Skip to main content
Log in

Event-related potentials to single-cycle binaural beats and diotic amplitude modulation of a tone

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

When two tones with slightly different frequencies are dichotically presented, binaural beats (BBs) are experienced. BBs resulting from the cycling change in interaural phase difference elicit electroencephalographic responses. Because they repeat at short periods, allowing poor recovery of the cortical responses, these steady-state responses have small amplitudes, and their various wave components intermingle and might mask each other. Using single-cycle BBs separated by relatively long inter-onset intervals would be a solution, but introducing a transient interaural frequency shift requires response subtraction which may not be acceptable for non-additive brain responses. The proposed stimulation method employs transient and monaurally subthreshold frequency shifts in opposite directions in the two ears to produce single-cycle BBs of a 250 Hz tone. These shifts are perceived as distinct BBs when presented dichotically, but remain subthreshold when presented monotically. Therefore, no frequency-shift response is elicited, and the specific BB response is obtained with no need for waveform subtraction. We recorded from 19 normal hearing participants the event-related potentials (ERPs) to single-cycle BBs and also to temporary diotic amplitude modulation (AM) with matched perceptual salience. The ERPs to single-cycle BBs presented at 2 s inter-onset intervals had N1-P2 responses with up to seven times larger amplitudes than the conventional steady-state BB responses in the literature. Significant differences were found between the scalp potential distributions of the N1 responses to BB and AM stimuli, suggesting that the cortical sites, where envelope-based level processing and temporal fine structure-based spatial processing of the stimulus take place, are not totally overlapped.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

(From Ungan et al. 2014)

Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Beauchene C, Abaid N, Moran R et al (2016) The effect of binaural beats on visuospatial working memory and cortical connectivity. PLoS One 11:e0166630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becher AK, Höhne M, Axmacher N et al (2015) Intracranial electroencephalography power and phase synchronization changes during monaural and binaural beat stimulation. Eur J Neurosci 41:254–263

    Article  PubMed  Google Scholar 

  • Boersma P, Weenink D (2013) Praat: doing phonetics by computer. [Computer program, Version 5.3.56]. http://www.praat.org. Accessed 15 Nov 2013

  • Bohorquez J, Özdamar Ö (2008) Generation of the 40-Hz auditory steady-state response (ASSR) explained using convolution. Clin Neurophysiol 119:2598–2607

    Article  PubMed  Google Scholar 

  • Chaieb L, Wilpert EC, Reber TP et al (2015) Auditory beat stimulation and its effects on cognition and mood states. Front Psychiatry 6:70

    Article  PubMed  PubMed Central  Google Scholar 

  • Crowley KE, Colrain IM (2004) A review of the evidence for P2 being an independent component process: age, sleep and modality. Clin Neurophysiol 115:732–744

    Article  PubMed  Google Scholar 

  • Derner M, Chaieb L et al (2018) Modulation of item and source memory by auditory beat stimulation: a pilot study with intracranial EEG. Front Hum Neurosci 12:500

    Article  PubMed  PubMed Central  Google Scholar 

  • Dimitrijevic A, Michalewiski HJ, Zeng F-G et al (2008) Frequency changes in a continuous tone: auditory cortical potentials. Clin Neurophysiol 119:2111–2124

    Article  PubMed  PubMed Central  Google Scholar 

  • Draganova R, Ross R, Wollbrink A et al (2008) Cortical steady-state responses to central and peripheral auditory beats. Cereb Cortex 18:1193–1200

    Article  PubMed  Google Scholar 

  • Ewert SD, Paraouty N, Lorenzi C (2018) A two-path model of auditory modulation detection using temporal fine-structure and envelope cues. Eur J Neurosci. https://doi.org/10.1111/ejn.13846

    Article  PubMed  Google Scholar 

  • Gao X, Cao H, Ming D et al (2014) Analysis of EEG activity in response to binaural beats with different frequencies. Int J Psychophysiol 94:399–406

    Article  PubMed  Google Scholar 

  • Garcia-Argibay M, Santed MA, Reales JM (2018) Efficacy of binaural auditory beats in cognition, anxiety, and pain perception: a meta-analysis. Psychol Res. https://doi.org/10.1007/s00426-018-1066-8

    Article  PubMed  Google Scholar 

  • Garcia-Larrea L, Lukaszewicz AC, Mauguiere F (1992) Revisiting the oddball paradigm. Non-target vs. neutral stimuli and the evaluation of ERP attentional effects. Neuropsychologia 30:723–741

    Article  CAS  PubMed  Google Scholar 

  • Golob EJ, Starr A (2000) Age-related qualitative differences in auditory cortical responses during short-term memory. Clin Neurophysiol 111:2234–2244

    Article  CAS  PubMed  Google Scholar 

  • Grantham DW, Wightman FL (1978) Detectability of varying interaural temporal differences. J Acoust Soc Am 63:511–523

    Article  CAS  PubMed  Google Scholar 

  • Groen JJ (1964) Super- and subliminal binaural beats. Acta Otolaryngol 57:224–230

    Article  CAS  PubMed  Google Scholar 

  • Grose JH, Mamo SK (2012a) Frequency modulation detection as a measure of temporal processing: age-related monaural and binaural effects. Hear Res 294:49–54

    Article  PubMed  PubMed Central  Google Scholar 

  • Grose JH, Mamo SK (2012b) Electrophysiological measurement of binaural beats: effects of primary tone frequency and observer age. Ear Hear 33:187–194

    Article  PubMed  Google Scholar 

  • Grose JH, Buss E, Hall JW (2012) Binaural beat salience. Hear Res 285:40–45

    Article  PubMed  PubMed Central  Google Scholar 

  • Gutschalk A, Micheyl C, Melcher JR et al (2005) Neuromagnetic correlates of streaming in human auditory cortex. J Neurosci 25:5382–5388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hillyard SA, Hink RF, Schwent VL et al (1973) Electrical signs of selective attention in the human brain. Science 182:177–180

    Article  CAS  PubMed  Google Scholar 

  • Hink RF, Kodera K, Yamada O et al (1980) Binaural interaction of a beating frequency-following response. Audiology 19:36–43

    Article  CAS  PubMed  Google Scholar 

  • Hommel B, Sellaro R, Fischer R et al (2016) High-frequency binaural beats increase cognitive flexibility: evidence from dual-task crosstalk. Front Psychol 7:1287

    PubMed  PubMed Central  Google Scholar 

  • Hughes J (1946) The thresholds of audition for short periods of stimulation. Proc R Soc Lond B133:486–490

    Google Scholar 

  • Ioannou CI, Pereda E, Lindsen JP et al (2015) Electrical brain responses to an auditory illusion and the impact of musical expertise. PLoS One 10:e0129486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jirakittayakorn N, Wongsawat Y (2015) The brain responses to different frequencies of binaural beat sounds on QEEG at cortical level. Conf Proc IEEE Eng Med Biol Soc. 2015:4687–4691. https://doi.org/10.1109/EMBC.2015.7319440

    Article  PubMed  Google Scholar 

  • Karino S, Yumato M, Itoh K et al (2006) Neuromagnetic responses to binaural beat in human cerebral cortex. J Neurophysiol 96:1927–1933

    Article  PubMed  Google Scholar 

  • Knight RT, Hillyard SA, Woods DL et al (1981) The effects of frontal cortex lesions on event-related potentials during auditory selective attention. Electroenceph Clin Neurophysiol 52:571–582

    Article  CAS  PubMed  Google Scholar 

  • Knight RT, Scabini D, Woods DL et al (1988) The effects of lesions of superior temporal gyrus and inferior parietal lobe on temporal and vertex components of the human AEP. Electroenceph Clin Neurophysiol 70:499–508

    Article  CAS  PubMed  Google Scholar 

  • Kodera K, Hink RF, Yamada O et al (1979) Effects of rise time on simultaneously recorded auditory-evoked potentials from the early, middle and late ranges. Audiology 18:395–402

    Article  CAS  PubMed  Google Scholar 

  • Lehmann D, Skrandies W (1980) Reference-free identification of components of checkerboard-evoked multichannel potential fields. Electroenceph Clin Neurophysiol 48:609–621

    Article  CAS  PubMed  Google Scholar 

  • Levitt H (1971) Transformed up–down methods in psychoacoustics. J Acoust Soc Am 49:467–477

    Article  Google Scholar 

  • Licklider JCR, Webster JC, Hedlun JM (1950) On the frequency limits of binaural beats. J Acoust Soc Am 22:468–473

    Article  Google Scholar 

  • Lopez-Calderon J, Luck SJ (2014) ERPLAB: an open-source toolbox for the analysis of event-related potentials. Front Hum Neurosci 8:213

    Article  PubMed  PubMed Central  Google Scholar 

  • Loveless N, Levänen S, Jousmäki V, Sams M, Hari R (1996) Temporal integration in auditory sensory memory: neuromagnetic evidence. Electroenceph Clin Neurophysiol 100:220–228

    Article  CAS  PubMed  Google Scholar 

  • Luck SJ, Hillyard SA (1995) The role of attention in feature detection and conjunction discrimination: an electrophysiological analysis. Int J Neurosci 80:281–297

    Article  CAS  PubMed  Google Scholar 

  • Mihajloski T, Bohorquez J, Özdamar Ö (2014) Effects of single cycle binaural beat duration on auditory evoked potentials. Conf Proc IEEE Eng Med Biol Soc 2014:4587–4590

    PubMed  Google Scholar 

  • Møller A (2000) Hearing: its physiology and pathophysiology. Academic Press, New York, pp 181–200

    Google Scholar 

  • Moore JK, Moore RY (1971) A comparative study of the superior olivary complex in the primate brain. Folia Primatol 16:35–51

    Article  CAS  PubMed  Google Scholar 

  • Munro KJ, Agnew N (1999) A comparison of inter-aural attenuation with the etymotic ER-3A insert earphone and the telephonics TDH-39 supra-aural earphone. Br J Audiol 33:259–262

    Article  CAS  PubMed  Google Scholar 

  • Näätänen R (1990) The role of attention in auditory information processing as revealed by event-related potentials and other brain measures of cognitive function. Behav Brain Sci 13:201–233

    Article  Google Scholar 

  • Näätänen R (1992) Attention and brain function. Erlbaum, Hillsdale

    Google Scholar 

  • Näätänen R, Picton T (1987) The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology 24:375–425

    Article  PubMed  Google Scholar 

  • Novak G, Ritter W, Vaughan HG Jr (1992) Mismatch detection and the latency of temporal judgements. Psychophysiology 29:398–411

    Article  CAS  PubMed  Google Scholar 

  • Oster G (1973) Auditory beats in the brain. Sci Am 229:94–102

    Article  CAS  PubMed  Google Scholar 

  • Özdamar Ö, Bohorquez J, Mihajloski T et al (2011) Auditory evoked responses to binaural beat illusion: stimulus generation and the derivation of the binaural interaction component (BIC). Conf Proc IEEE Eng Med Biol Soc 2011:830–833

    PubMed  Google Scholar 

  • Papanicolaou A, Baumann S, Rogers R et al (1990) Localization of auditory response sources using magnetoencephalography and magnetic resonance imaging. Arch Neurol 47:33–37

    Article  CAS  PubMed  Google Scholar 

  • Perrott DR, Musicant AD (1977) Rotating tones and binaural beats. J Acoust Soc Am 61:1288–1292

    Article  CAS  PubMed  Google Scholar 

  • Perrott DR, Nelson MA (1969) Limits for the detection of binaural beats. J Acoust Soc Am 46:1477–1481

    Article  CAS  PubMed  Google Scholar 

  • Picton TW, Hillyard SA, Krausz HI et al (1974) Human auditory evoked potentials: I. Evaluation of components. Electroenceph Clin Neurophysiol 36:179–190

    Article  CAS  PubMed  Google Scholar 

  • Picton TW, John M, Dimitrijevic A, Purcell D (2003) Human auditory steady-state responses. Int J Audiol 42:177–219

    Article  PubMed  Google Scholar 

  • Polanía R, Nitsche MA, Ruff CC (2018) Studying and modifying brain function with noninvasive brain stimulation. Nat Neurosci 21:174–187

    Article  CAS  PubMed  Google Scholar 

  • Pratt H, Starr A, Michalewski HJ et al (2009) Cortical evoked potentials to an auditory illusion: binaural beats. Clin Neurophysiol 120:1514–1524

    Article  PubMed  PubMed Central  Google Scholar 

  • Pratt H, Starr A, Michalewski HJ et al (2010) A comparison of auditory evoked potentials to acoustic beats and to binaural beats. Hear Res 262:34–44

    Article  PubMed  Google Scholar 

  • Rayleigh L (1907) On our perception of sound direction. Phil Mag 13:214–232

    Article  Google Scholar 

  • Ritter W, Simson R, Vaughan H (1988) Effects of the amount of stimulus information processed on negative event-related potentials. Electroenceph Clin Neurophysiol 69:244–258

    Article  CAS  PubMed  Google Scholar 

  • Ross B (2018) Auditory cortex responses to interaural time differences in the envelope of low-frequency sound, recorded with MEG in young and older listeners. Hear Res 370:22–39

    Article  PubMed  Google Scholar 

  • Ross B, Picton TW, Pantev C (2002) Temporal integration in the human auditory cortex as represented by the development of the steady-state magnetic field. Hear Res 165:68–84

    Article  PubMed  Google Scholar 

  • Ross B, Tremblay KL, Picton TW (2007) Physiological detection of interaural phase differences. J Acoust Soc Am 121:1017–1027

    Article  PubMed  Google Scholar 

  • Ross B, Miyazaki T, Thompson J et al (2014) Human cortical responses to slow and fast binaural beats reveal multiple mechanisms of binaural hearing. J Neurophysiol 112:1871–1884

    Article  PubMed  Google Scholar 

  • Rutschmann J, Rubinstein L (1965) Binaural beats and binaural amplitude modulated tones: successive comparison of loudness fluctuations. J Acoust Soc Am 38:759–768

    Article  CAS  PubMed  Google Scholar 

  • Scherg M, Vajsar J, Picton TW (1989) A source analysis of the late human auditory evoked potentials. J Cogn Neurosci 1:336–355

    Article  CAS  PubMed  Google Scholar 

  • Schwarz DWF, Taylor P (2005) Human auditory steady state responses to binaural and monaural beats. Clin Neurophysiol 116:658–668

    Article  CAS  PubMed  Google Scholar 

  • Stapells DR (2010) Frequency-specific ABR and ASSR threshold assessment in young infants. In: Seewald RC, Bamford J (eds) A sound foundation through early amplification: an international conference, Chapter 4. Phonak, Stafa

    Google Scholar 

  • Stewart GW (1917) Binaural beats. Phys Rev 9:502–508

    Article  Google Scholar 

  • Ungan P, Yagcioglu S (2002) Origin of the binaural interaction component in wave P4 of the short-latency auditory evoked potentials in the cat: evaluation of serial depth recordings from the brainstem. Hear Res 167:81–101

    Article  PubMed  Google Scholar 

  • Ungan P, Sahinoglu B, Utkucal R (1989) Human laterality reversal auditory evoked potentials. Electroenceph Clin Neurophysiol 73:306–321

    Article  CAS  PubMed  Google Scholar 

  • Ungan P, Erar H, Öztürk N et al (1992) Human long-latency potentials evoked by monaural interruptions of a binaural click train: connection to sound lateralization based on interaural intensity differences. Audiology 31:318–333

    Article  CAS  PubMed  Google Scholar 

  • Ungan P, Yagcioglu S, Göksoy C (2001) Differences between the N1 waves of the responses to interaural time and intensity disparities: scalp topography and dipole sources. Clin Neurophysiol 112:485–498

    Article  CAS  PubMed  Google Scholar 

  • Ungan P, Özdamar Ö, Yagcioglu S (2014) Long-latency binaural beat responses to subthreshold frequency shifts. 12th National Neuroscience Congress, Istanbul, May 28–31, 2014

  • Vaughan HG Jr, Ritter W (1970) The sources of auditory evoked responses recorded from the human scalp. Electroenceph Clin Neurophysiol 28:360–367

    Article  PubMed  Google Scholar 

  • Vernon D, Peryer G, Louch J et al (2014) Tracking EEG changes in response to alpha and beta binaural beats. Int J Psychophysiol 93:134–139

    Article  CAS  PubMed  Google Scholar 

  • von Bekesy G (1960) Experiments in hearing. McGraw-Hill, New York

    Google Scholar 

  • Wernick JS, Starr A (1968) Binaural interaction in the superior olivary complex of the cat: an analysis of field potentials evoked by binaural-beat stimuli. J Neurophysiol 31:428–441

    Article  CAS  PubMed  Google Scholar 

  • Wilson RH, Sahnks JE, Lilly DJ (1984) Acoustic reflex adaptation. In: Silman S (ed) The acoustic reflex: basic principles and clinical applications. Academic Press, New York, pp 329–387

    Chapter  Google Scholar 

  • Yabe H, Tervaniemi M, Reinikainen K, Näätänen R (1997) Temporal window of integration revealed by MMN to sound omission. NeuroReport 8:1971–1974

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pekcan Ungan.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be regarded as a potential conflict of interest.

Ethical approval

Procedures of the study were approved by the Ethics Committee of Koc University, Istanbul.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was funded by Turkish Scientific and Technological Research Council, Ankara (Project: 114S492) and supported by Koc University School of Medicine, Istanbul, and also by Science Academy, Istanbul, Turkey.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 164 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ungan, P., Yagcioglu, S. & Ayik, E. Event-related potentials to single-cycle binaural beats and diotic amplitude modulation of a tone. Exp Brain Res 237, 1931–1945 (2019). https://doi.org/10.1007/s00221-019-05562-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-019-05562-7

Keywords

Navigation