Skip to main content
Log in

Population pharmacokinetic analyses of methotrexate in pediatric patients: a systematic review

  • Review
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Background and objectives

Methotrexate is widely utilized in the chemotherapy of malignant tumors and autoimmune diseases in the pediatric population, but dosing can be challenging. Several population pharmacokinetic models were developed to characterize factors influencing variability and improve individualization of dosing regimens. However, significant covariates included varied across studies. The primary objective of this review was to summarize and discuss population pharmacokinetic models of methotrexate and covariates that influence pharmacokinetic variability in pediatric patients.

Methods

Systematic searches were conducted in the PubMed and EMBASE databases from inception to 7 July 2023. Reporting Quality was evaluated based on a checklist with 31 items. The characteristics of studies and information for model construction and validation were extracted, summarized, and discussed.

Results

Eighteen studies (four prospective studies and fourteen retrospective studies with sample sizes of 14 to 772 patients and 2.7 to 93.1 samples per patient) were included in this study. Two-compartment models were the commonly used structural models for methotrexate, and the clearance range of methotrexate ranged from 2.32 to 19.03 L/h (median: 6.86 L/h). Body size and renal function were found to significantly affect the clearance of methotrexate for pediatric patients. There were limited reports on the role of other covariates, such as gene polymorphisms and co-medications, in the pharmacokinetic parameters of methotrexate pediatric patients. Internal and external evaluations were used to assess the performance of the population pharmacokinetic models.

Conclusion

A more rigorous external evaluation needs to be performed before routine clinical use to select the appropriate PopPK model. Further research is necessary to incorporate larger cohorts or pool analyses in specific susceptible pediatric populations to improve the understanding of predicted exposure profiles and covariate identification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Pan Z, Yang G, He H, Zhao G, Yuan T, Li Y, Shi W, Gao P, Dong L, Li Y (2016) Concurrent radiotherapy and intrathecal methotrexate for treating leptomeningeal metastasis from solid tumors with adverse prognostic factors: a prospective and single-arm study. Int J Cancer 139(8):1864–1872. https://doi.org/10.1002/ijc.30214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhao Z, Hua Z, Luo X, Li Y, Yu L, Li M, Lu C, Zhao T, Liu Y (2022) Application and pharmacological mechanism of methotrexate in rheumatoid arthritis. Biomed Pharmacother = Biomed Pharmacother 150:113074. https://doi.org/10.1016/j.biopha.2022.113074

    Article  CAS  PubMed  Google Scholar 

  3. Sterba J, Valík D, Bajciová V, Kadlecová V, Gregorová V, Mendelová D (2005) High-dose methotrexate and/or leucovorin rescue for the treatment of children with lymphoblastic malignancies: do we really know why, when and how? Neoplasma 52(6):456–463

    CAS  PubMed  Google Scholar 

  4. Mantadakis E, Cole PD, Kamen BA (2005) High-dose methotrexate in acute lymphoblastic leukemia: where is the evidence for its continued use? Pharmacotherapy 25(5):748–755. https://doi.org/10.1592/phco.25.5.748.63584

    Article  CAS  PubMed  Google Scholar 

  5. Moe PJ, Holen A (2000) High-dose methotrexate in childhood all. Pediatr Hematol Oncol 17(8):615–622. https://doi.org/10.1080/08880010050211321

    Article  CAS  PubMed  Google Scholar 

  6. Nguyen HTK, Terao MA, Green DM, Pui CH, Inaba H (2021) Testicular involvement of acute lymphoblastic leukemia in children and adolescents: diagnosis, biology, and management. Cancer 127(17):3067–3081. https://doi.org/10.1002/cncr.33609

    Article  PubMed  Google Scholar 

  7. Howard SC, McCormick J, Pui CH, Buddington RK, Harvey RD (2016) Preventing and managing toxicities of high-dose methotrexate. Oncologist 21(12):1471–1482. https://doi.org/10.1634/theoncologist.2015-0164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kawakatsu S, Nikanjam M, Lin M, Le S, Saunders I, Kuo DJ, Capparelli EV (2019) Population pharmacokinetic analysis of high-dose methotrexate in pediatric and adult oncology patients. Cancer Chemother Pharmacol 84(6):1339–1348. https://doi.org/10.1007/s00280-019-03966-4

    Article  CAS  PubMed  Google Scholar 

  9. Panetta JC, Roberts JK, Huang J, Lin T, Daryani VM, Harstead KE, Patel YT, Onar-Thomas A, Campagne O, Ward DA, Broniscer A, Robinson G, Gajjar A, Stewart CF (2020) Pharmacokinetic basis for dosing high-dose methotrexate in infants and young children with malignant brain tumours. Br J Clin Pharmacol 86(2):362–371. https://doi.org/10.1111/bcp.14160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Toksvang LN, Lee SHR, Yang JJ, Schmiegelow K (2022) Maintenance therapy for acute lymphoblastic leukemia: basic science and clinical translations. Leukemia 36(7):1749–1758. https://doi.org/10.1038/s41375-022-01591-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gao X, Qian XW, Zhu XH, Yu Y, Miao H, Meng JH, Jiang JY, Wang HS, Zhai XW (2021) Population Pharmacokinetics of High-Dose Methotrexate in Chinese Pediatric patients with Acute Lymphoblastic Leukemia. Front Pharmacol 12. https://doi.org/10.3389/fphar.2021.701452

  12. Hui KH, Chu HM, Fong PS, Cheng WTF, Lam TN (2019) Population Pharmacokinetic Study and Individual Dose adjustments of high-dose methotrexate in Chinese Pediatric patients with Acute Lymphoblastic Leukemia or Osteosarcoma. J Clin Pharmacol 59(4):566–577. https://doi.org/10.1002/jcph.1349

    Article  CAS  PubMed  Google Scholar 

  13. Reiss SN, Buie LW, Adel N, Goldman DA, Devlin SM, Douer D (2016) Hypoalbuminemia is significantly associated with increased clearance time of high dose methotrexate in patients being treated for lymphoma or leukemia. Ann Hematol 95(12):2009–2015. https://doi.org/10.1007/s00277-016-2795-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. McNamara PJ, Alcorn J (2002) Protein binding predictions in infants. AAPS PharmSci 4(1):E4. https://doi.org/10.1208/ps040104

    Article  PubMed  Google Scholar 

  15. Borsi JD, Sagen E, Romslo I, Moe PJ (1990) Pharmacokinetics and metabolism of methotrexate: an example for the use of clinical pharmacology in pediatric oncology. Pediatr Hematol Oncol 7(1):13–33. https://doi.org/10.3109/08880019009034317

    Article  CAS  PubMed  Google Scholar 

  16. Strawn JR, Poweleit EA, Mills JA, Schroeder HK, Neptune ZA, Specht AM, Farrow JE, Zhang X, Martin LJ, Ramsey LB (2021) Pharmacogenetically guided Escitalopram Treatment for Pediatric anxiety disorders: protocol for a double-blind Randomized Trial. J Personalized Med 11(11). https://doi.org/10.3390/jpm11111188

  17. Wright KD, Panetta JC, Onar-Thomas A, Reddick WE, Patay Z, Qaddoumi I, Broniscer A, Robinson G, Boop FA, Klimo P Jr., Ward D, Gajjar A, Stewart CF (2015) Delayed methotrexate excretion in infants and young children with primary central nervous system tumors and postoperative fluid collections. Cancer Chemother Pharmacol 75(1):27–35. https://doi.org/10.1007/s00280-014-2614-6

    Article  CAS  PubMed  Google Scholar 

  18. Sheiner LB, Rosenberg B, Melmon KL (1972) Modelling of individual pharmacokinetics for computer-aided drug dosage. Comput Biomed Res Int J 5(5):411–459. https://doi.org/10.1016/0010-4809(72)90051-1

    Article  CAS  Google Scholar 

  19. Keizer RJ, Ter Heine R, Frymoyer A, Lesko LJ, Mangat R, Goswami S (2018) Model-informed Precision Dosing at the Bedside: Scientific challenges and opportunities. CPT: Pharmacometrics Syst Pharmacol 7(12):785–787. https://doi.org/10.1002/psp4.12353

    Article  CAS  PubMed  Google Scholar 

  20. Duffull SB, Wright DF (2015) What do we learn from repeated population analyses? Br J Clin Pharmacol 79(1):40–47. https://doi.org/10.1111/bcp.12233

    Article  PubMed  Google Scholar 

  21. Zhang Y, Sun L, Chen X, Zhao L, Wang X, Zhao Z, Mei S (2022) A systematic review of population pharmacokinetic models of methotrexate. Eur J Drug Metab Pharmacokinet 47(2):143–164. https://doi.org/10.1007/s13318-021-00737-6

    Article  CAS  PubMed  Google Scholar 

  22. Wang S, Yin Q, Yang M, Cheng Z, Xie F (2023) External evaluation of population pharmacokinetic models of methotrexate for model-informed precision dosing in pediatric patients with acute lymphoid leukemia. Pharmaceutics 15(2). https://doi.org/10.3390/pharmaceutics15020569

  23. Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P, Stewart LA (2015) Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ (Clinical Res ed) 350:g7647. https://doi.org/10.1136/bmj.g7647

    Article  Google Scholar 

  24. Kanji S, Hayes M, Ling A, Shamseer L, Chant C, Edwards DJ, Edwards S, Ensom MH, Foster DR, Hardy B, Kiser TH, la Porte C, Roberts JA, Shulman R, Walker S, Zelenitsky S, Moher D (2015) Reporting guidelines for clinical pharmacokinetic studies: the ClinPK Statement. Clin Pharmacokinet 54(7):783–795. https://doi.org/10.1007/s40262-015-0236-8

    Article  PubMed  Google Scholar 

  25. Jamsen KM, McLeay SC, Barras MA, Green B (2014) Reporting a population pharmacokinetic-pharmacodynamic study: a journal’s perspective. Clin Pharmacokinet 53(2):111–122. https://doi.org/10.1007/s40262-013-0114-1

    Article  CAS  PubMed  Google Scholar 

  26. Li ZR, Wang CY, Zhu X, Jiao Z (2021) Population Pharmacokinetics of Levetiracetam: a systematic review. Clin Pharmacokinet 60(3):305–318. https://doi.org/10.1007/s40262-020-00963-2

    Article  CAS  PubMed  Google Scholar 

  27. Rühs H, Becker A, Drescher A, Panetta JC, Pui CH, Relling MV, Jaehde U (2012) Population PK/PD model of homocysteine concentrations after high-dose methotrexate treatment in patients with acute lymphoblastic leukemia. PLoS ONE 7(9):e46015. https://doi.org/10.1371/journal.pone.0046015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Beechinor RJ, Thompson PA, Hwang MF, Vargo RC, Bomgaars LR, Gerhart JG, Dreyer ZE, Gonzalez D (2019) The population pharmacokinetics of high-dose methotrexate in infants with acute lymphoblastic leukemia highlight the need for bedside individualized dose adjustment: a report from the children’s Oncology Group. Clin Pharmacokinet 58(7):899–910. https://doi.org/10.1007/s40262-018-00734-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Orgel E, Nabais T, Douglas C, Mittelman SD, Neely M (2021) Effect of body fat on population pharmacokinetics of high-dose methotrexate in pediatric patients with acute lymphoblastic leukemia. J Clin Pharmacol 61(6):755–762. https://doi.org/10.1002/jcph.1799

    Article  CAS  PubMed  Google Scholar 

  30. Taylor ZL, Mizuno T, Punt NC, Baskaran B, Navarro Sainz A, Shuman W, Felicelli N, Vinks AA, Heldrup J, Ramsey LB (2020) MTXPK.org: a clinical decision support tool evaluating high-dose methotrexate pharmacokinetics to inform post-infusion care and use of glucarpidase. Clin Pharmacol Ther 108(3):635–643. https://doi.org/10.1002/cpt.1957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shi ZY, Liu YO, Gu HY, Xu XQ, Yan C, Yang XY, Yan D (2020) Population pharmacokinetics of high-dose methotrexate in Chinese pediatric patients with medulloblastoma. Biopharm Drug Dispos 41(3):101–110. https://doi.org/10.1002/bdd.2221

    Article  CAS  PubMed  Google Scholar 

  32. Zhan M, Sun Y, Zhou F, Wang H, Chen Z, Yan L, Li X (2022) Population pharmacokinetics of methotrexate in paediatric patients with acute lymphoblastic leukaemia and malignant lymphoma. Xenobiotica 52(3):265–273. https://doi.org/10.1080/00498254.2022.2069060

    Article  CAS  PubMed  Google Scholar 

  33. Odoul F, Le Guellec C, Lamagnère JP, Breilh D, Saux MC, Paintaud G, Autret-Leca E (1999) Prediction of methotrexate elimination after high dose infusion in children with acute lymphoblastic leukaemia using a population pharmacokinetic approach. Fundam Clin Pharmacol 13(5):595–604. https://doi.org/10.1111/j.1472-8206.1999.tb00366.x

    Article  CAS  PubMed  Google Scholar 

  34. Aumente D, Buelga DS, Lukas JC, Gomez P, Torres A, García MJ (2006) Population pharmacokinetics of high-dose methotrexate in children with acute lymphoblastic leukaemia. Clin Pharmacokinet 45(12):1227–1238. https://doi.org/10.2165/00003088-200645120-00007

    Article  CAS  PubMed  Google Scholar 

  35. Plard C, Bressolle F, Fakhoury M, Zhang D, Yacouben K, Rieutord A, Jacqz-Aigrain E (2007) A limited sampling strategy to estimate individual pharmacokinetic parameters of methotrexate in children with acute lymphoblastic leukemia. Cancer Chemother Pharmacol 60(4):609–620. https://doi.org/10.1007/s00280-006-0394-3

    Article  CAS  PubMed  Google Scholar 

  36. Colom H, Farré R, Soy D, Peraire C, Cendros JM, Pardo N, Torrent M, Domenech J, Mangues MA (2009) Population pharmacokinetics of high-dose methotrexate after intravenous administration in pediatric patients with osteosarcoma. Ther Drug Monit 31(1):76–85. https://doi.org/10.1097/FTD.0b013e3181945624

    Article  CAS  PubMed  Google Scholar 

  37. Buitenkamp TD, Mathôt RA, de Haas V, Pieters R, Zwaan CM (2010) Methotrexate-induced side effects are not due to differences in pharmacokinetics in children with Down syndrome and acute lymphoblastic leukemia. Haematologica 95(7):1106–1113. https://doi.org/10.3324/haematol.2009.019778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Faganel Kotnik B, Grabnar I, Bohanec Grabar P, Dolžan V, Jazbec J (2011) Association of genetic polymorphism in the folate metabolic pathway with methotrexate pharmacokinetics and toxicity in childhood acute lymphoblastic leukaemia and malignant lymphoma. Eur J Clin Pharmacol 67(10):993–1006. https://doi.org/10.1007/s00228-011-1046-z

    Article  CAS  PubMed  Google Scholar 

  39. Jönsson P, Skärby T, Heldrup J, Schrøder H, Höglund P (2011) High dose methotrexate treatment in children with acute lymphoblastic leukaemia may be optimised by a weight-based dose calculation. Pediatr Blood Cancer 57(1):41–46. https://doi.org/10.1002/pbc.22999

    Article  PubMed  Google Scholar 

  40. Medellin-Garibay SE, Hernández-Villa N, Correa-González LC, Morales-Barragán MN, Valero-Rivera KP, Reséndiz-Galván JE, Ortiz-Zamudio JJ, Milán-Segovia RDC, Romano-Moreno S (2020) Population pharmacokinetics of methotrexate in Mexican pediatric patients with acute lymphoblastic leukemia. Cancer Chemother Pharmacol 85(1):21–31. https://doi.org/10.1007/s00280-019-03977-1

    Article  CAS  PubMed  Google Scholar 

  41. Aarons L, Ogungbenro K (2010) Optimal design of pharmacokinetic studies. Basic Clin Pharmacol Toxicol 106(3):250–255. https://doi.org/10.1111/j.1742-7843.2009.00533.x

    Article  CAS  PubMed  Google Scholar 

  42. Aumente MD, López-Santamaría J, Donoso-Rengifo MC, Reyes-Torres I, Montejano Hervás P (2017) Evaluation of the Novel Methotrexate Architect Chemiluminescent Immunoassay: clinical impact on pharmacokinetic monitoring. Ther Drug Monit 39(5):492–498. https://doi.org/10.1097/ftd.0000000000000434

    Article  CAS  PubMed  Google Scholar 

  43. den Boer E, Koch BC, Huisman R, de Jonge R (2014) Using fluorescence polarization immunoassay for determination of erythrocyte methotrexate polyglutamates, a quick and easy test? Ther Drug Monit 36(6):819–823. https://doi.org/10.1097/ftd.0000000000000085

    Article  Google Scholar 

  44. Mei S, Zhu L, Li X, Wang J, Jiang X, Chen H, Huo J, Yang L, Lin S, Zhao Z (2017) UPLC-MS/MS Analysis of Methotrexate in Human plasma and comparison with the fluorescence polarization immunoassay. Anal Sciences: Int J Japan Soc Anal Chem 33(6):665–670. https://doi.org/10.2116/analsci.33.665

    Article  CAS  Google Scholar 

  45. Joerger M, Huitema AD, Illerhaus G, Ferreri AJ (2012) Rational administration schedule for high-dose methotrexate in patients with primary central nervous system lymphoma. Leuk Lymphoma 53(10):1867–1875. https://doi.org/10.3109/10428194.2012.676177

    Article  CAS  PubMed  Google Scholar 

  46. Li J, Gwilt P (2002) The effect of malignant effusions on methotrexate disposition. Cancer Chemother Pharmacol 50(5):373–382. https://doi.org/10.1007/s00280-002-0512-9

    Article  CAS  PubMed  Google Scholar 

  47. Thompson PA, Murry DJ, Rosner GL, Lunagomez S, Blaney SM, Berg SL, Camitta BM, Dreyer ZE, Bomgaars LR (2007) Methotrexate pharmacokinetics in infants with acute lymphoblastic leukemia. Cancer Chemother Pharmacol 59(6):847–853. https://doi.org/10.1007/s00280-006-0388-1

    Article  CAS  PubMed  Google Scholar 

  48. Ince I, Solodenko J, Frechen S, Dallmann A, Niederalt C, Schlender J, Burghaus R, Lippert J, Willmann S (2019) Predictive Pediatric modeling and Simulation using Ontogeny Information. J Clin Pharmacol 59(Suppl 1):S95–s103. https://doi.org/10.1002/jcph.1497

    Article  CAS  PubMed  Google Scholar 

  49. Zhou X, Dun J, Chen X, Xiang B, Dang Y, Cao D (2023) Predicting the correct dose in children: role of computational Pediatric physiological-based pharmacokinetics modeling tools. CPT: Pharmacometrics Syst Pharmacol 12(1):13–26. https://doi.org/10.1002/psp4.12883

    Article  CAS  PubMed  Google Scholar 

  50. Anderson BJ, Holford NH (2008) Mechanism-based concepts of size and maturity in pharmacokinetics. Annu Rev Pharmacol Toxicol 48:303–332. https://doi.org/10.1146/annurev.pharmtox.48.113006.094708

    Article  CAS  PubMed  Google Scholar 

  51. Millisor VE, Roberts JK, Sun Y, Tang L, Daryani VM, Gregornik D, Cross SJ, Ward D, Pauley JL, Molinelli A, Brennan RC, Stewart CF (2017) Derivation of new equations to estimate glomerular filtration rate in pediatric oncology patients. Pediatr Nephrol 32(9):1575–1584. https://doi.org/10.1007/s00467-017-3693-5

    Article  PubMed  PubMed Central  Google Scholar 

  52. Skärby T, Jönsson P, Hjorth L, Behrentz M, Björk O, Forestier E, Jarfelt M, Lönnerholm G, Höglund P (2003) High-dose methotrexate: on the relationship of methotrexate elimination time vs renal function and serum methotrexate levels in 1164 courses in 264 Swedish children with acute lymphoblastic leukaemia (ALL). Cancer Chemother Pharmacol 51(4):311–320. https://doi.org/10.1007/s00280-002-0552-1

    Article  CAS  PubMed  Google Scholar 

  53. Levey AS, Perrone RD, Madias NE (1988) Serum creatinine and renal function. Annu Rev Med 39:465–490. https://doi.org/10.1146/annurev.me.39.020188.002341

    Article  CAS  PubMed  Google Scholar 

  54. Houlind MB, Petersen KK, Palm H, Jørgensen LM, Aakjær M, Christrup LL, Petersen J, Andersen O, Treldal C (2018) Creatinine-based renal function estimates and dosage of postoperative Pain Management for Elderly Acute hip fracture patients. Pharmaceuticals (Basel Switzerland) 11(3). https://doi.org/10.3390/ph11030088

  55. Schwartz GJ, Feld LG, Langford DJ (1984) A simple estimate of glomerular filtration rate in full-term infants during the first year of life. J Pediatr 104(6):849–854. https://doi.org/10.1016/s0022-3476(84)80479-5

    Article  CAS  PubMed  Google Scholar 

  56. Taylor ZL, Vang J, Lopez-Lopez E, Oosterom N, Mikkelsen T, Ramsey LB (2021) Systematic review of pharmacogenetic factors that Influence High-Dose Methotrexate Pharmacokinetics in Pediatric malignancies. Cancers 13(11). https://doi.org/10.3390/cancers13112837

  57. Kodidela S, Suresh Chandra P, Dubashi B (2014) Pharmacogenetics of methotrexate in acute lymphoblastic leukaemia: why still at the bench level? Eur J Clin Pharmacol 70(3):253–260. https://doi.org/10.1007/s00228-013-1623-4

    Article  CAS  PubMed  Google Scholar 

  58. Cheng Y, Wang CY, Li ZR, Pan Y, Liu MB, Jiao Z (2021) Can Population Pharmacokinetics of Antibiotics be extrapolated? Implications of external evaluations. Clin Pharmacokinet 60(1):53–68. https://doi.org/10.1007/s40262-020-00937-4

    Article  CAS  PubMed  Google Scholar 

  59. Donagher J, Martin JH, Barras MA (2017) Individualised medicine: why we need bayesian dosing. Intern Med J 47(5):593–600. https://doi.org/10.1111/imj.13412

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all authors of the included studies for their hard work.

Funding

This work was supported by the National Natural Science Foundation of China (No. 81673510 and 82073936), Outstanding Scientific Fund of Shengjing Hospital (No. M0779), Natural Science Foundation of Fujian Province (No. 2021J01761), and Joint Funds for the Innovation of Science and Technology of Fujian Province (No. 2021Y9038).

Author information

Authors and Affiliations

Authors

Contributions

Y.C. and LM.Z. designed the review and planned the work that led to the manuscript. Y.C., YJ.Z., and Y.Z.performed the literature search and data analysis. Y.C., MB.L., and LM.Z. drafted and revised the manuscript. All authors contributed to the work, approved of the submitted version, and voiced their support for the publishing of the manuscript.

Corresponding authors

Correspondence to Maobai Liu or Limei Zhao.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Y., Zhang, Y., Zhang, Y. et al. Population pharmacokinetic analyses of methotrexate in pediatric patients: a systematic review. Eur J Clin Pharmacol (2024). https://doi.org/10.1007/s00228-024-03665-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00228-024-03665-x

Keywords

Navigation