neurobiolaging.2009.05.013

    Article  PubMed  Google Scholar 

  34. Arenaza-Urquijo EM, Przybelski SA, Lesnick TL, Graff-Radford J, Machulda MM, Knopman DS et al (2019) The metabolic brain signature of cognitive resilience in the 80: beyond Alzheimer pathologies. Brain:1134–1147. https://doi.org/10.1093/brain/awz037

  35. Hedden T, Oh H, Younger AP, Patel TA (2013) Meta-analysis of amyloid-cognition relations in cognitively normal older adults. Neurology. 80:1341–1348. https://doi.org/10.1212/WNL.0b013e31828ab35d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mormino EC (2014) The relevance of beta-amyloid on markers of Alzheimer’s disease in clinically normal individuals and factors that influence these associations. Neuropsychol Rev 24:300–312. https://doi.org/10.1007/s11065-014-9267-4

    Article  PubMed  PubMed Central  Google Scholar 

  37. Donohue MC, Sperling RA, Petersen R, Sun C-K, Weiner MW, Aisen PS, for the Alzheimer’s Disease Neuroimaging Initiative (2017) Association between elevated brain amyloid and subsequent cognitive decline among cognitively normal persons. JAMA. 317:2305–2316. https://doi.org/10.1001/jama.2017.6669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Landau SM, Mintun MA, Joshi AD, Koeppe RA, Petersen RC, Aisen PS et al (2012) Amyloid deposition, hypometabolism, and longitudinal cognitive decline. Ann Neurol:578–586. https://doi.org/10.1002/ana.23650

  39. Wirth M, Oh H, Mormino EC, Markley C, Landau SM, Jagust WJ (2013) The effect of amyloid β on cognitive decline is modulated by neural integrity in cognitively normal elderly. Alzheimers Dement 9:687–698.e1. https://doi.org/10.1016/j.jalz.2012.10.012

    Article  PubMed  Google Scholar 

  40. Cabeza R (2002) Hemispheric asymmetry reduction in older adults: the HAROLD model. Psychol Aging 17:85–100. https://doi.org/10.1037//0882-7974.17.1.85

  41. Davis SW, Dennis NA, Daselaar SM, Fleck MS, Cabeza R (2008) Que PASA? The posterior-anterior shift in aging. Cerebral Cortex:1201–1209. https://doi.org/10.1093/cercor/bhm155

  42. Park DC, Reuter-Lorenz P (2009) The adaptive brain: aging and neurocognitive scaffolding. Annu Rev Psychol 60:173–196. https://doi.org/10.1146/annurev.psych.59.103006.093656

    Article  PubMed  PubMed Central  Google Scholar 

  43. O’Brien JL, O’Keefe KM, LaViolette PS, DeLuca AN, Blacker D, Dickerson BC et al (2010) Longitudinal fMRI in elderly reveals loss of hippocampal activation with clinical decline. Neurology. 74:1969–1976. https://doi.org/10.1212/WNL.0b013e3181e3966e

    Article  PubMed  PubMed Central  Google Scholar 

  44. Eyler LT, Sherzai A, Kaup AR, Jeste DV (2011) A review of functional brain imaging correlates of successful cognitive aging. Biol Psychiatry 70:115–122. https://doi.org/10.1016/j.biopsych.2010.12.032

    Article  PubMed  PubMed Central  Google Scholar 

  45. Casaletto KB, Elahi FM, Staffaroni AM, Walters S, Contreras WR, Wolf A, Dubal D, Miller B, Yaffe K, Kramer JH (2019) Cognitive aging is not created equally: differentiating unique cognitive phenotypes in “normal” adults. Neurobiol Aging 77:13–19. https://doi.org/10.1016/j.neurobiolaging.2019.01.007

    Article  PubMed  PubMed Central  Google Scholar 

  46. Düzel E, Schütze H, Yonelinas AP, Heinze H-J (2011) Functional phenotyping of successful aging in long-term memory: preserved performance in the absence of neural compensation. Hippocampus. 21:803–814. https://doi.org/10.1002/hipo.20834

  47. Nyberg L, Salami A, Andersson M, Eriksson J, Kalpouzos G, Kauppi K et al (2010) Longitudinal evidence for diminished frontal cortex function in aging. Proc Natl Acad Sci:22682–22686. https://doi.org/10.1073/pnas.1012651108

  48. Blacker D, Tanzi RE (1998) The genetics of Alzheimer disease: current status and future prospects. Arch Neurol 55:294–296. https://doi.org/10.1001/archneur.55.3.294

    Article  CAS  PubMed  Google Scholar 

  49. Caselli RJ, Dueck AC, Osborne D, Sabbagh MN, Connor DJ, Ahern GL, Baxter LC, Rapcsak SZ, Shi J, Woodruff BK, Locke DEC, Snyder CH, Alexander GE, Rademakers R, Reiman EM (2009) Longitudinal modeling of age-related memory decline and the APOE epsilon4 effect. N Engl J Med 361:255–263. https://doi.org/10.1056/NEJMoa0809437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yokoyama JS, Sturm VE, Bonham LW, Klein E, Arfanakis K, Yu L et al (2015) Variation in longevity geneKLOTHOis associated with greater cortical volumes. Ann Clin Transl Neurol:215–230. https://doi.org/10.1002/acn3.161

Download references

Acknowledgments

We thank Charlesworth, Author Services, for scientific language editing.

Funding

No funding was received for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laiz Laura de Godoy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study informed consent is not required.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key Points

• Superagers showed selective cortical preservation in some DMN and SN regions, overlapped by stronger functional connectivity akin to young adults (Cognitive Reserve and Brain Maintenance).

• The anterior cingulate cortex is a key structure of superagers in different biomarkers' sources (structural and functional MRI and histological studies).

• Levels of amyloid deposition were not related to the superager subjects, pointing out that brain resilience may be partially independent of neurodegeneration (Brain and Cognitive Reserve).

• Brain and Cognitive Reserve and Brain Maintenance concepts tend to exert independent and complementary roles in the setting of superagers.

Electronic supplementary material

ESM 1

(DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Godoy, L.L., Alves, C.A.P.F., Saavedra, J.S.M. et al. Understanding brain resilience in superagers: a systematic review. Neuroradiology 63, 663–683 (2021). https://doi.org/10.1007/s00234-020-02562-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-020-02562-1

Keywords

Navigation