Skip to main content

Role of the Kynurenine Metabolism Pathway in Inflammation-Induced Depression: Preclinical Approaches

  • Chapter
  • First Online:
Inflammation-Associated Depression: Evidence, Mechanisms and Implications

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 31))

Abstract

Physically ill patients with chronic inflammation often present with symptoms of depression. Our understanding of the pathophysiology of inflammation-associated depression has benefited from preclinical studies on the mechanisms of sickness and clinical studies on the symptoms of sickness and depression that develop in patients treated with immunotherapy. Sickness behavior develops when the immune system is activated by pathogen- or damage-associated molecular patterns. It is a normal biological response to infection and cell injury. It helps the organism to mobilize its immune and metabolic defenses to fight the danger. Depression emerges on the background of sickness when the inflammatory response is too intense and long lasting or the resolution process is deficient. The transition from sickness to depression is mediated by activation of the kynurenine metabolism pathway that leads to the formation of neurotoxic kynurenine metabolites including quinolinic acid, an agonist of N-methyl-d-aspartate receptors. The neuroimmune processes and molecular factors that have been identified in the studies of inflammation-associated depression represent potential new targets for the development of innovative therapies for the treatment of major depressive disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Munn DH, Zhou M, Attwood JT, Bondarev I, Conway SJ, Marshall B, Brown C, Mellor AL (1998) Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 281(5380):1191–1193

    Article  CAS  PubMed  Google Scholar 

  2. Dantzer R (2001) Cytokine-induced sickness behavior: where do we stand? Brain Behav Immun 15(1):7–24. doi:10.1006/brbi.2000.0613

    Article  CAS  PubMed  Google Scholar 

  3. Capuron L, Ravaud A, Neveu PJ, Miller AH, Maes M, Dantzer R (2002) Association between decreased serum tryptophan concentrations and depressive symptoms in cancer patients undergoing cytokine therapy. Mol Psychiatry 7(5):468–473. doi:10.1038/sj.mp.4000995

    Article  CAS  PubMed  Google Scholar 

  4. Heyes MP, Saito K, Chen CY, Proescholdt MG, Nowak TS Jr, Li J, Beagles KE, Proescholdt MA, Zito MA, Kawai K, Markey SP (1997) Species heterogeneity between gerbils and rats: quinolinate production by microglia and astrocytes and accumulations in response to ischemic brain injury and systemic immune activation. J Neurochem 69(4):1519–1529

    Article  CAS  PubMed  Google Scholar 

  5. Thomas SR, Mohr D, Stocker R (1994) Nitric oxide inhibits indoleamine 2,3-dioxygenase activity in interferon-gamma primed mononuclear phagocytes. J Biol Chem 269(20):14457–14464

    CAS  PubMed  Google Scholar 

  6. Lestage J, Verrier D, Palin K, Dantzer R (2002) The enzyme indoleamine 2,3-dioxygenase is induced in the mouse brain in response to peripheral administration of lipopolysaccharide and superantigen. Brain Behav Immun 16(5):596–601

    Article  CAS  PubMed  Google Scholar 

  7. Frenois F, Moreau M, O’Connor J, Lawson M, Micon C, Lestage J, Kelley KW, Dantzer R, Castanon N (2007) Lipopolysaccharide induces delayed FosB/DeltaFosB immunostaining within the mouse extended amygdala, hippocampus and hypothalamus, that parallel the expression of depressive-like behavior. Psychoneuroendocrinology 32(5):516–531. doi:10.1016/j.psyneuen.2007.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Capuron L, Gumnick JF, Musselman DL, Lawson DH, Reemsnyder A, Nemeroff CB, Miller AH (2002) Neurobehavioral effects of interferon-alpha in cancer patients: phenomenology and paroxetine responsiveness of symptom dimensions. Neuropsychopharmacology 26(5):643–652. doi:10.1016/S0893-133X(01)00407-9

    Article  CAS  PubMed  Google Scholar 

  9. Capuron L, Miller AH (2011) Immune system to brain signaling: neuropsychopharmacological implications. Pharmacol Ther 130(2):226–238. doi:10.1016/j.pharmthera.2011.01.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Moreau M, Lestage J, Verrier D, Mormede C, Kelley KW, Dantzer R, Castanon N (2005) Bacille Calmette-Guerin inoculation induces chronic activation of peripheral and brain indoleamine 2,3-dioxygenase in mice. J Infect Dis 192(3):537–544. doi:10.1086/431603

    Article  CAS  PubMed  Google Scholar 

  11. Moreau M, Andre C, O’Connor JC, Dumich SA, Woods JA, Kelley KW, Dantzer R, Lestage J, Castanon N (2008) Inoculation of Bacillus Calmette-Guerin to mice induces an acute episode of sickness behavior followed by chronic depressive-like behavior. Brain Behav Immun 22(7):1087–1095. doi:10.1016/j.bbi.2008.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. O’Connor JC, Andre C, Wang Y, Lawson MA, Szegedi SS, Lestage J, Castanon N, Kelley KW, Dantzer R (2009) Interferon-gamma and tumor necrosis factor-alpha mediate the upregulation of indoleamine 2,3-dioxygenase and the induction of depressive-like behavior in mice in response to bacillus Calmette-Guerin. J Neurosci 29(13):4200–4209. doi:10.1523/JNEUROSCI.5032-08.2009

    Article  PubMed  PubMed Central  Google Scholar 

  13. O’Connor JC, Lawson MA, Andre C, Briley EM, Szegedi SS, Lestage J, Castanon N, Herkenham M, Dantzer R, Kelley KW (2009) Induction of IDO by bacille Calmette-Guerin is responsible for development of murine depressive-like behavior. J Immunol 182(5):3202–3212. doi:10.4049/jimmunol.0802722

    Article  PubMed  PubMed Central  Google Scholar 

  14. O’Connor JC, Lawson MA, Andre C, Moreau M, Lestage J, Castanon N, Kelley KW, Dantzer R (2009) Lipopolysaccharide-induced depressive-like behavior is mediated by indoleamine 2,3-dioxygenase activation in mice. Mol Psychiatry 14(5):511–522. doi:10.1038/sj.mp.4002148

    Article  PubMed  Google Scholar 

  15. Fatokun AA, Hunt NH, Ball HJ (2013) Indoleamine 2,3-dioxygenase 2 (IDO2) and the kynurenine pathway: characteristics and potential roles in health and disease. Amino Acids 45(6):1319–1329. doi:10.1007/s00726-013-1602-1

    Article  CAS  PubMed  Google Scholar 

  16. Takikawa O (2005) Biochemical and medical aspects of the indoleamine 2,3-dioxygenase-initiated L-tryptophan metabolism. Biochem Biophys Res Commun 338(1):12–19. doi:10.1016/j.bbrc.2005.09.032

    Article  CAS  PubMed  Google Scholar 

  17. Yoshida R, Hayaishi O (1978) Induction of pulmonary indoleamine 2,3-dioxygenase by intraperitoneal injection of bacterial lipopolysaccharide. Proc Natl Acad Sci U S A 75(8):3998–4000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yoshida R, Urade Y, Tokuda M, Hayaishi O (1979) Induction of indoleamine 2,3-dioxygenase in mouse lung during virus infection. Proc Natl Acad Sci U S A 76(8):4084–4086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Taylor MW, Feng GS (1991) Relationship between interferon-gamma, indoleamine 2,3-dioxygenase, and tryptophan catabolism. FASEB J 5(11):2516–2522

    CAS  PubMed  Google Scholar 

  20. Robinson CM, Hale PT, Carlin JM (2006) NF-kappa B activation contributes to indoleamine dioxygenase transcriptional synergy induced by IFN-gamma and tumor necrosis factor-alpha. Cytokine 35(1–2):53–61. doi:10.1016/j.cyto.2006.07.007

    Article  CAS  PubMed  Google Scholar 

  21. Munn DH, Mellor AL (2013) Indoleamine 2,3 dioxygenase and metabolic control of immune responses. Trends Immunol 34(3):137–143. doi:10.1016/j.it.2012.10.001

    Article  CAS  PubMed  Google Scholar 

  22. Cella M, Colonna M (2015) Aryl hydrocarbon receptor: linking environment to immunity. Semin Immunol. doi:10.1016/j.smim.2015.10.002

    PubMed  PubMed Central  Google Scholar 

  23. Bessede A, Gargaro M, Pallotta MT, Matino D, Servillo G, Brunacci C, Bicciato S, Mazza EM, Macchiarulo A, Vacca C, Iannitti R, Tissi L, Volpi C, Belladonna ML, Orabona C, Bianchi R, Lanz TV, Platten M, Della Fazia MA, Piobbico D, Zelante T, Funakoshi H, Nakamura T, Gilot D, Denison MS, Guillemin GJ, DuHadaway JB, Prendergast GC, Metz R, Geffard M, Boon L, Pirro M, Iorio A, Veyret B, Romani L, Grohmann U, Fallarino F, Puccetti P (2014) Aryl hydrocarbon receptor control of a disease tolerance defence pathway. Nature 511(7508):184–190. doi:10.1038/nature13323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kimura A, Naka T, Nakahama T, Chinen I, Masuda K, Nohara K, Fujii-Kuriyama Y, Kishimoto T (2009) Aryl hydrocarbon receptor in combination with Stat1 regulates LPS-induced inflammatory responses. J Exp Med 206(9):2027–2035. doi:10.1084/jem.20090560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mezrich JD, Fechner JH, Zhang X, Johnson BP, Burlingham WJ, Bradfield CA (2010) An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J Immunol 185(6):3190–3198. doi:10.4049/jimmunol.0903670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Terness P, Bauer TM, Rose L, Dufter C, Watzlik A, Simon H, Opelz G (2002) Inhibition of allogeneic T cell proliferation by indoleamine 2,3-dioxygenase-expressing dendritic cells: mediation of suppression by tryptophan metabolites. J Exp Med 196(4):447–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lehnert H, Wurtman RJ (1993) Amino acid control of neurotransmitter synthesis and release: physiological and clinical implications. Psychother Psychosom 60(1):18–32

    Article  CAS  PubMed  Google Scholar 

  28. Schwarcz R, Bruno JP, Muchowski PJ, Wu HQ (2012) Kynurenines in the mammalian brain: when physiology meets pathology. Nat Rev Neurosci 13(7):465–477. doi:10.1038/nrn3257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fernstrom JD, Wurtman RJ (1971) Brain serotonin content: physiological dependence on plasma tryptophan levels. Science 173(3992):149–152

    Article  CAS  PubMed  Google Scholar 

  30. Fernstrom JD (1981) Dietary precursors and brain neurotransmitter formation. Annu Rev Med 32:413–425. doi:10.1146/annurev.me.32.020181.002213

    Article  CAS  PubMed  Google Scholar 

  31. Curzon G (1969) Tryptophan pyrrolase—a biochemical factor in depressive illness? Br J Psychiatry 115(529):1367–1374

    Article  CAS  PubMed  Google Scholar 

  32. Curzon G, Bridges PK (1970) Tryptophan metabolism in depression. J Neurol Neurosurg Psychiatry 33(5):698–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Greenwood MH, Lader MH, Kantameneni BD, Curzon G (1975) The acute effects of oral (--)-tryptophan in human subjects. Br J Clin Pharmacol 2(2):165–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Young SN (2013) The effect of raising and lowering tryptophan levels on human mood and social behaviour. Philos Trans R Soc Lond B Biol Sci 368(1615):20110375. doi:10.1098/rstb.2011.0375

    Google Scholar 

  35. Ruhe HG, Mason NS, Schene AH (2007) Mood is indirectly related to serotonin, norepinephrine and dopamine levels in humans: a meta-analysis of monoamine depletion studies. Mol Psychiatry 12(4):331–359. doi:10.1038/sj.mp.4001949

    Article  CAS  PubMed  Google Scholar 

  36. Strasser B, Sperner-Unterweger B, Fuchs D, Gostner JM. Tryptophan and phenylalanine metabolism pathways in inflammation-induced depression. Curr Topics Behav Neurosci

    Google Scholar 

  37. Lapin IP (1972) Interaction of kynurenine and its metabolites with tryptamine, serotonin and its precursors and oxotremorine. Psychopharmacologia 26(3):237–247

    Article  CAS  PubMed  Google Scholar 

  38. Lapin IP (1978) Stimulant and convulsive effects of kynurenines injected into brain ventricles in mice. J Neural Transm 42(1):37–43

    Article  CAS  PubMed  Google Scholar 

  39. Lapin IP (1983) Antagonism of kynurenine-induced seizures by picolinic, kynurenic and xanthurenic acids. J Neural Transm 56(2–3):177–185

    Article  CAS  PubMed  Google Scholar 

  40. Guillemin GJ, Smythe G, Takikawa O, Brew BJ (2005) Expression of indoleamine 2,3-dioxygenase and production of quinolinic acid by human microglia, astrocytes, and neurons. Glia 49(1):15–23. doi:10.1002/glia.20090

    Article  PubMed  Google Scholar 

  41. Muller N, Myint AM, Schwarz MJ (2009) The impact of neuroimmune dysregulation on neuroprotection and neurotoxicity in psychiatric disorders—relation to drug treatment. Dialogues Clin Neurosci 11(3):319–332

    PubMed  PubMed Central  Google Scholar 

  42. Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9(1):46–56. doi:10.1038/nrn2297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Walker AK, Budac DP, Bisulco S, Lee AW, Smith RA, Beenders B, Kelley KW, Dantzer R (2013) NMDA receptor blockade by ketamine abrogates lipopolysaccharide-induced depressive-like behavior in C57BL/6J mice. Neuropsychopharmacology 38(9):1609–1616. doi:10.1038/npp.2013.71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dantzer R, Walker AK (2014) Is there a role for glutamate-mediated excitotoxicity in inflammation-induced depression? J Neural Transm (Vienna) 121(8):925–932. doi:10.1007/s00702-014-1187-1

    Article  CAS  Google Scholar 

  45. Fukui S, Schwarcz R, Rapoport SI, Takada Y, Smith QR (1991) Blood–brain barrier transport of kynurenines: implications for brain synthesis and metabolism. J Neurochem 56(6):2007–2017

    Article  CAS  PubMed  Google Scholar 

  46. Kita T, Morrison PF, Heyes MP, Markey SP (2002) Effects of systemic and central nervous system localized inflammation on the contributions of metabolic precursors to the L-kynurenine and quinolinic acid pools in brain. J Neurochem 82(2):258–268

    Article  CAS  PubMed  Google Scholar 

  47. Speciale C, Hares K, Schwarcz R, Brookes N (1989) High-affinity uptake of L-kynurenine by a Na+-independent transporter of neutral amino acids in astrocytes. J Neurosci 9(6):2066–2072

    CAS  PubMed  Google Scholar 

  48. Sekine A, Okamoto M, Kanatani Y, Sano M, Shibata K, Fukuwatari T (2015) Amino acids inhibit kynurenic acid formation via suppression of kynurenine uptake or kynurenic acid synthesis in rat brain in vitro. SpringerPlus 4:48. doi:10.1186/s40064-015-0826-9

    Article  PubMed  PubMed Central  Google Scholar 

  49. Bridges RJ, Natale NR, Patel SA (2012) System xc(−) cystine/glutamate antiporter: an update on molecular pharmacology and roles within the CNS. Br J Pharmacol 165(1):20–34. doi:10.1111/j.1476-5381.2011.01480.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kigerl KA, Ankeny DP, Garg SK, Wei P, Guan Z, Lai W, McTigue DM, Banerjee R, Popovich PG (2012) System x(c)(−) regulates microglia and macrophage glutamate excitotoxicity in vivo. Exp Neurol 233(1):333–341. doi:10.1016/j.expneurol.2011.10.025

    Article  CAS  PubMed  Google Scholar 

  51. Tilleux S, Hermans E (2007) Neuroinflammation and regulation of glial glutamate uptake in neurological disorders. J Neurosci Res 85(10):2059–2070. doi:10.1002/jnr.21325

    Article  CAS  PubMed  Google Scholar 

  52. Lawson MA, Kelley KW, Dantzer R (2011) Intracerebroventricular administration of HIV-1 Tat induces brain cytokine and indoleamine 2,3-dioxygenase expression: a possible mechanism for AIDS comorbid depression. Brain Behav Immun 25(8):1569–1575. doi:10.1016/j.bbi.2011.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fu X, Lawson MA, Kelley KW, Dantzer R (2011) HIV-1 Tat activates indoleamine 2,3 dioxygenase in murine organotypic hippocampal slice cultures in a p38 mitogen-activated protein kinase-dependent manner. J Neuroinflammation 8:88. doi:10.1186/1742-2094-8-88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gibney SM, McGuinness B, Prendergast C, Harkin A, Connor TJ (2013) Poly I:C-induced activation of the immune response is accompanied by depression and anxiety-like behaviours, kynurenine pathway activation and reduced BDNF expression. Brain Behav Immun 28:170–181. doi:10.1016/j.bbi.2012.11.010

    Article  CAS  PubMed  Google Scholar 

  55. Too LK, McQuillan JA, Ball HJ, Kanai M, Nakamura T, Funakoshi H, McGregor IS, Hunt NH (2014) The kynurenine pathway contributes to long-term neuropsychological changes in experimental pneumococcal meningitis. Behav Brain Res 270:179–195. doi:10.1016/j.bbr.2014.05.018

    Article  CAS  PubMed  Google Scholar 

  56. Li Y, Eskelund AR, Zhou H, Budac DP, Sanchez C, Gulinello M (2015) Behavioral deficits are accompanied by immunological and neurochemical changes in a mouse model for neuropsychiatric lupus (NP-SLE). Int J Mol Sci 16(7):15150–15171. doi:10.3390/ijms160715150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cathomas F, Fuertig R, Sigrist H, Newman GN, Hoop V, Bizzozzero M, Mueller A, Luippold A, Ceci A, Hengerer B, Seifritz E, Fontana A, Pryce CR (2015) CD40-TNF activation in mice induces extended sickness behavior syndrome co-incident with but not dependent on activation of the kynurenine pathway. Brain Behav Immun 50:125–140. doi:10.1016/j.bbi.2015.06.184

    Article  CAS  PubMed  Google Scholar 

  58. Franceschi C, Bonafe M, Valensin S, Olivieri F, De Luca M, Ottaviani E, De Benedictis G (2000) Inflamm-aging: an evolutionary perspective on immunosenescence. Ann N Y Acad Sci 908:244–254

    Article  CAS  PubMed  Google Scholar 

  59. Godbout JP, Moreau M, Lestage J, Chen J, Sparkman NL, O’Connor J, Castanon N, Kelley KW, Dantzer R, Johnson RW (2008) Aging exacerbates depressive-like behavior in mice in response to activation of the peripheral innate immune system. Neuropsychopharmacology 33(10):2341–2351. doi:10.1038/sj.npp.1301649

    Article  CAS  PubMed  Google Scholar 

  60. Henry CJ, Huang Y, Wynne AM, Godbout JP (2009) Peripheral lipopolysaccharide (LPS) challenge promotes microglial hyperactivity in aged mice that is associated with exaggerated induction of both pro-inflammatory IL-1beta and anti-inflammatory IL-10 cytokines. Brain Behav Immun 23(3):309–317. doi:10.1016/j.bbi.2008.09.002

    Article  CAS  PubMed  Google Scholar 

  61. Kelley KW, O’Connor JC, Lawson MA, Dantzer R, Rodriguez-Zas SL, McCusker RH (2013) Aging leads to prolonged duration of inflammation-induced depression-like behavior caused by Bacillus Calmette-Guerin. Brain Behav Immun 32:63–69. doi:10.1016/j.bbi.2013.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kim H, Chen L, Lim G, Sung B, Wang S, McCabe MF, Rusanescu G, Yang L, Tian Y, Mao J (2012) Brain indoleamine 2,3-dioxygenase contributes to the comorbidity of pain and depression. J Clin Invest 122(8):2940–2954. doi:10.1172/JCI61884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhou W, Dantzer R, Budac DP, Walker AK, Mao-Ying QL, Lee AW, Heijnen CJ, Kavelaars A (2015) Peripheral indoleamine 2,3-dioxygenase 1 is required for comorbid depression-like behavior but does not contribute to neuropathic pain in mice. Brain Behav Immun 46:147–153. doi:10.1016/j.bbi.2015.01.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Laugeray A, Launay JM, Callebert J, Surget A, Belzung C, Barone PR (2010) Peripheral and cerebral metabolic abnormalities of the tryptophan-kynurenine pathway in a murine model of major depression. Behav Brain Res 210(1):84–91. doi:10.1016/j.bbr.2010.02.014

    Article  CAS  PubMed  Google Scholar 

  65. Gracia-Rubio I, Moscoso-Castro M, Pozo OJ, Marcos J, Nadal R, Valverde O (2016) Maternal separation induces neuroinflammation and long-lasting emotional alterations in mice. Prog Neuropsychopharmacol Biol Psychiatry 65:104–117. doi:10.1016/j.pnpbp.2015.09.003

    Article  CAS  PubMed  Google Scholar 

  66. Miura H, Ando Y, Noda Y, Isobe K, Ozaki N (2011) Long-lasting effects of inescapable-predator stress on brain tryptophan metabolism and the behavior of juvenile mice. Stress 14(3):262–272. doi:10.3109/10253890.2010.541539

    Article  CAS  PubMed  Google Scholar 

  67. Gibney SM, Fagan EM, Waldron AM, O’Byrne J, Connor TJ, Harkin A (2014) Inhibition of stress-induced hepatic tryptophan 2,3-dioxygenase exhibits antidepressant activity in an animal model of depressive behaviour. Int J Neuropsychopharmacol 17(6):917–928. doi:10.1017/S1461145713001673

    Article  CAS  PubMed  Google Scholar 

  68. Jackman KA, Brait VH, Wang Y, Maghzal GJ, Ball HJ, McKenzie G, De Silva TM, Stocker R, Sobey CG (2011) Vascular expression, activity and function of indoleamine 2,3-dioxygenase-1 following cerebral ischaemia-reperfusion in mice. Naunyn Schmiedebergs Arch Pharmacol 383(5):471–481. doi:10.1007/s00210-011-0611-4

    Article  CAS  PubMed  Google Scholar 

  69. Spalletta G, Bossu P, Ciaramella A, Bria P, Caltagirone C, Robinson RG (2006) The etiology of poststroke depression: a review of the literature and a new hypothesis involving inflammatory cytokines. Mol Psychiatry 11(11):984–991. doi:10.1038/sj.mp.4001879

    Article  CAS  PubMed  Google Scholar 

  70. Xie W, Cai L, Yu Y, Gao L, Xiao L, He Q, Ren Z, Liu Y (2014) Activation of brain indoleamine 2,3-dioxygenase contributes to epilepsy-associated depressive-like behavior in rats with chronic temporal lobe epilepsy. J Neuroinflammation 11:41. doi:10.1186/1742-2094-11-41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. An L, Li J, Yu ST, Xue R, Yu NJ, Chen HX, Zhang LM, Zhao N, Li YF, Zhang YZ (2015) Effects of the total flavonoid extract of Xiaobuxin-Tang on depression-like behavior induced by lipopolysaccharide and proinflammatory cytokine levels in mice. J Ethnopharmacol 163:83–87. doi:10.1016/j.jep.2015.01.022

    Article  CAS  PubMed  Google Scholar 

  72. Ji WW, Wang SY, Ma ZQ, Li RP, Li SS, Xue JS, Li W, Niu XX, Yan L, Zhang X, Fu Q, Qu R, Ma SP (2014) Effects of perillaldehyde on alternations in serum cytokines and depressive-like behavior in mice after lipopolysaccharide administration. Pharmacol Biochem Behav 116:1–8. doi:10.1016/j.pbb.2013.10.026

    Article  CAS  PubMed  Google Scholar 

  73. Kang A, Hao H, Zheng X, Liang Y, Xie Y, Xie T, Dai C, Zhao Q, Wu X, Xie L, Wang G (2011) Peripheral anti-inflammatory effects explain the ginsenosides paradox between poor brain distribution and anti-depression efficacy. J Neuroinflammation 8:100. doi:10.1186/1742-2094-8-100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Li R, Zhao D, Qu R, Fu Q, Ma S (2015) The effects of apigenin on lipopolysaccharide-induced depressive-like behavior in mice. Neurosci Lett 594:17–22. doi:10.1016/j.neulet.2015.03.040

    Article  CAS  PubMed  Google Scholar 

  75. Manosso LM, Neis VB, Moretti M, Daufenbach JF, Freitas AE, Colla AR, Rodrigues AL (2013) Antidepressant-like effect of alpha-tocopherol in a mouse model of depressive-like behavior induced by TNF-alpha. Prog Neuropsychopharmacol Biol Psychiatry 46:48–57. doi:10.1016/j.pnpbp.2013.06.012

    Article  CAS  PubMed  Google Scholar 

  76. Sulakhiya K, Kumar P, Jangra A, Dwivedi S, Hazarika NK, Baruah CC, Lahkar M (2014) Honokiol abrogates lipopolysaccharide-induced depressive like behavior by impeding neuroinflammation and oxido-nitrosative stress in mice. Eur J Pharmacol 744:124–131. doi:10.1016/j.ejphar.2014.09.049

    Article  CAS  PubMed  Google Scholar 

  77. Wang Z, Zhang Q, Yuan L, Wang S, Liu L, Yang X, Li G, Liu D (2014) The effects of curcumin on depressive-like behavior in mice after lipopolysaccharide administration. Behav Brain Res 274:282–290. doi:10.1016/j.bbr.2014.08.018

    Article  CAS  PubMed  Google Scholar 

  78. Walker FR (2013) A critical review of the mechanism of action for the selective serotonin reuptake inhibitors: do these drugs possess anti-inflammatory properties and how relevant is this in the treatment of depression? Neuropharmacology 67:304–317. doi:10.1016/j.neuropharm.2012.10.002

    Article  CAS  PubMed  Google Scholar 

  79. Vilar-Pereira G, Silva AA, Pereira IR, Silva RR, Moreira OC, de Almeida LR, de Souza AS, Rocha MS, Lannes-Vieira J (2012) Trypanosoma cruzi-induced depressive-like behavior is independent of meningoencephalitis but responsive to parasiticide and TNF-targeted therapeutic interventions. Brain Behav Immun 26(7):1136–1149. doi:10.1016/j.bbi.2012.07.009

    Article  CAS  PubMed  Google Scholar 

  80. Kaster MP, Gadotti VM, Calixto JB, Santos AR, Rodrigues AL (2012) Depressive-like behavior induced by tumor necrosis factor-alpha in mice. Neuropharmacology 62(1):419–426. doi:10.1016/j.neuropharm.2011.08.018

    Article  CAS  PubMed  Google Scholar 

  81. Norden DM, Devine R, Bicer S, Jing R, Reiser PJ, Wold LE, Godbout JP, McCarthy DO (2015) Fluoxetine prevents the development of depressive-like behavior in a mouse model of cancer related fatigue. Physiol Behav 140:230–235. doi:10.1016/j.physbeh.2014.12.045

    Article  CAS  PubMed  Google Scholar 

  82. Norden DM, McCarthy DO, Bicer S, Devine RD, Reiser PJ, Godbout JP, Wold LE (2015) Ibuprofen ameliorates fatigue- and depressive-like behavior in tumor-bearing mice. Life Sci 143:65–70. doi:10.1016/j.lfs.2015.10.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Vijaya Kumar K, Rudra A, Sreedhara MV, Siva Subramani T, Prasad DS, Das ML, Murugesan S, Yadav R, Trivedi RK, Louis JV, Li YW, Bristow LJ, Naidu PS, Vikramadithyan RK (2014) Bacillus Calmette-Guerin vaccine induces a selective serotonin reuptake inhibitor (SSRI)-resistant depression like phenotype in mice. Brain Behav Immun 42:204–211. doi:10.1016/j.bbi.2014.06.205

    Article  CAS  PubMed  Google Scholar 

  84. De Bandt JP, Cynober L (2006) Therapeutic use of branched-chain amino acids in burn, trauma, and sepsis. J Nutr 136(1 Suppl):308S–313S

    PubMed  Google Scholar 

  85. Fromentin G, Darcel N, Chaumontet C, Marsset-Baglieri A, Nadkarni N, Tome D (2012) Peripheral and central mechanisms involved in the control of food intake by dietary amino acids and proteins. Nutr Res Rev 25(1):29–39. doi:10.1017/S0954422411000175

    Article  CAS  PubMed  Google Scholar 

  86. Rosario FJ, Kanai Y, Powell TL, Jansson T (2013) Mammalian target of rapamycin signalling modulates amino acid uptake by regulating transporter cell surface abundance in primary human trophoblast cells. J Physiol 591(Pt 3):609–625. doi:10.1113/jphysiol.2012.238014

    Article  CAS  PubMed  Google Scholar 

  87. Walker AK, Vichaya E, Wing E, Banks W, Dantzer R (2015) Leucine blocks lipopolysaccharide-induced depression like behavior by interfering with kynurenine influx into the brain. Brain Behav Immun 49, e36

    Article  Google Scholar 

  88. Heisler JM, O’Connor JC (2015) Indoleamine 2,3-dioxygenase-dependent neurotoxic kynurenine metabolism mediates inflammation-induced deficit in recognition memory. Brain Behav Immun 50:115–124. doi:10.1016/j.bbi.2015.06.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zwilling D, Huang SY, Sathyasaikumar KV, Notarangelo FM, Guidetti P, Wu HQ, Lee J, Truong J, Andrews-Zwilling Y, Hsieh EW, Louie JY, Wu T, Scearce-Levie K, Patrick C, Adame A, Giorgini F, Moussaoui S, Laue G, Rassoulpour A, Flik G, Huang Y, Muchowski JM, Masliah E, Schwarcz R, Muchowski PJ (2011) Kynurenine 3-monooxygenase inhibition in blood ameliorates neurodegeneration. Cell 145(6):863–874. doi:10.1016/j.cell.2011.05.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Beconi MG, Yates D, Lyons K, Matthews K, Clifton S, Mead T, Prime M, Winkler D, O’Connell C, Walter D, Toledo-Sherman L, Munoz-Sanjuan I, Dominguez C (2012) Metabolism and pharmacokinetics of JM6 in mice: JM6 is not a prodrug for Ro-61-8048. Drug Metab Dispos 40(12):2297–2306. doi:10.1124/dmd.112.046532

    Article  CAS  PubMed  Google Scholar 

  91. Ward JL, Harting MT, Cox CS Jr, Mercer DW (2011) Effects of ketamine on endotoxin and traumatic brain injury induced cytokine production in the rat. J Trauma 70(6):1471–1479. doi:10.1097/TA.0b013e31821c38bd

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zhu X, Li P, Hao X, Wei K, Min S, Luo J, Xie F, Jin J (2015) Ketamine-mediated alleviation of electroconvulsive shock-induced memory impairment is associated with the regulation of neuroinflammation and soluble amyloid-beta peptide in depressive-like rats. Neurosci Lett 599:32–37. doi:10.1016/j.neulet.2015.05.022

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research reported in this chapter has been supported by INRA, INSERM, CNRS, and the University of Bordeaux 2 for the work anterior to 2006. It has been supported by NIH since (current grant support: R01 NS073939, R01 NS074999, R21 CA183736, R21 MH104694, R01 CA193522). Additional support comes from the University of Texas MD Anderson Cancer Center and the National Institutes of Health MD Anderson Cancer Center Support Grant (CA016672). The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding sources. In addition, I would like to thank Jeanie Woodruff for her assistance with text editing.

Conflict of Interest Statement

The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Dantzer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dantzer, R. (2016). Role of the Kynurenine Metabolism Pathway in Inflammation-Induced Depression: Preclinical Approaches. In: Dantzer, R., Capuron, L. (eds) Inflammation-Associated Depression: Evidence, Mechanisms and Implications. Current Topics in Behavioral Neurosciences, vol 31. Springer, Cham. https://doi.org/10.1007/7854_2016_6

Download citation

Publish with us

Policies and ethics