Skip to main content

Advertisement

Log in

Comparing the effect of fluoxetine, escitalopram, and sertraline, on the level of BDNF and depression in preclinical and clinical studies: a systematic review

  • Review
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Brain-derived neurotrophic factor (BDNF) dysfunction is one of the most important mechanisms underlying depression. It seems that selective serotonin reuptake inhibitors (SSRIs) improve depression via affecting BDNF level. In this systematic review, for the first time, we aimed to review the effect of three SSRIs including fluoxetine, escitalopram, and sertraline, on both depression and BDNF level in preclinical and clinical studies. PubMed electronic database was searched, and 193 articles were included in this study. After reviewing all manuscripts, only one important difference was found: subjects. We found that SSRIs induce different effects in animals vs. humans. Preclinical studies showed many controversial effects, while human studies showed only two effects: improvement of depression, with or without the improvement of BDNF. However, most studies used chronic SSRIs treatment, while acute SSRIs were not effectively used and evaluated. In conclusion, it seems that SSRIs are reliable antidepressants, and the improvement effect of SSRIs on depression is not dependent to BDNF level (at least in human studies).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

N/A.

References

  1. Malhi GS, Mann JJ (2018) Depression Lancet 392(10161):2299–2312. https://doi.org/10.1016/S0140-6736(18)31948-2

    Article  PubMed  Google Scholar 

  2. Tang Y, Wang H, Nie K, Gao Y, Su H, Wang Z, Lu F, Huang W, Dong H (2022) Traditional herbal formula Jiao-tai-wan improves chronic restrain stress-induced depression-like behaviors in mice. Biomed Pharmacother 153:113284. https://doi.org/10.1016/j.biopha.2022.113284

    Article  CAS  PubMed  Google Scholar 

  3. Zhou Z, Chen H, Tang X, He B, Gu L, Feng H (2022) Total saikosaponins attenuates depression-like behaviors induced by chronic unpredictable mild stress in rats by regulating the PI3K/AKT/NF-kappaB signaling axis. Evid Based Complement Alternat Med 2022:4950414. https://doi.org/10.1155/2022/4950414

    Article  PubMed  PubMed Central  Google Scholar 

  4. Shin J, Lee J, Choi J, Ahn BT, Jang SC, You SW, Koh DY, Maeng S, Cha SY (2022) Rapid-onset antidepressant-like effect of Nelumbinis semen in social hierarchy stress model of depression. Evid Based Complement Alternat Med 2022:6897359. https://doi.org/10.1155/2022/6897359

    Article  PubMed  PubMed Central  Google Scholar 

  5. Baxter AJ, Scott KM, Ferrari AJ, Norman RE, Vos T, Whiteford HA (2014) Challenging the myth of an “epidemic” of common mental disorders: trends in the global prevalence of anxiety and depression between 1990 and 2010. Depress Anxiety 31(6):506–516. https://doi.org/10.1002/da.22230

    Article  PubMed  Google Scholar 

  6. Leonard BE (2018) Inflammation and depression: a causal or coincidental link to the pathophysiology? Acta Neuropsychiatr 30(1):1–16. https://doi.org/10.1017/neu.2016.69

    Article  PubMed  Google Scholar 

  7. Dantzer R (2017) Role of the kynurenine metabolism pathway in inflammation-induced depression: preclinical approaches. Curr Top Behav Neurosci 31:117–138. https://doi.org/10.1007/7854_2016_6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Haroon E, Miller AH (2017) Inflammation effects on brain glutamate in depression: mechanistic considerations and treatment implications. Curr Top Behav Neurosci 31:173–198. https://doi.org/10.1007/7854_2016_40

    Article  CAS  PubMed  Google Scholar 

  9. Looti Bashiyan M, Nasehi M, Vaseghi S, Khalifeh S (2021) Investigating the effect of crocin on memory deficits induced by total sleep deprivation (TSD) with respect to the BDNF, TrkB and ERK levels in the hippocampus of male Wistar rats. J Psychopharmacol:2698811211000762. https://doi.org/10.1177/02698811211000762

  10. Phillips C (2017) Brain-derived neurotrophic factor, depression, and physical activity: making the neuroplastic connection. Neural Plast 2017:7260130. https://doi.org/10.1155/2017/7260130

    Article  CAS  PubMed  Google Scholar 

  11. Wang D (2011) The influence of hippocampus and neurotransmitters on the pathological mechanism of depression. Journal of Xi’an University (Natural Science Edition) 14(2):9–13

    CAS  Google Scholar 

  12. Ebrahimnejad M, Azizi P, Alipour V, Zarrindast MR, Vaseghi S (2022) Complicated role of exercise in modulating memory: a discussion of the mechanisms involved. Neurochem Res. https://doi.org/10.1007/s11064-022-03552-w

    Article  PubMed  Google Scholar 

  13. Dwivedi Y (2009) Brain-derived neurotrophic factor: role in depression and suicide. Neuropsychiatr Dis Treat 5:433–449. https://doi.org/10.2147/ndt.s5700

    Article  CAS  PubMed  Google Scholar 

  14. Mendez-David I, Guilloux JP, Papp M, Tritschler L, Mocaer E, Gardier AM, Bretin S, David DJ (2017) S 47445 produces antidepressant- and anxiolytic-like effects through neurogenesis dependent and independent mechanisms. Front Pharmacol 8:462. https://doi.org/10.3389/fphar.2017.00462

    Article  CAS  PubMed  Google Scholar 

  15. Duman RS, Monteggia LM (2006) A neurotrophic model for stress-related mood disorders. Biol Psychiatry 59(12):1116–1127. https://doi.org/10.1016/j.biopsych.2006.02.013

    Article  CAS  PubMed  Google Scholar 

  16. Autry AE, Monteggia LM (2012) Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol Rev 64(2):238–258. https://doi.org/10.1124/pr.111.005108

    Article  CAS  PubMed  Google Scholar 

  17. Russo-Neustadt A, Beard RC, Cotman CW (1999) Exercise, antidepressant medications, and enhanced brain derived neurotrophic factor expression. Neuropsychopharmacology 21(5):679–682. https://doi.org/10.1016/S0893-133X(99)00059-7

    Article  CAS  PubMed  Google Scholar 

  18. Wang D, Li T, Han X, He W, Yan Y (2021) Xingnao Jieyu decoction reduces neuroinflammation through the NF-kappaB pathway to improve poststroke depression. Evid Based Complement Alternat Med 2021:8629714. https://doi.org/10.1155/2021/8629714

    Article  PubMed  Google Scholar 

  19. Serebruany VL, Suckow RF, Cooper TB, O’Connor CM, Malinin AI, Krishnan KR, van Zyl LT, Lekht V, Glassman AH, Randomized SAHA, T, (2005) Relationship between release of platelet/endothelial biomarkers and plasma levels of sertraline and N-desmethylsertraline in acute coronary syndrome patients receiving SSRI treatment for depression. Am J Psychiatry 162(6):1165–1170. https://doi.org/10.1176/appi.ajp.162.6.1165

    Article  PubMed  Google Scholar 

  20. DeLucia V, Kelsberg G, Safranek S (2016) Which SSRIs most effectively treat depression in adolescents? J Fam Pract 65(9):632–634

    PubMed  Google Scholar 

  21. Vermetten E, Vythilingam M, Schmahl C, C DEK, Southwick SM, Charney DS, Bremner JD, (2006) Alterations in stress reactivity after long-term treatment with paroxetine in women with posttraumatic stress disorder. Ann N Y Acad Sci 1071:184–202. https://doi.org/10.1196/annals.1364.014

    Article  CAS  PubMed  Google Scholar 

  22. Locher C, Koechlin H, Zion SR, Werner C, Pine DS, Kirsch I, Kessler RC, Kossowsky J (2017) Efficacy and safety of selective serotonin reuptake inhibitors, serotonin-norepinephrine reuptake inhibitors, and placebo for common psychiatric disorders among children and adolescents: a systematic review and meta-analysis. JAMA Psychiat 74(10):1011–1020. https://doi.org/10.1001/jamapsychiatry.2017.2432

    Article  Google Scholar 

  23. Chu A, Wadhwa R (2022) Selective serotonin reuptake inhibitors. In: StatPearls [Internet]. StatPearls Publishing,

  24. Edinoff AN, Akuly HA, Hanna TA, Ochoa CO, Patti SJ, Ghaffar YA, Kaye AD, Viswanath O, Urits I, Boyer AG, Cornett EM, Kaye AM (2021) Selective serotonin reuptake inhibitors and adverse effects: a narrative review. Neurol Int 13(3):387–401. https://doi.org/10.3390/neurolint13030038

    Article  CAS  PubMed  Google Scholar 

  25. Kang Z, Ye H, Chen T, Zhang P (2021) Effect of electroacupuncture at siguan acupoints on expression of BDNF and TrkB proteins in the hippocampus of post-stroke depression rats. J Mol Neurosci 71(10):2165–2171. https://doi.org/10.1007/s12031-021-01844-4

    Article  CAS  PubMed  Google Scholar 

  26. Hu W, Xie G, Zhou T, Tu J, Zhang J, Lin Z, Zhang H, Gao L (2020) Intranasal administration of white tea alleviates the olfactory function deficit induced by chronic unpredictable mild stress. Pharm Biol 58(1):1221–1228. https://doi.org/10.1080/13880209.2020.1855213

    Article  CAS  PubMed  Google Scholar 

  27. Dionisie V, Ciobanu AM, Toma VA, Manea MC, Baldea I, Olteanu D, Sevastre-Berghian A, Clichici S, Manea M, Riga S, Filip GA (2021) Escitalopram targets oxidative stress, caspase-3, BDNF and MeCP2 in the hippocampus and frontal cortex of a rat model of depression induced by chronic unpredictable mild stress. Int J Mol Sci 22 (14). https://doi.org/10.3390/ijms22147483

  28. Zhang F, Zhu X, Yu P, Sheng T, Wang Y, Ye Y (2022) Crocin ameliorates depressive-like behaviors induced by chronic restraint stress via the NAMPT-NAD(+)-SIRT1 pathway in mice. Neurochem Int 157:105343. https://doi.org/10.1016/j.neuint.2022.105343

    Article  CAS  PubMed  Google Scholar 

  29. Xu Y, Wei H, Zhu Y, Zhu Y, Zhang N, Qin J, Zhu X, Yu M, Li Y (2019) Potential serum biomarkers for the prediction of the efficacy of escitalopram for treating depression. J Affect Disord 250:307–312. https://doi.org/10.1016/j.jad.2019.03.008

    Article  CAS  PubMed  Google Scholar 

  30. Abdallah MS, Mosalam EM, Zidan AA, Elattar KS, Zaki SA, Ramadan AN, Ebeid AM (2020) The antidiabetic metformin as an adjunct to antidepressants in patients with major depressive disorder: a proof-of-concept, randomized, double-blind, placebo-controlled trial. Neurotherapeutics 17(4):1897–1906. https://doi.org/10.1007/s13311-020-00878-7

    Article  CAS  PubMed  Google Scholar 

  31. Sagud M, Nikolac Perkovic M, Dvojkovic A, Jaksic N, Vuksan-Cusa B, Zivkovic M, Kusevic Z, Mihaljevic-Peles A, Pivac N (2021) Distinct association of plasma BDNF concentration and cognitive function in depressed patients treated with vortioxetine or escitalopram. Psychopharmacology 238(6):1575–1584. https://doi.org/10.1007/s00213-021-05790-2

    Article  CAS  PubMed  Google Scholar 

  32. Dvojkovic A, Nikolac Perkovic M, Sagud M, Nedic Erjavec G, Mihaljevic Peles A, Svob Strac D, Vuksan Cusa B, Tudor L, Kusevic Z, Konjevod M, Zivkovic M, Jevtovic S, Pivac N (2021) Effect of vortioxetine vs. escitalopram on plasma BDNF and platelet serotonin in depressed patients. Prog Neuropsychopharmacol Biol Psychiatry 105:110016. https://doi.org/10.1016/j.pnpbp.2020.110016

  33. Feng Z, Ma X, Meng S, Wang H, Zhou X, Shi M, Zhao J (2020) Wenyang Jieyu decoction alleviates depressive behavior in the rat model of depression via regulation of the intestinal microbiota. Evid Based Complement Alternat Med 2020:3290450. https://doi.org/10.1155/2020/3290450

    Article  PubMed  Google Scholar 

  34. Yu Z, Kong D, Liang Y, Zhao X, Du G (2021) Protective effects of VMY-2-95 on corticosterone-induced injuries in mice and cellular models. Acta Pharm Sin B 11(7):1903–1913. https://doi.org/10.1016/j.apsb.2021.03.002

    Article  CAS  PubMed  Google Scholar 

  35. Skibinska M, Kapelski P, Rajewska-Rager A, Pawlak J, Szczepankiewicz A, Narozna B, Twarowska-Hauser J, Dmitrzak-Weglarz M (2018) Brain-derived neurotrophic factor (BDNF) serum level in women with first-episode depression, correlation with clinical and metabolic parameters. Nord J Psychiatry 72(3):191–196. https://doi.org/10.1080/08039488.2017.1415373

    Article  PubMed  Google Scholar 

  36. Zadeh AR, Eghbal AF, Mirghazanfari SM, Ghasemzadeh MR, Nassireslami E, Donyavi V (2022) Nigella sativa extract in the treatment of depression and serum brain-derived neurotrophic factor (BDNF) levels. J Res Med Sci 27:28. https://doi.org/10.4103/jrms.jrms_823_21

    Article  CAS  PubMed  Google Scholar 

  37. Oh HM, Lee JS, Kim SW, Oh YT, Kim WY, Lee SB, Cho YR, Jeon YJ, Cho JH, Son CG (2019) Uwhangchungsimwon, a standardized herbal drug, exerts an anti-depressive effect in a social isolation stress-induced mouse model. Front Pharmacol 10:1674. https://doi.org/10.3389/fphar.2019.01674

    Article  CAS  PubMed  Google Scholar 

  38. Abd-Rabo MM, Georgy GS, Saied NM, Hassan WA (2019) Involvement of the serotonergic system and neuroplasticity in the antidepressant effect of curcumin in ovariectomized rats: comparison with oestradiol and fluoxetine. Phytother Res 33(2):387–396. https://doi.org/10.1002/ptr.6232

    Article  CAS  PubMed  Google Scholar 

  39. Hutton B, Salanti G, Caldwell DM, Chaimani A, Schmid CH, Cameron C, Ioannidis JP, Straus S, Thorlund K, Jansen JP, Mulrow C, Catala-Lopez F, Gotzsche PC, Dickersin K, Boutron I, Altman DG, Moher D (2015) The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations. Ann Intern Med 162(11):777–784. https://doi.org/10.7326/M14-2385

    Article  PubMed  Google Scholar 

  40. Naomi R, Ardhani R, Hafiyyah OA, Fauzi MB (2020) Current insight of collagen biomatrix for gingival recession: an evidence-based systematic review. Polymers (Basel) 12 (9). https://doi.org/10.3390/polym12092081

  41. Aliomrani M, Mesripour A, Mehrjardi AS (2022) Creatine and alpha-lipoic acid antidepressant-like effect following cyclosporine A administration. Turk J Pharm Sci 19(2):196–201. https://doi.org/10.4274/tjps.galenos.2021.27217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wei S, Xiao X, Wang J, Sun S, Li Z, Xu K, Li F, Gao J, Zhu D, Qiao M (2017) Impact of anger emotional stress before pregnancy on adult male offspring. Oncotarget 8(58):98837–98852. https://doi.org/10.18632/oncotarget.22007

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sherkawy MM, Abo-Youssef AM, Salama AAA, Ismaiel IE (2018) Fluoxetine protects against OVA induced bronchial asthma and depression in rats. Eur J Pharmacol 837:25–32. https://doi.org/10.1016/j.ejphar.2018.08.026

    Article  CAS  PubMed  Google Scholar 

  44. Ma M, Ren Q, Yang C, Zhang JC, Yao W, Dong C, Ohgi Y, Futamura T, Hashimoto K (2016) Adjunctive treatment of brexpiprazole with fluoxetine shows a rapid antidepressant effect in social defeat stress model: role of BDNF-TrkB signaling. Sci Rep 6:39209. https://doi.org/10.1038/srep39209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Freitas AE, Machado DG, Budni J, Neis VB, Balen GO, Lopes MW, de Souza LF, Dafre AL, Leal RB, Rodrigues AL (2013) Fluoxetine modulates hippocampal cell signaling pathways implicated in neuroplasticity in olfactory bulbectomized mice. Behav Brain Res 237:176–184. https://doi.org/10.1016/j.bbr.2012.09.035

    Article  CAS  PubMed  Google Scholar 

  46. Boulle F, Pawluski JL, Homberg JR, Machiels B, Kroeze Y, Kumar N, Steinbusch HWM, Kenis G, van den Hove DLA (2016) Developmental fluoxetine exposure increases behavioral despair and alters epigenetic regulation of the hippocampal BDNF gene in adult female offspring. Horm Behav 80:47–57. https://doi.org/10.1016/j.yhbeh.2016.01.017

    Article  CAS  PubMed  Google Scholar 

  47. Branchi I, Santarelli S, Capoccia S, Poggini S, D’Andrea I, Cirulli F, Alleva E (2013) Antidepressant treatment outcome depends on the quality of the living environment: a pre-clinical investigation in mice. PLoS ONE 8(4):e62226. https://doi.org/10.1371/journal.pone.0062226

    Article  CAS  PubMed  Google Scholar 

  48. Amani M, Houwing DJ, Homberg JR, Salari AA (2021) Perinatal fluoxetine dose-dependently affects prenatal stress-induced neurobehavioural abnormalities, HPA-axis functioning and underlying brain alterations in rat dams and their offspring. Reprod Toxicol 104:27–43. https://doi.org/10.1016/j.reprotox.2021.06.014

    Article  CAS  PubMed  Google Scholar 

  49. Boulle F, Pawluski JL, Homberg JR, Machiels B, Kroeze Y, Kumar N, Steinbusch HW, Kenis G, Van den Hove DL (2016) Prenatal stress and early-life exposure to fluoxetine have enduring effects on anxiety and hippocampal BDNF gene expression in adult male offspring. Dev Psychobiol 58(4):427–438. https://doi.org/10.1002/dev.21385

    Article  CAS  PubMed  Google Scholar 

  50. Zou Z, Chen Y, Shen Q, Guo X, Zhang Y, Chen G (2017) Neural plasticity associated with hippocampal PKA-CREB and NMDA signaling is involved in the antidepressant effect of repeated low dose of Yueju pill on chronic mouse model of learned helplessness. Neural Plast 2017:9160515. https://doi.org/10.1155/2017/9160515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Paizanis E, Renoir T, Lelievre V, Saurini F, Melfort M, Gabriel C, Barden N, Mocaer E, Hamon M, Lanfumey L (2010) Behavioural and neuroplastic effects of the new-generation antidepressant agomelatine compared to fluoxetine in glucocorticoid receptor-impaired mice. Int J Neuropsychopharmacol 13(6):759–774. https://doi.org/10.1017/S1461145709990514

    Article  CAS  PubMed  Google Scholar 

  52. Zhou L, Ma SL, Yeung PK, Wong YH, Tsim KW, So KF, Lam LC, Chung SK (2016) Anxiety and depression with neurogenesis defects in exchange protein directly activated by cAMP 2-deficient mice are ameliorated by a selective serotonin reuptake inhibitor. Prozac Transl Psychiatry 6(9):e881. https://doi.org/10.1038/tp.2016.129

    Article  CAS  PubMed  Google Scholar 

  53. Furuse K, Ukai W, Hashimoto E, Hashiguchi H, Kigawa Y, Ishii T, Tayama M, Deriha K, Shiraishi M, Kawanishi C (2019) Antidepressant activities of escitalopram and blonanserin on prenatal and adolescent combined stress-induced depression model: possible role of neurotrophic mechanism change in serum and nucleus accumbens. J Affect Disord 247:97–104. https://doi.org/10.1016/j.jad.2019.01.007

    Article  CAS  PubMed  Google Scholar 

  54. Hansson AC, Rimondini R, Heilig M, Mathe AA, Sommer WH (2011) Dissociation of antidepressant-like activity of escitalopram and nortriptyline on behaviour and hippocampal BDNF expression in female rats. J Psychopharmacol 25(10):1378–1387. https://doi.org/10.1177/0269881110393049

    Article  CAS  PubMed  Google Scholar 

  55. Bjornebekk A, Mathe AA, Gruber SH, Brene S (2008) Housing conditions modulate escitalopram effects on antidepressive-like behaviour and brain neurochemistry. Int J Neuropsychopharmacol 11(8):1135–1147. https://doi.org/10.1017/S1461145708008912

    Article  CAS  PubMed  Google Scholar 

  56. Greenberg GD, Laman-Maharg A, Campi KL, Voigt H, Orr VN, Schaal L, Trainor BC (2013) Sex differences in stress-induced social withdrawal: role of brain derived neurotrophic factor in the bed nucleus of the stria terminalis. Front Behav Neurosci 7:223. https://doi.org/10.3389/fnbeh.2013.00223

    Article  PubMed  Google Scholar 

  57. Bampi SR, Casaril AM, Fronza MG, Domingues M, Vieira B, Begnini KR, Seixas FK, Collares TV, Lenardao EJ, Savegnago L (2020) The selenocompound 1-methyl-3-(phenylselanyl)-1H-indole attenuates depression-like behavior, oxidative stress, and neuroinflammation in streptozotocin-treated mice. Brain Res Bull 161:158–165. https://doi.org/10.1016/j.brainresbull.2020.05.008

    Article  CAS  PubMed  Google Scholar 

  58. Hodes GE, Hill-Smith TE, Lucki I (2010) Fluoxetine treatment induces dose dependent alterations in depression associated behavior and neural plasticity in female mice. Neurosci Lett 484(1):12–16. https://doi.org/10.1016/j.neulet.2010.07.084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ma M, Ren Q, Yang C, Zhang JC, Yao W, Dong C, Ohgi Y, Futamura T, Hashimoto K (2017) Antidepressant effects of combination of brexpiprazole and fluoxetine on depression-like behavior and dendritic changes in mice after inflammation. Psychopharmacology 234(4):525–533. https://doi.org/10.1007/s00213-016-4483-7

    Article  CAS  PubMed  Google Scholar 

  60. Mlyniec K, Nowak G (2015) Up-regulation of the GPR39 Zn2+-sensing receptor and CREB/BDNF/TrkB pathway after chronic but not acute antidepressant treatment in the frontal cortex of zinc-deficient mice. Pharmacol Rep 67(6):1135–1140. https://doi.org/10.1016/j.pharep.2015.04.003

    Article  CAS  PubMed  Google Scholar 

  61. Kozisek ME, Middlemas D, Bylund DB (2008) The differential regulation of BDNF and TrkB levels in juvenile rats after four days of escitalopram and desipramine treatment. Neuropharmacology 54(2):251–257. https://doi.org/10.1016/j.neuropharm.2007.08.001

    Article  CAS  PubMed  Google Scholar 

  62. Schulte-Herbruggen O, Fuchs E, Abumaria N, Ziegler A, Danker-Hopfe H, Hiemke C, Hellweg R (2009) Effects of escitalopram on the regulation of brain-derived neurotrophic factor and nerve growth factor protein levels in a rat model of chronic stress. J Neurosci Res 87(11):2551–2560. https://doi.org/10.1002/jnr.22080

    Article  CAS  PubMed  Google Scholar 

  63. Alboni S, Benatti C, Capone G, Corsini D, Caggia F, Tascedda F, Mendlewicz J, Brunello N (2010) Time-dependent effects of escitalopram on brain derived neurotrophic factor (BDNF) and neuroplasticity related targets in the central nervous system of rats. Eur J Pharmacol 643(2–3):180–187. https://doi.org/10.1016/j.ejphar.2010.06.028

    Article  CAS  PubMed  Google Scholar 

  64. Chen Y, Yang X, Li H, Fang J (2022) Red raspberry extract decreases depression-like behavior in rats by modulating neuroinflammation and oxidative stress. Biomed Res Int 2022:9943598. https://doi.org/10.1155/2022/9943598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Verma H, Shivavedi N, Tej G, Kumar M, Nayak PK (2022) Prophylactic administration of rosmarinic acid ameliorates depression-associated cardiac abnormalities in Wistar rats: evidence of serotonergic, oxidative, and inflammatory pathways. J Biochem Mol Toxicol:e23160. https://doi.org/10.1002/jbt.23160

  66. Dos Santos BM, Pereira GC, Piton E, Fialho MFP, Becker G, da Silva CM, Camargo LFM, Ramanzini LG, Oliveira SM, Trevisan G, Zanchet EM, Pillat MM, Bochi GV (2022) Lower antidepressant response to fluoxetine is associated with anxiety-like behavior, hippocampal oxidative imbalance, and increase on peripheral IL-17 and IFN-gamma levels. Behav Brain Res 425:113815. https://doi.org/10.1016/j.bbr.2022.113815

    Article  CAS  PubMed  Google Scholar 

  67. Kin K, Yasuhara T, Kawauchi S, Kameda M, Hosomoto K, Tomita Y, Umakoshi M, Kuwahara K, Kin I, Kidani N, Morimoto J, Sasaki T, Date I (2019) Lithium counteracts depressive behavior and augments the treatment effect of selective serotonin reuptake inhibitor in treatment-resistant depressed rats. Brain Res 1717:52–59. https://doi.org/10.1016/j.brainres.2019.04.001

    Article  CAS  PubMed  Google Scholar 

  68. Lee CW, Chen YJ, Wu HF, Chung YJ, Lee YC, Li CT, Lin HC (2019) Ketamine ameliorates severe traumatic event-induced antidepressant-resistant depression in a rat model through ERK activation. Prog Neuropsychopharmacol Biol Psychiatry 93:102–113. https://doi.org/10.1016/j.pnpbp.2019.03.015

    Article  CAS  PubMed  Google Scholar 

  69. Kanekar S, Sheth CS, Ombach HJ, Olson PR, Bogdanova OV, Petersen M, Renshaw CE, Sung YH, D’Anci KE, Renshaw PF (2018) Hypobaric hypoxia exposure in rats differentially alters antidepressant efficacy of the selective serotonin reuptake inhibitors fluoxetine, paroxetine, escitalopram and sertraline. Pharmacol Biochem Behav 170:25–35. https://doi.org/10.1016/j.pbb.2018.05.002

    Article  CAS  PubMed  Google Scholar 

  70. Minami S, Satoyoshi H, Ide S, Inoue T, Yoshioka M, Minami M (2017) Suppression of reward-induced dopamine release in the nucleus accumbens in animal models of depression: differential responses to drug treatment. Neurosci Lett 650:72–76. https://doi.org/10.1016/j.neulet.2017.04.028

    Article  CAS  PubMed  Google Scholar 

  71. Zhuo R, Cheng X, Luo L, Yang L, Zhao Y, Zhou Y, Peng L, Jin X, Cui L, Liu F, Yang L (2022) Cinnamic acid improved lipopolysaccharide-induced depressive-like behaviors by inhibiting neuroinflammation and oxidative stress in mice. Pharmacology 107(5–6):281–289. https://doi.org/10.1159/000520990

    Article  CAS  PubMed  Google Scholar 

  72. Joshi A, Akhtar A, Saroj P, Kuhad A, Sah SP (2022) Antidepressant-like effect of sodium orthovanadate in a mouse model of chronic unpredictable mild stress. Eur J Pharmacol 919:174798. https://doi.org/10.1016/j.ejphar.2022.174798

    Article  CAS  PubMed  Google Scholar 

  73. Abu-Elfotuh K, Al-Najjar AH, Mohammed AA, Aboutaleb AS, Badawi GA (2022) Fluoxetine ameliorates Alzheimer’s disease progression and prevents the exacerbation of cardiovascular dysfunction of socially isolated depressed rats through activation of Nrf2/HO-1 and hindering TLR4/NLRP3 inflammasome signaling pathway. Int Immunopharmacol 104:108488. https://doi.org/10.1016/j.intimp.2021.108488

    Article  CAS  PubMed  Google Scholar 

  74. Afzal M, Kazmi I, Quazi AM, Khan SA, Zafar A, Al-Abbasi FA, Imam F, Alharbi KS, Alzarea SI, Yadav N (2022) 6-shogaol attenuates traumatic brain injury-induced anxiety/depression-like behavior via inhibition of oxidative stress-influenced expressions of inflammatory mediators TNF-alpha, IL-1beta, and BDNF: insight into the mechanism. ACS Omega 7(1):140–148. https://doi.org/10.1021/acsomega.1c04155

    Article  CAS  PubMed  Google Scholar 

  75. Mendonca IP, Paiva IHR, Duarte-Silva EP, Melo MG, Silva RSD, Oliveira WH, Costa B, Peixoto CA (2022) Metformin and fluoxetine improve depressive-like behavior in a murine model of Parkinsons disease through the modulation of neuroinflammation, neurogenesis and neuroplasticity. Int Immunopharmacol 102:108415. https://doi.org/10.1016/j.intimp.2021.108415

    Article  CAS  PubMed  Google Scholar 

  76. Abdelzaher WY, Mohammed HH, Welson NN, Batiha GE, Baty RS, Abdel-Aziz AM (2021) Rivaroxaban modulates TLR4/Myd88/NF-Kbeta signaling pathway in a dose-dependent manner with suppression of oxidative stress and inflammation in an experimental model of depression. Front Pharmacol 12:715354. https://doi.org/10.3389/fphar.2021.715354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chen C, Ma H, Fu Z (2021) Antidepressant-like effect of 3-n-butylphthalide in rats exposed to chronic unpredictable mild stress: modulation of brain-derived neurotrophic factor level and mTOR activation in cortex. Neurochem Res 46(11):3075–3084. https://doi.org/10.1007/s11064-021-03397-9

    Article  CAS  PubMed  Google Scholar 

  78. Jia Z, Yang J, Cao Z, Zhao J, Zhang J, Lu Y, Chu L, Zhang S, Chen Y, Pei L (2021) Baicalin ameliorates chronic unpredictable mild stress-induced depression through the BDNF/ERK/CREB signaling pathway. Behav Brain Res 414:113463. https://doi.org/10.1016/j.bbr.2021.113463

    Article  CAS  PubMed  Google Scholar 

  79. Zhong CC, Gao YN, Huang XC, Zhu X, Miao HH, Xu XG, Qin YB (2021) Cannabinoid receptor agonist WIN55212-2 reduces unpredictable mild stress-induced depressive behavior of rats. Ann Transl Med 9(14):1170. https://doi.org/10.21037/atm-21-3143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Amigo J, Garro-Martinez E, Vidal Casado R, Compan V, Pilar-Cuellar F, Pazos A, Diaz A, Castro E (2021) 5-HT4 receptors are not involved in the effects of fluoxetine in the corticosterone model of depression. ACS Chem Neurosci 12(11):2036–2044. https://doi.org/10.1021/acschemneuro.1c00158

    Article  CAS  PubMed  Google Scholar 

  81. Chen F, Chen S, Liu J, Amin N, Jin W, Fang M (2021) Agomelatine softens depressive-like behavior through the regulation of autophagy and apoptosis. Biomed Res Int 2021:6664591. https://doi.org/10.1155/2021/6664591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Li W, Ali T, Zheng C, Liu Z, He K, Shah FA, Ren Q, Rahman SU, Li N, Yu ZJ, Li S (2021) Fluoxetine regulates eEF2 activity (phosphorylation) via HDAC1 inhibitory mechanism in an LPS-induced mouse model of depression. J Neuroinflammation 18(1):38. https://doi.org/10.1186/s12974-021-02091-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. El-Marasy SA, El Awdan SA, Hassan A, Ahmed-Farid OA, Ogaly HA (2021) Anti-depressant effect of cerebrolysin in reserpine-induced depression in rats: behavioral, biochemical, molecular and immunohistochemical evidence. Chem Biol Interact 334:109329. https://doi.org/10.1016/j.cbi.2020.109329

    Article  CAS  PubMed  Google Scholar 

  84. Jiang N, Wang H, Li C, Zeng G, Lv J, Wang Q, Chen Y, Liu X (2021) The antidepressant-like effects of the water extract of Panax ginseng and Polygala tenuifolia are mediated via the BDNF-TrkB signaling pathway and neurogenesis in the hippocampus. J Ethnopharmacol 267:113625. https://doi.org/10.1016/j.jep.2020.113625

    Article  CAS  PubMed  Google Scholar 

  85. Si Y, Xue X, Liu S, Feng C, Zhang H, Zhang S, Ren Y, Ma H, Dong Y, Li H, Xie L, Zhu Z (2021) CRTC1 signaling involvement in depression-like behavior of prenatally stressed offspring rat. Behav Brain Res 399:113000. https://doi.org/10.1016/j.bbr.2020.113000

    Article  CAS  PubMed  Google Scholar 

  86. Pazini FL, Rosa JM, Camargo A, Fraga DB, Moretti M, Siteneski A, Rodrigues ALS (2020) mTORC1-dependent signaling pathway underlies the rapid effect of creatine and ketamine in the novelty-suppressed feeding test. Chem Biol Interact 332:109281. https://doi.org/10.1016/j.cbi.2020.109281

    Article  CAS  PubMed  Google Scholar 

  87. Ji M, Niu S, Mi H, Jang P, Li Y, Hu W (2020) Antidepressant functions of Jie Yu Chu Fan capsule in promoting hippocampal nerve cell neurogenesis in a mouse model of chronic unpredictable mild stress. Ann Transl Med 8(16):1020. https://doi.org/10.21037/atm-20-5599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zavvari F, Nahavandi A (2020) Fluoxetine increases hippocampal neural survival by improving axonal transport in stress-induced model of depression male rats. Physiol Behav 227:113140. https://doi.org/10.1016/j.physbeh.2020.113140

    Article  CAS  PubMed  Google Scholar 

  89. Li Z, Zhao L, Chen J, Liu C, Li S, Hua M, Qu D, Shao Z, Sun Y (2020) Ginsenoside Rk1 alleviates LPS-induced depression-like behavior in mice by promoting BDNF and suppressing the neuroinflammatory response. Biochem Biophys Res Commun 530(4):658–664. https://doi.org/10.1016/j.bbrc.2020.07.098

    Article  CAS  PubMed  Google Scholar 

  90. Park BK, Kim NS, Kim YR, Yang C, Jung IC, Jang IS, Seo CS, Choi JJ, Lee MY (2020) Antidepressant and anti-neuroinflammatory effects of Bangpungtongsung-San. Front Pharmacol 11:958. https://doi.org/10.3389/fphar.2020.00958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mu DZ, Xue M, Xu JJ, Hu Y, Chen Y, Ren P, Huang X (2020) Antidepression and prokinetic effects of Paeoniflorin on rats in the forced swimming test via polypharmacology. Evid Based Complement Alternat Med 2020:2153571. https://doi.org/10.1155/2020/2153571

    Article  PubMed  PubMed Central  Google Scholar 

  92. Amin N, Xie S, Tan X, Chen Y, Ren Q, Botchway BOA, Hu S, Ma Y, Hu Z, Fang M (2020) Optimized integration of fluoxetine and 7, 8-dihydroxyflavone as an efficient therapy for reversing depressive-like behavior in mice during the perimenopausal period. Prog Neuropsychopharmacol Biol Psychiatry 101:109939. https://doi.org/10.1016/j.pnpbp.2020.109939

    Article  CAS  PubMed  Google Scholar 

  93. Yan L, Xu X, He Z, Wang S, Zhao L, Qiu J, Wang D, Gong Z, Qiu X, Huang H (2020) Antidepressant-like effects and cognitive enhancement of coadministration of Chaihu Shugan San and fluoxetine: dependent on the BDNF-ERK-CREB signaling pathway in the hippocampus and frontal cortex. Biomed Res Int 2020:2794263. https://doi.org/10.1155/2020/2794263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Luo T, Tian H, Song H, Zhao J, Liya A, Fang Y, Mou J, Li Z, Chaoketu S (2020) Possible involvement of tissue plasminogen activator/brain-derived neurotrophic factor pathway in anti-depressant effects of electroacupuncture in chronic unpredictable mild stress-induced depression in rats. Front Psychiatry 11:63. https://doi.org/10.3389/fpsyt.2020.00063

    Article  PubMed  PubMed Central  Google Scholar 

  95. Dong H, Cong W, Guo X, Wang Y, Tong S, Li Q, Li C (2019) Beta-asarone relieves chronic unpredictable mild stress induced depression by regulating the extracellular signal-regulated kinase signaling pathway. Exp Ther Med 18(5):3767–3774. https://doi.org/10.3892/etm.2019.8018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Koshkina A, Dudnichenko T, Baranenko D, Fedotova J, Drago F (2019) Effects of vitamin D3 in long-term ovariectomized rats subjected to chronic unpredictable mild stress: BDNF, NT-3, and NT-4 implications. Nutrients 11 (8). https://doi.org/10.3390/nu11081726

  97. Fang W, Zhang J, Hong L, Huang W, Dai X, Ye Q, Chen X (2020) Metformin ameliorates stress-induced depression-like behaviors via enhancing the expression of BDNF by activating AMPK/CREB-mediated histone acetylation. J Affect Disord 260:302–313. https://doi.org/10.1016/j.jad.2019.09.013

    Article  CAS  PubMed  Google Scholar 

  98. Yang CR, Zhang XY, Liu Y, Du JY, Liang R, Yu M, Zhang FQ, Mu XF, Li F, Zhou L, Zhou FH, Meng FJ, Wang S, Ming D, Zhou XF (2020) Antidepressant drugs correct the imbalance between proBDNF/p75NTR/sortilin and mature BDNF/TrkB in the brain of mice with chronic stress. Neurotox Res 37(1):171–182. https://doi.org/10.1007/s12640-019-00101-2

    Article  CAS  PubMed  Google Scholar 

  99. Lu Y, Sun G, Yang F, Guan Z, Zhang Z, Zhao J, Liu Y, Chu L, Pei L (2019) Baicalin regulates depression behavior in mice exposed to chronic mild stress via the Rac/LIMK/cofilin pathway. Biomed Pharmacother 116:109054. https://doi.org/10.1016/j.biopha.2019.109054

    Article  CAS  PubMed  Google Scholar 

  100. Cao K, Shen C, Yuan Y, Bai S, Yang L, Guo L, Zhang R, Shi Y (2019) SiNiSan ameliorates the depression-like behavior of rats that experienced maternal separation through 5-HT1A receptor/CREB/BDNF pathway. Front Psychiatry 10:160. https://doi.org/10.3389/fpsyt.2019.00160

    Article  PubMed  Google Scholar 

  101. Ayuob NN, Abdel-Tawab HS, El-Mansy AA, Ali SS (2019) The protective role of musk on salivary glands of mice exposed to chronic unpredictable mild stress. J Oral Sci 61(1):95–102. https://doi.org/10.2334/josnusd.17-0440

    Article  CAS  PubMed  Google Scholar 

  102. Hu MZ, Wang AR, Zhao ZY, Chen XY, Li YB, Liu B (2019) Antidepressant-like effects of paeoniflorin on post-stroke depression in a rat model. Neurol Res 41(5):446–455. https://doi.org/10.1080/01616412.2019.1576361

    Article  CAS  PubMed  Google Scholar 

  103. Taniguti EH, Ferreira YS, Stupp IJV, Fraga-Junior EB, Doneda DL, Lopes L, Rios-Santos F, Lima E, Buss ZS, Viola GG, Vandresen-Filho S (2019) Atorvastatin prevents lipopolysaccharide-induced depressive-like behaviour in mice. Brain Res Bull 146:279–286. https://doi.org/10.1016/j.brainresbull.2019.01.018

    Article  CAS  PubMed  Google Scholar 

  104. Li X, Liang S, Li Z, Li S, Xia M, Verkhratsky A, Li B (2018) Leptin increases expression of 5-HT2B receptors in astrocytes thus enhancing action of fluoxetine on the depressive behavior induced by sleep deprivation. Front Psychiatry 9:734. https://doi.org/10.3389/fpsyt.2018.00734

    Article  PubMed  Google Scholar 

  105. Tong J, Zhou Z, Qi W, Jiang S, Yang B, Zhong Z, Jia Y, Li X, Xiong L, Nie L (2019) Antidepressant effect of helicid in chronic unpredictable mild stress model in rats. Int Immunopharmacol 67:13–21. https://doi.org/10.1016/j.intimp.2018.11.052

    Article  CAS  PubMed  Google Scholar 

  106. Ma H, Wang W, Xu S, Wang L, Wang X (2018) Potassium 2-(1-hydroxypentyl)-benzoate improves depressive-like behaviors in rat model. Acta Pharm Sin B 8(6):881–888. https://doi.org/10.1016/j.apsb.2018.08.004

    Article  PubMed  Google Scholar 

  107. Li T, Wang D, Zhao B, Yan Y (2018) Xingnao Jieyu decoction ameliorates poststroke depression through the BDNF/ERK/CREB pathway in rats. Evid Based Complement Alternat Med 2018:5403045. https://doi.org/10.1155/2018/5403045

    Article  PubMed  Google Scholar 

  108. Tan X, Du X, Jiang Y, Botchway BOA, Hu Z, Fang M (2018) Inhibition of autophagy in microglia alters depressive-like behavior via BDNF pathway in postpartum depression. Front Psychiatry 9:434. https://doi.org/10.3389/fpsyt.2018.00434

    Article  PubMed  Google Scholar 

  109. Wang C, Wu C, Yan Z, Cheng X (2019) Ameliorative effect of Xiaoyao-jieyu-san on post-stroke depression and its potential mechanisms. J Nat Med 73(1):76–84. https://doi.org/10.1007/s11418-018-1243-5

    Article  PubMed  Google Scholar 

  110. Lu Y, Ho CS, McIntyre RS, Wang W, Ho RC (2018) Agomelatine-induced modulation of brain-derived neurotrophic factor (BDNF) in the rat hippocampus. Life Sci 210:177–184. https://doi.org/10.1016/j.lfs.2018.09.003

    Article  CAS  PubMed  Google Scholar 

  111. Park BK, Kim YR, Kim YH, Yang C, Seo CS, Jung IC, Jang IS, Kim SH, Lee MY (2018) Antidepressant-like effects of Gyejibokryeong-hwan in a mouse model of reserpine-induced depression. Biomed Res Int 2018:5845491. https://doi.org/10.1155/2018/5845491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Bansal Y, Singh R, Saroj P, Sodhi RK, Kuhad A (2018) Naringenin protects against oxido-inflammatory aberrations and altered tryptophan metabolism in olfactory bulbectomized-mice model of depression. Toxicol Appl Pharmacol 355:257–268. https://doi.org/10.1016/j.taap.2018.07.010

    Article  CAS  PubMed  Google Scholar 

  113. Lu Y, Ho CS, McIntyre RS, Wang W, Ho RC (2018) Effects of vortioxetine and fluoxetine on the level of brain derived neurotrophic factors (BDNF) in the hippocampus of chronic unpredictable mild stress-induced depressive rats. Brain Res Bull 142:1–7. https://doi.org/10.1016/j.brainresbull.2018.06.007

    Article  CAS  PubMed  Google Scholar 

  114. Wu T, Li X, Li T, Cai M, Yu Z, Zhang J, Zhang Z, Zhang W, Xiang J, Cai D (2018) Apocynum venetum leaf extract exerts antidepressant-like effects and inhibits hippocampal and cortical apoptosis of rats exposed to chronic unpredictable mild stress. Evid Based Complement Alternat Med 2018:5916451. https://doi.org/10.1155/2018/5916451

    Article  PubMed  PubMed Central  Google Scholar 

  115. Wang JM, Pei LX, Zhang YY, Cheng YX, Niu CL, Cui Y, Feng WS, Wang GF (2018) Ethanol extract of Rehmannia glutinosa exerts antidepressant-like effects on a rat chronic unpredictable mild stress model by involving monoamines and BDNF. Metab Brain Dis 33(3):885–892. https://doi.org/10.1007/s11011-018-0202-x

    Article  CAS  PubMed  Google Scholar 

  116. Li X, Wu T, Yu Z, Li T, Zhang J, Zhang Z, Cai M, Zhang W, Xiang J, Cai D (2018) Apocynum venetum leaf extract reverses depressive-like behaviors in chronically stressed rats by inhibiting oxidative stress and apoptosis. Biomed Pharmacother 100:394–406. https://doi.org/10.1016/j.biopha.2018.01.137

    Article  CAS  PubMed  Google Scholar 

  117. Abd El Wahab MG, Ali SS, Ayuob NN (2018) The role of musk in relieving the neurodegenerative changes induced after exposure to chronic stress. Am J Alzheimers Dis Other Demen 33(4):221–231. https://doi.org/10.1177/1533317518755993

    Article  PubMed  Google Scholar 

  118. Khedr SA, Elmelgy AA, El-Kharashi OA, Abd-Alkhalek HA, Louka ML, Sallam HA, Aboul-Fotouh S (2018) Metformin potentiates cognitive and antidepressant effects of fluoxetine in rats exposed to chronic restraint stress and high fat diet: potential involvement of hippocampal c-Jun repression. Naunyn Schmiedebergs Arch Pharmacol 391(4):407–422. https://doi.org/10.1007/s00210-018-1466-8

    Article  CAS  PubMed  Google Scholar 

  119. Ayuob NN, El Wahab MGA, Ali SS, Abdel-Tawab HS (2018) Ocimum basilicum improve chronic stress-induced neurodegenerative changes in mice hippocampus. Metab Brain Dis 33(3):795–804. https://doi.org/10.1007/s11011-017-0173-3

    Article  PubMed  Google Scholar 

  120. JiaWen W, Hong S, ShengXiang X, Jing L (2018) Depression- and anxiety-like behaviour is related to BDNF/TrkB signalling in a mouse model of psoriasis. Clin Exp Dermatol 43(3):254–261. https://doi.org/10.1111/ced.13378

    Article  CAS  PubMed  Google Scholar 

  121. Abuelezz SA, Hendawy N, Magdy Y (2018) The potential benefit of combined versus monotherapy of coenzyme Q10 and fluoxetine on depressive-like behaviors and intermediates coupled to Gsk-3beta in rats. Toxicol Appl Pharmacol 340:39–48. https://doi.org/10.1016/j.taap.2017.12.018

    Article  CAS  PubMed  Google Scholar 

  122. Wang W, Liu X, Liu J, Cai E, Zhao Y, Li H, Zhang L, Li P, Gao Y (2018) Sesquiterpenoids from the root of Panax ginseng attenuates lipopolysaccharide-induced depressive-like behavior through the brain-derived neurotrophic factor/tropomyosin-related kinase B and sirtuin type 1/nuclear factor-kappaB signaling pathways. J Agric Food Chem 66(1):265–271. https://doi.org/10.1021/acs.jafc.7b04835

    Article  CAS  PubMed  Google Scholar 

  123. Thakare VN, Patil RR, Oswal RJ, Dhakane VD, Aswar MK, Patel BM (2018) Therapeutic potential of silymarin in chronic unpredictable mild stress induced depressive-like behavior in mice. J Psychopharmacol 32(2):223–235. https://doi.org/10.1177/0269881117742666

    Article  CAS  PubMed  Google Scholar 

  124. Wang H, Zhang Y, Li H, Zeng W, Qiao M (2017) Shuyu capsules relieve liver-qi depression by regulating ERK-CREB-BDNF signal pathway in central nervous system of rat. Exp Ther Med 14(5):4831–4838. https://doi.org/10.3892/etm.2017.5125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Yang XH, Song SQ, Xu Y (2017) Resveratrol ameliorates chronic unpredictable mild stress-induced depression-like behavior: involvement of the HPA axis, inflammatory markers, BDNF, and Wnt/beta-catenin pathway in rats. Neuropsychiatr Dis Treat 13:2727–2736. https://doi.org/10.2147/NDT.S150028

    Article  CAS  PubMed  Google Scholar 

  126. Jin HJ, Pei L, Li YN, Zheng H, Yang S, Wan Y, Mao L, Xia YP, He QW, Li M, Yue ZY, Hu B (2017) Alleviative effects of fluoxetine on depressive-like behaviors by epigenetic regulation of BDNF gene transcription in mouse model of post-stroke depression. Sci Rep 7(1):14926. https://doi.org/10.1038/s41598-017-13929-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Li K, Shen S, Ji YT, Li XY, Zhang LS, Wang XD (2018) Melatonin augments the effects of fluoxetine on depression-like behavior and hippocampal BDNF-TrkB signaling. Neurosci Bull 34(2):303–311. https://doi.org/10.1007/s12264-017-0189-z

    Article  CAS  PubMed  Google Scholar 

  128. Zhang XL, Wang L, Xiong L, Huang FH, Xue H (2017) Timosaponin B-III exhibits antidepressive activity in a mouse model of postpartum depression by the regulation of inflammatory cytokines, BNDF signaling and synaptic plasticity. Exp Ther Med 14(4):3856–3861. https://doi.org/10.3892/etm.2017.4930

    Article  CAS  PubMed  Google Scholar 

  129. Seong HH, Park JM, Kim YJ (2018) Antidepressive effects of environmental enrichment in chronic stress-induced depression in rats. Biol Res Nurs 20(1):40–48. https://doi.org/10.1177/1099800417730400

    Article  PubMed  Google Scholar 

  130. Ren Y, Wang JL, Zhang X, Wang H, Ye Y, Song L, Wang YJ, Tu MJ, Wang WW, Yang L, Jiang B (2017) Antidepressant-like effects of ginsenoside Rg2 in a chronic mild stress model of depression. Brain Res Bull 134:211–219. https://doi.org/10.1016/j.brainresbull.2017.08.009

    Article  CAS  PubMed  Google Scholar 

  131. Gupta K, Gupta R, Bhatia MS, Tripathi AK, Gupta LK (2017) Effect of agomelatine and fluoxetine on HAM-D Score, serum brain-derived neurotrophic factor, and tumor necrosis factor-alpha level in patients with major depressive disorder with severe depression. J Clin Pharmacol 57(12):1519–1526. https://doi.org/10.1002/jcph.963

    Article  CAS  PubMed  Google Scholar 

  132. Ayuob NN, Firgany AEL, El-Mansy AA, Ali S (2017) Can Ocimum basilicum relieve chronic unpredictable mild stress-induced depression in mice? Exp Mol Pathol 103(2):153–161. https://doi.org/10.1016/j.yexmp.2017.08.007

    Article  CAS  PubMed  Google Scholar 

  133. Omar NN, Tash RF (2017) Fluoxetine coupled with zinc in a chronic mild stress model of depression: providing a reservoir for optimum zinc signaling and neuronal remodeling. Pharmacol Biochem Behav 160:30–38. https://doi.org/10.1016/j.pbb.2017.08.003

    Article  CAS  PubMed  Google Scholar 

  134. Ali SS, Abd El Wahab MG, Ayuob NN, Suliaman M (2017) The antidepressant-like effect of Ocimum basilicum in an animal model of depression. Biotech Histochem 92(6):390–401. https://doi.org/10.1080/10520295.2017.1323276

    Article  CAS  PubMed  Google Scholar 

  135. Yang Y, Hu Z, Du X, Davies H, Huo X, Fang M (2017) miR-16 and fluoxetine both reverse autophagic and apoptotic change in chronic unpredictable mild stress model rats. Front Neurosci 11:428. https://doi.org/10.3389/fnins.2017.00428

    Article  PubMed  PubMed Central  Google Scholar 

  136. Zu X, Zhang M, Li W, Xie H, Lin Z, Yang N, Liu X, Zhang W (2017) Antidepressant-like effect of bacopaside I in mice exposed to chronic unpredictable mild stress by modulating the hypothalamic-pituitary-adrenal axis function and activating BDNF signaling pathway. Neurochem Res 42(11):3233–3244. https://doi.org/10.1007/s11064-017-2360-3

    Article  CAS  PubMed  Google Scholar 

  137. Pytka K, Gluch-Lutwin M, Kotanska M, Waszkielewicz A, Kij A, Walczak M (2018) Single administration of HBK-15-a triple 5-HT1A, 5-HT7, and 5-HT3 receptor antagonist-reverses depressive-like behaviors in mouse model of depression induced by corticosterone. Mol Neurobiol 55(5):3931–3945. https://doi.org/10.1007/s12035-017-0605-4

    Article  CAS  PubMed  Google Scholar 

  138. Schiavone S, Tucci P, Mhillaj E, Bove M, Trabace L, Morgese MG (2017) Antidepressant drugs for beta amyloid-induced depression: a new standpoint? Prog Neuropsychopharmacol Biol Psychiatry 78:114–122. https://doi.org/10.1016/j.pnpbp.2017.05.004

    Article  CAS  PubMed  Google Scholar 

  139. Luo L, Deng S, Yi J, Zhou S, She Y, Liu B (2017) Buyang Huanwu decoction ameliorates poststroke depression via promoting neurotrophic pathway mediated neuroprotection and neurogenesis. Evid Based Complement Alternat Med 2017:4072658. https://doi.org/10.1155/2017/4072658

    Article  PubMed  PubMed Central  Google Scholar 

  140. Liu FG, Hu WF, Wang JL, Wang P, Gong Y, Tong LJ, Jiang B, Zhang W, Qin YB, Chen Z, Yang RR, Huang C (2017) Z-Guggulsterone produces antidepressant-like effects in mice through activation of the BDNF signaling pathway. Int J Neuropsychopharmacol 20(6):485–497. https://doi.org/10.1093/ijnp/pyx009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. McMurray KMJ, Ramaker MJ, Barkley-Levenson AM, Sidhu PS, Elkin PK, Reddy MK, Guthrie ML, Cook JM, Rawal VH, Arnold LA, Dulawa SC, Palmer AA (2018) Identification of a novel, fast-acting GABAergic antidepressant. Mol Psychiatry 23(2):384–391. https://doi.org/10.1038/mp.2017.14

    Article  CAS  PubMed  Google Scholar 

  142. Schoeman JC, Steyn SF, Harvey BH, Brink CB (2017) Long-lasting effects of fluoxetine and/or exercise augmentation on bio-behavioural markers of depression in pre-pubertal stress sensitive rats. Behav Brain Res 323:86–99. https://doi.org/10.1016/j.bbr.2017.01.043

    Article  CAS  PubMed  Google Scholar 

  143. Li Q, Qu FL, Gao Y, Jiang YP, Rahman K, Lee KH, Han T, Qin LP (2017) Piper sarmentosum Roxb. produces antidepressant-like effects in rodents, associated with activation of the CREB-BDNF-ERK signaling pathway and reversal of HPA axis hyperactivity. J Ethnopharmacol 199:9–19. https://doi.org/10.1016/j.jep.2017.01.037

    Article  CAS  PubMed  Google Scholar 

  144. Zhang JC, Yao W, Ren Q, Yang C, Dong C, Ma M, Wu J, Hashimoto K (2016) Depression-like phenotype by deletion of alpha7 nicotinic acetylcholine receptor: role of BDNF-TrkB in nucleus accumbens. Sci Rep 6:36705. https://doi.org/10.1038/srep36705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Filho CB, Jesse CR, Donato F, Del Fabbro L, Gomes de Gomes M, Rossito Goes AT, Souza LC, Boeira SP (2016) Chrysin promotes attenuation of depressive-like behavior and hippocampal dysfunction resulting from olfactory bulbectomy in mice. Chem Biol Interact 260:154–162. https://doi.org/10.1016/j.cbi.2016.11.005

    Article  CAS  PubMed  Google Scholar 

  146. Neis VB, Bettio LEB, Moretti M, Rosa PB, Ribeiro CM, Freitas AE, Goncalves FM, Leal RB, Rodrigues ALS (2016) Acute agmatine administration, similar to ketamine, reverses depressive-like behavior induced by chronic unpredictable stress in mice. Pharmacol Biochem Behav 150–151:108–114. https://doi.org/10.1016/j.pbb.2016.10.004

    Article  CAS  PubMed  Google Scholar 

  147. Ayuob NN, Ali SS, Suliaman M, El Wahab MGA, Ahmed SM (2016) The antidepressant effect of musk in an animal model of depression: a histopathological study. Cell Tissue Res 366(2):271–284. https://doi.org/10.1007/s00441-016-2468-9

    Article  PubMed  Google Scholar 

  148. Zhang X, Song Y, Bao T, Yu M, Xu M, Guo Y, Wang Y, Zhang C, Zhao B (2016) Antidepressant-like effects of acupuncture involved the ERK signaling pathway in rats. BMC Complement Altern Med 16(1):380. https://doi.org/10.1186/s12906-016-1356-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Amigo J, Diaz A, Pilar-Cuellar F, Vidal R, Martin A, Compan V, Pazos A, Castro E (2016) The absence of 5-HT4 receptors modulates depression- and anxiety-like responses and influences the response of fluoxetine in olfactory bulbectomised mice: adaptive changes in hippocampal neuroplasticity markers and 5-HT1A autoreceptor. Neuropharmacology 111:47–58. https://doi.org/10.1016/j.neuropharm.2016.08.037

    Article  CAS  PubMed  Google Scholar 

  150. Ayuob NN (2017) Evaluation of the antidepressant-like effect of musk in an animal model of depression: how it works. Anat Sci Int 92(4):539–553. https://doi.org/10.1007/s12565-016-0357-7

    Article  PubMed  Google Scholar 

  151. Mu RH, Fang XY, Wang SS, Li CF, Chen SM, Chen XM, Liu Q, Li YC, Yi LT (2016) Antidepressant-like effects of standardized gypenosides: involvement of brain-derived neurotrophic factor signaling in hippocampus. Psychopharmacology 233(17):3211–3221. https://doi.org/10.1007/s00213-016-4357-z

    Article  CAS  PubMed  Google Scholar 

  152. Wang X, Xie Y, Zhang T, Bo S, Bai X, Liu H, Li T, Liu S, Zhou Y, Cong X, Wang Z, Liu D (2016) Resveratrol reverses chronic restraint stress-induced depression-like behaviour: involvement of BDNF level, ERK phosphorylation and expression of Bcl-2 and Bax in rats. Brain Res Bull 125:134–143. https://doi.org/10.1016/j.brainresbull.2016.06.014

    Article  CAS  PubMed  Google Scholar 

  153. Wang J, Duan P, Cui Y, Li Q, Shi Y (2016) Geniposide alleviates depression-like behavior via enhancing BDNF expression in hippocampus of streptozotocin-evoked mice. Metab Brain Dis 31(5):1113–1122. https://doi.org/10.1007/s11011-016-9856-4

    Article  CAS  PubMed  Google Scholar 

  154. Wang TY, Lee SY, Chen SL, Chang YH, Wang LJ, Chen PS, Chen SH, Chu CH, Huang SY, Tzeng NS, Li CL, Chung YL, Hsieh TH, Lee IH, Chen KC, Yang YK, Hong JS, Lu RB (2016) Comparing clinical responses and the biomarkers of BDNF and cytokines between subthreshold bipolar disorder and bipolar II disorder. Sci Rep 6:27431. https://doi.org/10.1038/srep27431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Zhu L, Nang C, Luo F, Pan H, Zhang K, Liu J, Zhou R, Gao J, Chang X, He H, Qiu Y, Wang J, Long H, Liu Y, Yan T (2016) Esculetin attenuates lipopolysaccharide (LPS)-induced neuroinflammatory processes and depressive-like behavior in mice. Physiol Behav 163:184–192. https://doi.org/10.1016/j.physbeh.2016.04.051

    Article  CAS  PubMed  Google Scholar 

  156. Tao W, Dong Y, Su Q, Wang H, Chen Y, Xue W, Chen C, Xia B, Duan J, Chen G (2016) Liquiritigenin reverses depression-like behavior in unpredictable chronic mild stress-induced mice by regulating PI3K/Akt/mTOR mediated BDNF/TrkB pathway. Behav Brain Res 308:177–186. https://doi.org/10.1016/j.bbr.2016.04.039

    Article  CAS  PubMed  Google Scholar 

  157. Su Q, Tao W, Huang H, Du Y, Chu X, Chen G (2016) Protective effect of liquiritigenin on depressive-like behavior in mice after lipopolysaccharide administration. Psychiatry Res 240:131–136. https://doi.org/10.1016/j.psychres.2016.04.002

    Article  CAS  PubMed  Google Scholar 

  158. Morozova A, Zubkov E, Strekalova T, Kekelidze Z, Storozeva Z, Schroeter CA, Bazhenova N, Lesch KP, Cline BH, Chekhonin V (2016) Ultrasound of alternating frequencies and variable emotional impact evokes depressive syndrome in mice and rats. Prog Neuropsychopharmacol Biol Psychiatry 68:52–63. https://doi.org/10.1016/j.pnpbp.2016.03.003

    Article  PubMed  Google Scholar 

  159. Kiryanova V, Meunier SJ, Vecchiarelli HA, Hill MN, Dyck RH (2016) Effects of maternal stress and perinatal fluoxetine exposure on behavioral outcomes of adult male offspring. Neuroscience 320:281–296. https://doi.org/10.1016/j.neuroscience.2016.01.064

    Article  CAS  PubMed  Google Scholar 

  160. Weng L, Guo X, Li Y, Yang X, Han Y (2016) Apigenin reverses depression-like behavior induced by chronic corticosterone treatment in mice. Eur J Pharmacol 774:50–54. https://doi.org/10.1016/j.ejphar.2016.01.015

    Article  CAS  PubMed  Google Scholar 

  161. Diaz SL, Narboux-Neme N, Boutourlinsky K, Doly S, Maroteaux L (2016) Mice lacking the serotonin 5-HT2B receptor as an animal model of resistance to selective serotonin reuptake inhibitors antidepressants. Eur Neuropsychopharmacol 26(2):265–279. https://doi.org/10.1016/j.euroneuro.2015.12.012

    Article  CAS  PubMed  Google Scholar 

  162. Wang YL, Wang JX, Hu XX, Chen L, Qiu ZK, Zhao N, Yu ZD, Sun SZ, Xu YY, Guo Y, Liu C, Zhang YZ, Li YF, Yu CX (2016) Antidepressant-like effects of albiflorin extracted from Radix paeoniae Alba. J Ethnopharmacol 179:9–15. https://doi.org/10.1016/j.jep.2015.12.029

    Article  CAS  PubMed  Google Scholar 

  163. Ghosh R, Gupta R, Bhatia MS, Tripathi AK, Gupta LK (2015) Comparison of efficacy, safety and brain derived neurotrophic factor (BDNF) levels in patients of major depressive disorder, treated with fluoxetine and desvenlafaxine. Asian J Psychiatr 18:37–41. https://doi.org/10.1016/j.ajp.2015.10.006

    Article  CAS  PubMed  Google Scholar 

  164. Zhu L, Wei T, Gao J, Chang X, He H, Miao M, Yan T (2015) Salidroside attenuates lipopolysaccharide (LPS) induced serum cytokines and depressive-like behavior in mice. Neurosci Lett 606:1–6. https://doi.org/10.1016/j.neulet.2015.08.025

    Article  CAS  PubMed  Google Scholar 

  165. Pan J, Lei X, Wang J, Huang S, Wang Y, Zhang Y, Chen W, Li D, Zheng J, Cui H, Liu Q (2015) Effects of Kaixinjieyu, a Chinese herbal medicine preparation, on neurovascular unit dysfunction in rats with vascular depression. BMC Complement Altern Med 15:291. https://doi.org/10.1186/s12906-015-0808-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Wu R, Zhu D, Xia Y, Wang H, Tao W, Xue W, Xia B, Ren L, Zhou X, Li G, Chen G (2015) A role of Yueju in fast-onset antidepressant action on major depressive disorder and serum BDNF expression: a randomly double-blind, fluoxetine-adjunct, placebo-controlled, pilot clinical study. Neuropsychiatr Dis Treat 11:2013–2021. https://doi.org/10.2147/NDT.S86585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Wang JM, Yang LH, Zhang YY, Niu CL, Cui Y, Feng WS, Wang GF (2015) BDNF and COX-2 participate in anti-depressive mechanisms of catalpol in rats undergoing chronic unpredictable mild stress. Physiol Behav 151:360–368. https://doi.org/10.1016/j.physbeh.2015.08.008

    Article  CAS  PubMed  Google Scholar 

  168. Ali SH, Madhana RM, K VA, Kasala ER, Bodduluru LN, Pitta S, Mahareddy JR, Lahkar M, (2015) Resveratrol ameliorates depressive-like behavior in repeated corticosterone-induced depression in mice. Steroids 101:37–42. https://doi.org/10.1016/j.steroids.2015.05.010

    Article  CAS  PubMed  Google Scholar 

  169. Jin P, Yu HL, Tian L, Zhang F, Quan ZS (2015) Antidepressant-like effects of oleoylethanolamide in a mouse model of chronic unpredictable mild stress. Pharmacol Biochem Behav 133:146–154. https://doi.org/10.1016/j.pbb.2015.04.001

    Article  CAS  PubMed  Google Scholar 

  170. Doboszewska U, Szewczyk B, Sowa-Kucma M, Mlyniec K, Rafalo A, Ostachowicz B, Lankosz M, Nowak G (2015) Antidepressant activity of fluoxetine in the zinc deficiency model in rats involves the NMDA receptor complex. Behav Brain Res 287:323–330. https://doi.org/10.1016/j.bbr.2015.03.064

    Article  CAS  PubMed  Google Scholar 

  171. Schmauss C (2015) An HDAC-dependent epigenetic mechanism that enhances the efficacy of the antidepressant drug fluoxetine. Sci Rep 5:8171. https://doi.org/10.1038/srep08171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Filho CB, Jesse CR, Donato F, Giacomeli R, Del Fabbro L, da Silva AM, de Gomes MG, Goes AT, Boeira SP, Prigol M, Souza LC (2015) Chronic unpredictable mild stress decreases BDNF and NGF levels and Na(+), K(+)-ATPase activity in the hippocampus and prefrontal cortex of mice: antidepressant effect of chrysin. Neuroscience 289:367–380. https://doi.org/10.1016/j.neuroscience.2014.12.048

    Article  CAS  PubMed  Google Scholar 

  173. Tianzhu Z, Shihai Y, Juan D (2014) Antidepressant-like effects of cordycepin in a mice model of chronic unpredictable mild stress. Evid Based Complement Alternat Med 2014:438506. https://doi.org/10.1155/2014/438506

    Article  PubMed  PubMed Central  Google Scholar 

  174. Guo F, Zhang Q, Zhang B, Fu Z, Wu B, Huang C, Li Y (2014) Burst-firing patterns in the prefrontal cortex underlying the neuronal mechanisms of depression probed by antidepressants. Eur J Neurosci 40(10):3538–3547. https://doi.org/10.1111/ejn.12725

    Article  PubMed  Google Scholar 

  175. Gil-Ad I, Amit BH, Hayardeni L, Tarasenko I, Taler M, Gueta RU, Weizman A (2015) Effects of the anti-multiple sclerosis immunomodulator laquinimod on anxiety and depression in rodent behavioral models. J Mol Neurosci 55(2):552–560. https://doi.org/10.1007/s12031-014-0387-3

    Article  CAS  PubMed  Google Scholar 

  176. Tyler CR, Solomon BR, Ulibarri AL, Allan AM (2014) Fluoxetine treatment ameliorates depression induced by perinatal arsenic exposure via a neurogenic mechanism. Neurotoxicology 44:98–109. https://doi.org/10.1016/j.neuro.2014.06.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Li M, Fu Q, Li Y, Li S, Xue J, Ma S (2014) Emodin opposes chronic unpredictable mild stress induced depressive-like behavior in mice by upregulating the levels of hippocampal glucocorticoid receptor and brain-derived neurotrophic factor. Fitoterapia 98:1–10. https://doi.org/10.1016/j.fitote.2014.06.007

    Article  CAS  PubMed  Google Scholar 

  178. Der-Avakian A, Mazei-Robison MS, Kesby JP, Nestler EJ, Markou A (2014) Enduring deficits in brain reward function after chronic social defeat in rats: susceptibility, resilience, and antidepressant response. Biol Psychiatry 76(7):542–549. https://doi.org/10.1016/j.biopsych.2014.01.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Lin YL, Wang S (2014) Prenatal lipopolysaccharide exposure increases depression-like behaviors and reduces hippocampal neurogenesis in adult rats. Behav Brain Res 259:24–34. https://doi.org/10.1016/j.bbr.2013.10.034

    Article  CAS  PubMed  Google Scholar 

  180. Ngoupaye GT, Bum EN, Daniels WM (2013) Antidepressant-like effects of the aqueous macerate of the bulb of Gladiolus dalenii Van Geel (Iridaceae) in a rat model of epilepsy-associated depression. BMC Complement Altern Med 13:272. https://doi.org/10.1186/1472-6882-13-272

    Article  PubMed  PubMed Central  Google Scholar 

  181. Jindal A, Mahesh R, Bhatt S (2013) Etazolate rescues behavioral deficits in chronic unpredictable mild stress model: modulation of hypothalamic-pituitary-adrenal axis activity and brain-derived neurotrophic factor level. Neurochem Int 63(5):465–475. https://doi.org/10.1016/j.neuint.2013.08.005

    Article  CAS  PubMed  Google Scholar 

  182. Yi LT, Li J, Geng D, Liu BB, Fu Y, Tu JQ, Liu Y, Weng LJ (2013) Essential oil of Perilla frutescens-induced change in hippocampal expression of brain-derived neurotrophic factor in chronic unpredictable mild stress in mice. J Ethnopharmacol 147(1):245–253. https://doi.org/10.1016/j.jep.2013.03.015

    Article  CAS  PubMed  Google Scholar 

  183. Sakata K, Mastin JR, Duke SM, Vail MG, Overacre AE, Dong BE, Jha S (2013) Effects of antidepressant treatment on mice lacking brain-derived neurotrophic factor expression through promoter IV. Eur J Neurosci 37(11):1863–1874. https://doi.org/10.1111/ejn.12148

    Article  PubMed  Google Scholar 

  184. Breuillaud L, Rossetti C, Meylan EM, Merinat C, Halfon O, Magistretti PJ, Cardinaux JR (2012) Deletion of CREB-regulated transcription coactivator 1 induces pathological aggression, depression-related behaviors, and neuroplasticity genes dysregulation in mice. Biol Psychiatry 72(7):528–536. https://doi.org/10.1016/j.biopsych.2012.04.011

    Article  CAS  PubMed  Google Scholar 

  185. Shishkina GT, Kalinina TS, Berezova IV, Dygalo NN (2012) Stress-induced activation of the brainstem Bcl-xL gene expression in rats treated with fluoxetine: correlations with serotonin metabolism and depressive-like behavior. Neuropharmacology 62(1):177–183. https://doi.org/10.1016/j.neuropharm.2011.06.016

    Article  CAS  PubMed  Google Scholar 

  186. First M, Gil-Ad I, Taler M, Tarasenko I, Novak N, Weizman A (2011) The effects of fluoxetine treatment in a chronic mild stress rat model on depression-related behavior, brain neurotrophins and ERK expression. J Mol Neurosci 45(2):246–255. https://doi.org/10.1007/s12031-011-9515-5

    Article  CAS  PubMed  Google Scholar 

  187. Qi H, Ma J, Liu YM, Yang L, Peng L, Wang H, Chen HZ (2009) Allostatic tumor-burden induces depression-associated changes in hepatoma-bearing mice. J Neurooncol 94(3):367–372. https://doi.org/10.1007/s11060-009-9887-3

    Article  PubMed  Google Scholar 

  188. Liu M, Jiang QH, Hao JL, Zhou LL (2009) Protective effect of total flavones of Abelmoschus manihot L. Medic against poststroke depression injury in mice and its action mechanism. Anat Rec (Hoboken) 292 (3):412–422. https://doi.org/10.1002/ar.20864

  189. Malkesman O, Asaf T, Shbiro L, Goldstein A, Maayan R, Weizman A, Kinor N, Okun E, Sredni B, Yadid G, Weller A (2009) Monoamines, BDNF, dehydroepiandrosterone, DHEA-sulfate, and childhood depression-an animal model study. Adv Pharmacol Sci 2009:405107. https://doi.org/10.1155/2009/405107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Basterzi AD, Yazici K, Aslan E, Delialioglu N, Tasdelen B, Tot Acar S, Yazici A (2009) Effects of fluoxetine and venlafaxine on serum brain derived neurotrophic factor levels in depressed patients. Prog Neuropsychopharmacol Biol Psychiatry 33(2):281–285. https://doi.org/10.1016/j.pnpbp.2008.11.016

    Article  CAS  PubMed  Google Scholar 

  191. Mackay GM, Forrest CM, Christofides J, Bridel MA, Mitchell S, Cowlard R, Stone TW, Darlington LG (2009) Kynurenine metabolites and inflammation markers in depressed patients treated with fluoxetine or counselling. Clin Exp Pharmacol Physiol 36(4):425–435. https://doi.org/10.1111/j.1440-1681.2008.05077.x

    Article  CAS  PubMed  Google Scholar 

  192. Onishchenko N, Karpova N, Sabri F, Castren E, Ceccatelli S (2008) Long-lasting depression-like behavior and epigenetic changes of BDNF gene expression induced by perinatal exposure to methylmercury. J Neurochem 106(3):1378–1387. https://doi.org/10.1111/j.1471-4159.2008.05484.x

    Article  CAS  PubMed  Google Scholar 

  193. Nitzan K, David D, Franko M, Toledano R, Fidelman S, Tenenbaum YS, Blonder M, Armoza-Eilat S, Shamir A, Rehavi M, Ben-Chaim Y, Doron R (2022) Anxiolytic and antidepressants’ effect of Crataegus pinnatifida (Shan Zha): biochemical mechanisms. Transl Psychiatry 12(1):208. https://doi.org/10.1038/s41398-022-01970-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Ribeiro MA, Aguiar RP, Scarante FF, Fusse EJ, de Oliveira RMW, Guimaraes FS, Campos AC (2021) Spontaneous activity of CB2 receptors attenuates stress-induced behavioral and neuroplastic deficits in male mice. Front Pharmacol 12:805758. https://doi.org/10.3389/fphar.2021.805758

    Article  CAS  PubMed  Google Scholar 

  195. Han Y, Deng X, Zhang Y, Wang X, Zhu X, Mei S, Chen A (2020) Antidepressant-like effect of flaxseed in rats exposed to chronic unpredictable stress. Brain Behav 10(6):e01626. https://doi.org/10.1002/brb3.1626

    Article  PubMed  PubMed Central  Google Scholar 

  196. Lee J, Lee KH, Kim SH, Han JY, Hong SB, Cho SC, Kim JW, Brent D (2020) Early changes of serum BDNF and SSRI response in adolescents with major depressive disorder. J Affect Disord 265:325–332. https://doi.org/10.1016/j.jad.2020.01.045

    Article  CAS  PubMed  Google Scholar 

  197. Party H, Dujarrier C, Hebert M, Lenoir S, Martinez de Lizarrondo S, Delepee R, Fauchon C, Bouton MC, Obiang P, Godefroy O, Save E, Lecardeur L, Chabry J, Vivien D, Agin V (2019) Plasminogen activator inhibitor-1 (PAI-1) deficiency predisposes to depression and resistance to treatments. Acta Neuropathol Commun 7(1):153. https://doi.org/10.1186/s40478-019-0807-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Seo MK, Lee JG, Park SW (2019) Effects of escitalopram and ibuprofen on a depression-like phenotype induced by chronic stress in rats. Neurosci Lett 696:168–173. https://doi.org/10.1016/j.neulet.2018.12.033

    Article  CAS  PubMed  Google Scholar 

  199. El-Haggar SM, Eissa MA, Mostafa TM, El-Attar KS, Abdallah MS (2018) The phosphodiesterase inhibitor pentoxifylline as a novel adjunct to antidepressants in major depressive disorder patients: a proof-of-concept, randomized, double-blind, placebo-controlled trial. Psychother Psychosom 87(6):331–339. https://doi.org/10.1159/000492619

    Article  PubMed  Google Scholar 

  200. Brunoni AR, Padberg F, Vieira ELM, Teixeira AL, Carvalho AF, Lotufo PA, Gattaz WF, Bensenor IM (2018) Plasma biomarkers in a placebo-controlled trial comparing tDCS and escitalopram efficacy in major depression. Prog Neuropsychopharmacol Biol Psychiatry 86:211–217. https://doi.org/10.1016/j.pnpbp.2018.06.003

    Article  CAS  PubMed  Google Scholar 

  201. Kurhe Y, Mahesh R (2017) Ondansetron ameliorates depression associated with obesity in high-fat diet fed experimental mice: an investigation-based on the behavioral, biochemical, and molecular approach. Indian J Pharmacol 49(4):290–296. https://doi.org/10.4103/ijp.IJP_805_16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Burstein O, Franko M, Gale E, Handelsman A, Barak S, Motsan S, Shamir A, Toledano R, Simhon O, Hirshler Y, Chen G, Doron R (2017) Escitalopram and NHT normalized stress-induced anhedonia and molecular neuroadaptations in a mouse model of depression. PLoS ONE 12(11):e0188043. https://doi.org/10.1371/journal.pone.0188043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Jiang H, Chen S, Li C, Lu N, Yue Y, Yin Y, Zhang Y, Zhi X, Zhang D, Yuan Y (2017) The serum protein levels of the tPA-BDNF pathway are implicated in depression and antidepressant treatment. Transl Psychiatry 7(4):e1079. https://doi.org/10.1038/tp.2017.43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Kurhe Y, Mahesh R, Devadoss T (2017) Novel 5-HT3 receptor antagonist QCM-4 attenuates depressive-like phenotype associated with obesity in high-fat-diet-fed mice. Psychopharmacology 234(7):1165–1179. https://doi.org/10.1007/s00213-017-4558-0

    Article  CAS  PubMed  Google Scholar 

  205. Seo MK, Ly NN, Lee CH, Cho HY, Choi CM, Nhu LH, Lee JG, Lee BJ, Kim GM, Yoon BJ, Park SW, Kim YH (2016) Early life stress increases stress vulnerability through BDNF gene epigenetic changes in the rat hippocampus. Neuropharmacology 105:388–397. https://doi.org/10.1016/j.neuropharm.2016.02.009

    Article  CAS  PubMed  Google Scholar 

  206. Martocchia A, Curto M, Scaccianoce S, Comite F, Xenos D, Nasca C, Falaschi GM, Ferracuti S, Girardi P, Nicoletti F, Falaschi P (2014) Effects of escitalopram on serum BDNF levels in elderly patients with depression: a preliminary report. Aging Clin Exp Res 26(4):461–464. https://doi.org/10.1007/s40520-014-0194-2

    Article  PubMed  Google Scholar 

  207. Doron R, Lotan D, Einat N, Yaffe R, Winer A, Marom I, Meron G, Kately N, Rehavi M (2014) A novel herbal treatment reduces depressive-like behaviors and increases BDNF levels in the brain of stressed mice. Life Sci 94(2):151–157. https://doi.org/10.1016/j.lfs.2013.10.025

    Article  CAS  PubMed  Google Scholar 

  208. Ladea M, Bran M (2013) Brain derived neurotrophic factor (BDNF) levels in depressed women treated with open-label escitalopram. Psychiatr Danub 25(2):128–132

    CAS  PubMed  Google Scholar 

  209. Dimatelis JJ, Stein DJ, Russell VA (2012) Behavioral changes after maternal separation are reversed by chronic constant light treatment. Brain Res 1480:61–71. https://doi.org/10.1016/j.brainres.2012.07.013

    Article  CAS  PubMed  Google Scholar 

  210. Wolkowitz OM, Wolf J, Shelly W, Rosser R, Burke HM, Lerner GK, Reus VI, Nelson JC, Epel ES, Mellon SH (2011) Serum BDNF levels before treatment predict SSRI response in depression. Prog Neuropsychopharmacol Biol Psychiatry 35(7):1623–1630. https://doi.org/10.1016/j.pnpbp.2011.06.013

    Article  CAS  PubMed  Google Scholar 

  211. Berger W, Mehra A, Lenoci M, Metzler TJ, Otte C, Tarasovsky G, Mellon SH, Wolkowitz OM, Marmar CR, Neylan TC (2010) Serum brain-derived neurotrophic factor predicts responses to escitalopram in chronic posttraumatic stress disorder. Prog Neuropsychopharmacol Biol Psychiatry 34(7):1279–1284. https://doi.org/10.1016/j.pnpbp.2010.07.008

    Article  CAS  PubMed  Google Scholar 

  212. Matrisciano F, Bonaccorso S, Ricciardi A, Scaccianoce S, Panaccione I, Wang L, Ruberto A, Tatarelli R, Nicoletti F, Girardi P, Shelton RC (2009) Changes in BDNF serum levels in patients with major depression disorder (MDD) after 6 months treatment with sertraline, escitalopram, or venlafaxine. J Psychiatr Res 43(3):247–254. https://doi.org/10.1016/j.jpsychires.2008.03.014

    Article  PubMed  Google Scholar 

  213. Bedel HA, Kencebay Manas C, Ozbey G, Usta C (2018) The antidepressant-like activity of ellagic acid and its effect on hippocampal brain derived neurotrophic factor levels in mouse depression models. Nat Prod Res 32(24):2932–2935. https://doi.org/10.1080/14786419.2017.1385021

    Article  CAS  PubMed  Google Scholar 

  214. Wang C, Guo J, Guo R (2017) Effect of XingPiJieYu decoction on spatial learning and memory and cAMP-PKA-CREB-BDNF pathway in rat model of depression through chronic unpredictable stress. BMC Complement Altern Med 17(1):73. https://doi.org/10.1186/s12906-016-1543-9

    Article  CAS  PubMed  Google Scholar 

  215. Luo Y, Kuang S, Xue L, Yang J (2016) The mechanism of 5-lipoxygenase in the impairment of learning and memory in rats subjected to chronic unpredictable mild stress. Physiol Behav 167:145–153. https://doi.org/10.1016/j.physbeh.2016.09.010

    Article  CAS  PubMed  Google Scholar 

  216. Tang M, Jiang P, Li H, Cai H, Liu Y, Gong H, Zhang L (2015) Antidepressant-like effect of n-3 PUFAs in CUMS rats: role of tPA/PAI-1 system. Physiol Behav 139:210–215. https://doi.org/10.1016/j.physbeh.2014.11.054

    Article  CAS  PubMed  Google Scholar 

  217. Brunoni AR, Machado-Vieira R, Zarate CA Jr, Vieira EL, Valiengo L, Bensenor IM, Lotufo PA, Gattaz WF, Teixeira AL (2015) Assessment of non-BDNF neurotrophins and GDNF levels after depression treatment with sertraline and transcranial direct current stimulation in a factorial, randomized, sham-controlled trial (SELECT-TDCS): an exploratory analysis. Prog Neuropsychopharmacol Biol Psychiatry 56:91–96. https://doi.org/10.1016/j.pnpbp.2014.08.009

    Article  CAS  PubMed  Google Scholar 

  218. Yoshimura R, Kishi T, Hori H, Katsuki A, Sugita-Ikenouchi A, Umene-Nakano W, Atake K, Iwata N, Nakamura J (2014) Serum levels of brain-derived neurotrophic factor at 4 weeks and response to treatment with SSRIs. Psychiatry Investig 11(1):84–88. https://doi.org/10.4306/pi.2014.11.1.84

    Article  CAS  PubMed  Google Scholar 

  219. Yoshimura R, Kishi T, Suzuki A, Umene-Nakano W, Ikenouchi-Sugita A, Hori H, Otani K, Iwata N, Nakamura J (2011) The brain-derived neurotrophic factor (BDNF) polymorphism Val66Met is associated with neither serum BDNF level nor response to selective serotonin reuptake inhibitors in depressed Japanese patients. Prog Neuropsychopharmacol Biol Psychiatry 35(4):1022–1025. https://doi.org/10.1016/j.pnpbp.2011.02.009

    Article  CAS  PubMed  Google Scholar 

  220. Umene-Nakano W, Yoshimura R, Ueda N, Suzuki A, Ikenouchi-Sugita A, Hori H, Otani K, Nakamura J (2010) Predictive factors for responding to sertraline treatment: views from plasma catecholamine metabolites and serotonin transporter polymorphism. J Psychopharmacol 24(12):1764–1771. https://doi.org/10.1177/0269881109106899

    Article  CAS  PubMed  Google Scholar 

  221. Gorgulu Y, Caliyurt O (2009) Rapid antidepressant effects of sleep deprivation therapy correlates with serum BDNF changes in major depression. Brain Res Bull 80(3):158–162. https://doi.org/10.1016/j.brainresbull.2009.06.016

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

N.T., S.A., S.KH., N.A., and Z.NAP. searching keywords, searching references, designing tables, writing. Y.M. and G.KH. participated in searching. SH.A. revised the work and the searching process. S.V. designing the study, writing the manuscript, and managing the process of searching and drafting. All authors approved the final version.

Corresponding author

Correspondence to Salar Vaseghi.

Ethics declarations

Ethics approval and consent to participate

N/A.

Consent for publication

N/A.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talaee, N., Azadvar, S., Khodadadi, S. et al. Comparing the effect of fluoxetine, escitalopram, and sertraline, on the level of BDNF and depression in preclinical and clinical studies: a systematic review. Eur J Clin Pharmacol (2024). https://doi.org/10.1007/s00228-024-03680-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00228-024-03680-y

Keywords

Navigation