Skip to main content
Log in

Event-related potentials to single-cycle binaural beats of a pure tone, a click train, and a noise

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

There are only few electrophysiological studies on a phenomenon called “binaural beats” (BBs), which is experienced when two tones with frequencies close to each other are dichotically presented to the ears. And, there is no study in which the electrical responses of the brain to BBs of complex sounds are recorded and analyzed. Owing to a recent method based on single-cycle BB stimulation with sub-threshold temporary monaural frequency shifts, we could record the event-related potentials (ERPs) to BBs of a 250-Hz tone as well as those to the BBs of a 250/s click train and to the BBs of a recurrent 4-ms Gaussian noise. Although fundamental components of the click train and noise stimuli were lower in intensity than the tonal stimuli in our experiments, the N1 responses to the BBs of the former two wide-spectrum sounds were recorded with significantly larger amplitudes and shorter latencies than those to the BBs of a tone, suggesting an across-frequency integration of directional information. During a BB cycle of a complex sound, the interaural time differences (ITDs) of the spectral components are all equal to each other at any time; whereas their interaural phase differences (IPDs) are all different. The ITD rather than the IPD should, therefore, be the cue that is relied upon by the binaural mechanism coding the perceived lateral shifts of the sound caused by BBs. This is in line with across-frequency models of human auditory lateralization based on a common ITD, fulfilling a straightness criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akeroyd MA (2010) A binaural beat constructed from a noise. J Acoust Soc Am 128:3301–3304

    Article  PubMed  PubMed Central  Google Scholar 

  • Batra R, Kuwada S, Fitzpatrick DC (1997) Sensitivity to interaural temporal disparities of low- and high-frequency neurons in the superior olivary complex. I. Heterogeneity of responses. J. Neurophysiol 78:1222–1236

    Article  CAS  PubMed  Google Scholar 

  • Beauchene C, Abaid N, Moran R, Diana RA, Leonessa A (2016) The effect of binaural beats on visuospatial working memory and cortical connectivity. PLoS One 11:e0166630

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Becher AK, Höhne M, Axmacher N, Chaieb L, Elger CE, Fell J (2015) Intracranial electroencephalography power and phase synchronization changes during monaural and binaural beat stimulation. Eur J Neurosci 41:254–263

    Article  PubMed  Google Scholar 

  • Bernstein LR, Trahiotis C (1996) Binaural beats at high frequencies: listeners’ use of envelope-based interaural temporal and intensitive disparities. J Acoust Soc Am 99:1670–1679

    Article  Google Scholar 

  • Biermann S, Heil P (2000) Parallels between timing of onset responses of single neurons in cat and of evoked magnetic fields in human auditory cortex. J Neurophysiol 84:2426–2439

    Article  CAS  PubMed  Google Scholar 

  • Boersma P, Weenink D (2013) Praat: doing phonetics by computer. [Computer program, Version 5.3.56]. Retrieved from http://www.praat.org

  • Bohorquez J, Ozdamar O (2008) Generation of the 40-Hz auditory steady-state response (ASSR) explained using convolution. Clin Neurophysiol 119:2598–2607

    Article  PubMed  Google Scholar 

  • Chaieb L, Wilpert EC, Hoppe C, Axmacher N, Fell J (2017) The impact of monaural beat stimulation on anxiety and cognition. Front Hum Neurosci 11:251

    Article  PubMed  PubMed Central  Google Scholar 

  • Chait M, Poeppel D, de Cheveigne´ A, Simon JZ (2005) Human auditory cortical processing of changes in interaural correlation. J Neurosci 14(25):8518–8527

    Article  CAS  Google Scholar 

  • Crowley KE, Colrain IM (2004) A review of the evidence for P2 being an independent component process: age, sleep and modality. Clin Neurophysiol 115:732–744

    Article  PubMed  Google Scholar 

  • Derner M, Chaieb L, Surges R, Staresina B, Fell J (2018) Modulation of item and source memory by auditory beat stimulation: a pilot study with intracranial EEG. Front Hum Neurosci 12:500

    Article  PubMed  PubMed Central  Google Scholar 

  • Edmonds BA, Krumbholz K (2014) Are interaural time and level differences represented by independent or integrated codes in the human auditory cortex? J Assoc Res Otolaryngol 15:103–114

    Article  PubMed  Google Scholar 

  • Gao X, Cao H, Ming D, Qi H, Wang X, Wang X, Chen R, Zhou P (2014) Analysis of EEG activity in response to binaural beats with different frequencies. Int J Psychophysiol 94:399–406

    Article  PubMed  Google Scholar 

  • Garcia-Argibay M, Santed MA, Reales JM (2019) Efficacy of binaural auditory beats in cognition, anxiety, and pain perception: a meta-analysis. Psychol Res 83:357–372

    Article  PubMed  Google Scholar 

  • Garcia-Larrea L, Lukaszewicz AC, Mauguiere F (1992) Revisiting the oddball paradigm. Non-target vs. neutral stimuli and the evaluation of ERP attentional effects. Neuropsychologia 30:723–741

    Article  CAS  PubMed  Google Scholar 

  • Golob EJ, Starr A (2000) Age-related qualitative differences in auditory cortical responses during short-term memory. Clin Neurophysiol 111:2234–2244

    Article  CAS  PubMed  Google Scholar 

  • Grantham DW, Wightman FL (1978) Detectability of varying interaural temporal differences. J Acoust Soc Am 63:511–523

    Article  CAS  PubMed  Google Scholar 

  • Grose JH, Mamo SK (2012) Electrophysiological measurement of binaural beats: effects of primary tone frequency and observer age. Ear Hear 33:187–194

    Article  PubMed  Google Scholar 

  • Gutschalk A, Micheyl C, Melcher JR, Rupp A, Scherg M, Oxenham AJ (2005) Neuromagnetic correlates of streaming in human auditory cortex. J Neurosci 25:5382–5388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halliday R, Callaway E (1978) Time shift evoked potentials (TSEPs): methods and basic results. Electroenceph Clin Neurophysiol 45:118–121

    Article  CAS  PubMed  Google Scholar 

  • Hillyard SA, Hink RF, Schwent VL, Picton TW (1973) Electrical signs of selective attention in the human brain. Science 182:177–180

    Article  CAS  PubMed  Google Scholar 

  • Hommel B, Sellaro R, Fischer R, Borg S, Colzato LS (2016) High-frequency binaural beats increase cognitive flexibility: evidence from dual-task crosstalk. Front Psychol 7:1287

    PubMed  PubMed Central  Google Scholar 

  • Ioannou CI, Pereda E, Lindsen JP, Bhattacharya J (2015) Electrical brain responses to an auditory illusion and the impact of musical expertise. PLoS One 10:e0129486

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jones SJ, Pitman JR, Halliday AM (1991) Scalp potentials following sudden coherence and discoherence of binaural noise and change in the inter-aural time difference: a specific binaural evoked potential or a ‘mismatch’ response? Electroenceph Clin Neurophysiol 80:146–154

    Article  CAS  PubMed  Google Scholar 

  • Knight RT, Scabini D, Woods DL, Clayworth CC (1988) The effects of lesions of superior temporal gyrus and inferior parietal lobe on temporal and vertex components of the human AEP. Electroenceph Clin Neurophysiol 70:499–508

    Article  CAS  PubMed  Google Scholar 

  • Kodera K, Hink RF, Yamada O, Suzuki JI (1979) Effects of rise time on simultaneously recorded auditory-evoked potentials from the early, middle and late ranges. Audiology 18:395–402

    Article  CAS  PubMed  Google Scholar 

  • Kollmeier B, Brand T, Meyer B (2008) Perception of speech and sound. In: Benesty J, Sondhi MM, Huang Y (eds) Springer handbook of speech processing. Springer, Berlin, p 65

    Google Scholar 

  • Kuhn GF (1979) The pressure transformation from a diffuse sound field to the external ear and to the body and head surface. J Acoust Soc Am 65:991–1000

    Article  Google Scholar 

  • Kuwada S, Fitzpatrick DC, Batra R, Ostapoff EM (2006) Sensitivity to interaural time differences in the dorsal nucleus of the lateral lemniscus of the unanesthetized rabbit: Comparison with other structures. J Neurophysiol 95:1309–1322

    Article  PubMed  Google Scholar 

  • Lehmann D, Skrandies W (1980) Reference-free identification of components of checkerboard-evoked multichannel potential fields. Electroencephalogr Clin Neurophysiol 48:609–621

    Article  CAS  PubMed  Google Scholar 

  • Licklider JCR, Webster JC, Hedlun JM (1950) On the frequency limits of binaural beats. J Acoust Soc Am 22:468–473

    Article  Google Scholar 

  • Lopez-Calderon J, Luck SJ (2014) ERPLAB: an open-source toolbox for the analysis of event-related potentials. Front Hum Neurosci 8:213

    Article  PubMed  PubMed Central  Google Scholar 

  • Loveless N, Levänen S, Jousmäki V, Sams M, Hari R (1996) Temporal integration in auditory sensory memory: neuromagnetic evidence. Electroencephalogr Clin Neurophysiol 100:220–228

    Article  CAS  PubMed  Google Scholar 

  • Luck SJ, Hillyard SA (1995) The role of attention in feature detection and conjunction discrimination: an electrophysiological analysis. Int J Neurosci 80:281–297

    Article  CAS  PubMed  Google Scholar 

  • McAlpine D, Jiang D, Palmer AR (2001) A neural code for low-frequency sound localization in mammals. Nat Neurosci 4:396–401

    Article  CAS  PubMed  Google Scholar 

  • McEvoy LK, Picton TW, Champagne SC, Kellet AJC, Kelly JB (1990) Human evoked potentials to shifts in the lateralization of a noise. Audiology 29:163–180

    Article  CAS  PubMed  Google Scholar 

  • McFadden D, Pasanen EG (1975) Binaural beats at high frequencies. Science 190(4212):394–396

    Article  CAS  PubMed  Google Scholar 

  • Moore JK, Moore RY (1971) A comparative study of the superior olivary complex in the primate brain. Folia Primatol 16:35–51

    Article  CAS  PubMed  Google Scholar 

  • Näätänen R (1990) The role of attention in auditory information processing as revealed by event-related potentials and other brain measures of cognitive function. Behav Brain Sci 13:201–233

    Article  Google Scholar 

  • Näätänen R, Picton T (1987) The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology 24:375–425

    Article  PubMed  Google Scholar 

  • Novak G, Ritter W, Vaughan HG Jr. (1992) Mismatch detection and the latency of temporal judgements. Psychophysiology 29:398–411

    Article  CAS  PubMed  Google Scholar 

  • Özdamar Ö, Bohorquez J, Mihajloski T, Yavuz E, Lachowska M (2011) Auditory evoked responses to binaural beat illusion: Stimulus generation and the derivation of the binaural interaction component (BIC). Conf Proc IEEE Eng Med Biol Soc 2011:830–833

    PubMed  Google Scholar 

  • Papanicolaou A, Baumann S, Rogers R, Saydjari C, Amparo E, Eisenberg H (1990) Localization of auditory response sources using magnetoencephalography and magnetic resonance imaging. Arch Neurol 47:33–37

    Article  CAS  PubMed  Google Scholar 

  • Perrott DR, Musicant AD (1977) Rotating tones and binaural beats. J Acoust Soc Am 61:1288–1292

    Article  CAS  PubMed  Google Scholar 

  • Picton TW, Hillyard SA, Krausz HI, Galambos R (1974) Human auditory evoked potentials: I. Evaluation of components. Electroencephalogr Clin Neurophysiol 36:179–190

    Article  CAS  PubMed  Google Scholar 

  • Pratt H, Starr A, Michalewski HJ, Dimitrijevic A, Bleich N, Mittelman N (2009) Cortical evoked potentials to an auditory illusion: binaural beats. Clin Neurophysiol 120:1514–1524

    Article  PubMed  PubMed Central  Google Scholar 

  • Pratt H, Starr A, Michalewski HJ, Dimitrijevic A, Bleich N, Mittelman N (2010) A comparison of auditory evoked potentials to acoustic beats and to binaural beats. Hear Res 262:34–44

    Article  PubMed  Google Scholar 

  • Rayleigh L (1907) On our perception of sound direction. Phil Mag 13:214–232

    Article  Google Scholar 

  • Ross B (2018) Auditory cortex responses to interaural time differences in the envelope of low-frequency sound, recorded with MEG in young and older listeners. Hear Res 370:22–39

    Article  PubMed  Google Scholar 

  • Saberi K (1995) Lateralization of comodulated complex waveforms. J Acoust Soc Am 98:3146–3156

    Article  CAS  PubMed  Google Scholar 

  • Sachs RM, Burkhard MD (1972) Zwislocki Coupler. Evaluation with insert earphones. Report 20022. Industrial Research Products, Inc., Elk Grove, IL

  • Sams M, Hämäläinen M, Hari R, McEvoy L (1993) Human auditory cortical mechanisms of sound lateralization. I. Interaural time differences within sound. Hear Res 67:89–97

    Article  CAS  PubMed  Google Scholar 

  • Scherg M, Vajsar J, Picton TW (1989) A source analysis of the late human auditory evoked potentials. J Cognit Neurosci 1:336–355

    Article  CAS  Google Scholar 

  • Shackletona TM, Meddis R, Hewitt MJ (1992) Across frequency integration in a model of lateralization. J Acoust Soc Am 91:2276–2279

    Article  Google Scholar 

  • Shahin A, Roberts L, Pantev C, Trainor LJ, Ross B (2005) Modulation of P2 auditory-evoked responses by the spectral complexity of musical sounds. Neuroreport 16:1781–1785

    Article  PubMed  Google Scholar 

  • Stern RM, Trahiotis C (1992) The role of consistency of interaural timing over frequency in binaural lateralization. In: Cazals Y, Horner K, Demany L (eds) Auditory physiology and perception. Pergamon Press, Oxford, pp 547–553

    Chapter  Google Scholar 

  • Stern RM, Zeiberg AS, Trahiotis C (1988) Lateralization of complex binaural stimuli: a weighted-image model. J Acoust Soc Am 84:156–165

    Article  CAS  PubMed  Google Scholar 

  • Stewart GW (1917) Binaural beats. Phys Rev 9:502–508

    Article  Google Scholar 

  • Takahashi TA, Konishi M (1986) Selectivity for interaural time differences in the owl’s midbrain. J Neurosci 6:3413–3422

    Article  CAS  PubMed  Google Scholar 

  • Tenke CE, Kayser J (2012) Generator localization by current source density (CSD): implications of volume conduction and field closure at intracranial and scalp resolutions. Clin Neurophysiol 123:2328–2345

    Article  PubMed  PubMed Central  Google Scholar 

  • Ungan P, Yagcioglu S (2002) Origin of the binaural interaction component in wave P4 of the short-latency auditory evoked potentials in the cat: Evaluation of serial depth recordings from the brainstem. Hear Res 167:81–101

    Article  PubMed  Google Scholar 

  • Ungan P, Şahinoğlu B, Utkuçal R (1989) Human laterality reversal auditory evoked potentials. Electroencephalogr Clin Neurophysiol 73:306–321

    Article  CAS  PubMed  Google Scholar 

  • Ungan P, Yagcioglu S, Göksoy C (2001) Differences between the N1 waves of the responses to interaural time and intensity disparities: scalp topography and dipole sources. Clin Neurophysiol 112:485–498

    Article  CAS  PubMed  Google Scholar 

  • Ungan P, Yagcioglu S, Ayik E (2019) Event-related potentials to single-cycle binaural beats and diotic amplitude modulation of a tone. Exp Brain Res 237:1931–1945

    Article  PubMed  Google Scholar 

  • Vaughan HG Jr, Ritter W (1970) The sources of auditory evoked responses recorded from the human scalp. Electroencephalogr Clin Neurophysiol 28:360–367

    Article  PubMed  Google Scholar 

  • von Wedel H (1982) Evoked cortical potentials caused by short-term changes in interaural coherence. Laryngol Rhinol Otol 61:159–164

    Article  Google Scholar 

  • Wernick JS, Starr A (1968) Binaural interaction in the superior olivary complex of the cat: An analysis of field potentials evoked by binaural-beat stimuli. J Neurophysiol 31:428–441

    Article  CAS  PubMed  Google Scholar 

  • Yost WA (1981) Lateral position of sinusoids presented with interaural intensive and temporal differences. J Acoust Soc Am 70:397–409

    Article  Google Scholar 

  • Zhang PX, Hartmann WM (2006) Lateralization of sine tones-interaural time vs phase. J Acoust Soc Am 120:3471–3474

    Article  PubMed  Google Scholar 

  • Zwislocki JJ (1971) An earlike coupler for earphone calibration. LSC-S-9, Laboratory for Sensory Communication, Syracuse Univ., Syracuse

Download references

Acknowledgements

This work was funded by Turkish Scientific and Technological Research Council, Ankara (Project: 114S492) and supported by Koc University, School of Medicine, Istanbul; and also by Science Academy, Istanbul, Turkey. Suha Yagcioglu, one of the co-authors of this study, passed away before submission of the manuscript. In recognition of his immense contribution to the study, we keep his name in the author list.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pekcan Ungan.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be regarded as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ungan, P., Yagcioglu, S. & Ayik, E. Event-related potentials to single-cycle binaural beats of a pure tone, a click train, and a noise. Exp Brain Res 237, 2811–2828 (2019). https://doi.org/10.1007/s00221-019-05638-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-019-05638-4

Keywords

Navigation