Skip to main content

Advertisement

Log in

Evidence for enhanced discrimination of virtual auditory distance among blind listeners using level and direct-to-reverberant cues

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Totally blind listeners often demonstrate better than normal capabilities when performing spatial hearing tasks. Accurate representation of three-dimensional auditory space requires the processing of available distance information between the listener and the sound source; however, auditory distance cues vary greatly depending upon the acoustic properties of the environment, and it is not known which distance cues are important to totally blind listeners. Our data show that totally blind listeners display better performance compared to sighted age-matched controls for distance discrimination tasks in anechoic and reverberant virtual rooms simulated using a room-image procedure. Totally blind listeners use two major auditory distance cues to stationary sound sources, level and direct-to-reverberant ratio, more effectively than sighted controls for many of the virtual distances tested. These results show that significant compensation among totally blind listeners for virtual auditory spatial distance leads to benefits across a range of simulated acoustic environments. No significant differences in performance were observed between listeners with partial non-correctable visual losses and sighted controls, suggesting that sensory compensation for virtual distance does not occur for listeners with partial vision loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akeroyd MA, Gatehouse S, Blaschke J (2007) The detection of differences in the cues to distance by elderly hearing-impaired listeners. J Acoust Soc Am 121:1077–1089

    Article  PubMed  Google Scholar 

  • Alais D, Burr D (2004) The ventriloquist effect results from near-optimal bimodal integration. Curr Biol 14:257–262

    PubMed  CAS  Google Scholar 

  • Ashmead DH, Wall RS, Eaton S, Ebinger K, Snook-Hill M, Guth D, Yang X (1998) Echolocation reconsidered: using spatial variations in the ambient sound field to guide locomotion. J Vis Impair Blind 9:615–632

    Google Scholar 

  • Bavelier D, Hirshorn EA (2010) I see where you’re hearing: how cross-modal plasticity may exploit homologous brain structures. Nat Neurosci 13:1309–1311

    Article  PubMed  CAS  Google Scholar 

  • Bronkhorst AW, Houtgast T (1999) Auditory distance perception in rooms. Nature 397:517–520

    Article  PubMed  CAS  Google Scholar 

  • Brungart DS, Scott KR (2001) The effects of production and presentation level on the auditory distance perception of speech. J Acoust Soc Am 110:425–440

    Article  PubMed  CAS  Google Scholar 

  • Coleman PD (1963) An analysis of cues to auditory depth perception in free space. Psychol Bull 60:302–315

    Article  PubMed  CAS  Google Scholar 

  • Collignon O, Voss P, Lassonde M, Lepore F (2009) Cross-modal plasticity for the spatial processing of sounds in visually deprived subjects. Exp Brain Res 192:343–358

    Article  PubMed  Google Scholar 

  • Després O, Candas V, Dufour A (2005) Auditory compensation in myopic humans: involvement of binaural, monaural, or echo cues? Brain Res 1041:56–65

    Article  PubMed  Google Scholar 

  • Doucet ME, Guillemot JP, Lassonde M, Gagné JP, Leclerc C, Lepore F (2005) Blind subjects process auditory spectral cues more efficiently than sighted individuals. Exp Brain Res 160:194–202

    Article  PubMed  Google Scholar 

  • Dufour A, Gérard Y (2000) Improved auditory spatial sensitivity in near-sighted subjects. Cogn Brain Res 10:159–165

    Article  CAS  Google Scholar 

  • Dufour A, Després O, Candas V (2005) Enhanced sensitivity to echo cues in blind subjects. Exp Brain Res 165:515–519

    Article  PubMed  Google Scholar 

  • Gardner WG, Martin KD (1995) HRTF measurements of a KEMAR. J Acoust Soc Am 97:3907–3908

    Article  Google Scholar 

  • Gougoux F, Lepore F, Lassonde M, Voss P, Zatorre RJ, Belin P (2004) Neuropsychology: pitch discrimination in the early blind. Nature 430:309

    Article  PubMed  CAS  Google Scholar 

  • Gougoux F, Zatorre RJ, Lassonde M, Voss P, Lepore F (2005) A functional neuroimaging study of sound localization: visual cortex activity predicts performance in early-blind individuals. PLoS Biol 3:324–333

    Article  CAS  Google Scholar 

  • Hartmann WM, Wittenburg A (1996) On the externalization of sound images. J Acoust Soc Am 99:3678–3688

    Article  PubMed  CAS  Google Scholar 

  • Hoover AEN, Harris LR, Steeves JKE (2012) Sensory compensation in sound localization in people with one eye. Exp Brain Res 216:565–574

    Article  PubMed  Google Scholar 

  • International Organization for Standardization (1984) International Standard ISO 7029. Acoustics—threshold of hearing by air conduction as a function of age and sex for otologically normal persons

  • Kingdom FAA, Prins N (2010) Psychophysics: A Practical Introduction. Academic Press, London

    Google Scholar 

  • Kopčo N, Shinn-Cunningham BG (2011) Effect of stimulus spectrum on distance perception for nearby sources. J Acoust Soc Am 130:1530–1541

    Article  PubMed  Google Scholar 

  • Kujala T, Alho K, Huotilainen M, Ilmoniemi RJ, Lehtokoski A, Leinonen A, Rinne T, Salonen O, Sinkkonen J, Standertskjöld-Nordenstam CG, Näätänen R (1997) Electrophysiological evidence for cross-modal plasticity in humans with early- and late-onset blindness. Psychophysiology 34:213–216

    Article  PubMed  CAS  Google Scholar 

  • Larsen E, Iyer N, Lansing CR, Feng A (2008) On the minimum audible difference in direct-to-reverberant energy ratio. J Acoust Soc Am 124:450–461

    Article  PubMed  Google Scholar 

  • Lehmann EA, Johansson AM (2008) Prediction of energy decay in room impulse responses simulated with an image-source model. J Acoust Soc Am 124:269–277

    Article  PubMed  Google Scholar 

  • Lessard N, Paré M, Lepore F, Lassonde M (1998) Early-blind human subjects localize sound sources better than sighted subjects. Nature 395:278–280

    Article  PubMed  CAS  Google Scholar 

  • Lewald J (2004) Gender-specific hemispheric asymmetry in auditory space perception. Cogn Brain Res 19:92–99

    Article  Google Scholar 

  • Lomber SG, Meredith MA, Kral A (2010) Cross-modal plasticity in specific auditory cortices underlies visual compensations in the deaf. Nat Neurosci 13:1421–1427

    Article  PubMed  CAS  Google Scholar 

  • Mathiak K, Hertrich I, Kincses WE, Riecker A, Lutzenberger W, Ackermann H (2003) The right supratemporal plane hears the distance of objects: neuromagnetic correlates of virtual reality. NeuroReport 14:307–311

    Article  PubMed  Google Scholar 

  • Mershon DH, Bowers JN (1979) Absolute and relative cues for the auditory perception of egocentric distance. Perception 8:311–322

    Article  PubMed  CAS  Google Scholar 

  • Mershon DH, Ballenger WL, Little AD, McMurtry PL, Buchanan JL (1989) Effects of room reflectance and background noise on perceived auditory distance. Perception 18:403–416

    Article  PubMed  CAS  Google Scholar 

  • Muchnik C, Efrati M, Nemeth E, Malin M, Hildesheimer M (1991) Central auditory skills in blind and sighted subjects. Scand Audiol 20:19–23

    Article  PubMed  CAS  Google Scholar 

  • Otani M, Hirahara T, Ise S (2009) Numerical study on source-distance dependency of head-related transfer functions. J Acoust Soc Am 125:3253–3261

    Article  PubMed  Google Scholar 

  • Röder B, Teder-Sälejärvi W, Sterr A, Rösler F, Hillyard SA, Neville HJ (1999) Improved auditory spatial tuning in blind humans. Nature 400:162–166

    Article  PubMed  Google Scholar 

  • Sadato N, Okada T, Honda M, Yonekura Y (2002) Critical period for cross-modal plasticity in blind humans: a functional MRI study. Neuroimage 16:389–400

    Article  PubMed  Google Scholar 

  • Schenkman BN, Nilsson ME (2010) Human echolocation: blind and sighted persons’ ability to detect sounds recorded in the presence of a reflecting object. Perception 39:483–501

    Article  PubMed  Google Scholar 

  • Schenkman BN, Nilsson ME (2011) Human echolocation: pitch versus loudness information. Perception 40:840–852

    Article  PubMed  Google Scholar 

  • Schroeder M (1965) New method for measuring reverberation time. J Acoust Soc Am 37:409–412

    Article  Google Scholar 

  • Simon HJ, Divenyi PL, Lotze A (2002) Lateralization of narrow-band noise by blind and sighted listeners. Perception 31:855–873

    Article  PubMed  Google Scholar 

  • Stevens AA, Weaver K (2005) Auditory perceptual consolidation in early-onset blindness. Neuropsychologia 43:1901–1910

    Article  PubMed  Google Scholar 

  • Teng S, Whitney D (2011) The acuity of echolocation: spatial resolution in the sighted compared to expert performance. J Vis Impair Blind 105:20–32

    PubMed  Google Scholar 

  • Teng S, Puri A, Whitney D (2012) Ultrafine spatial acuity of blind expert human echolocators. Exp Brain Res 216:483–488

    Article  PubMed  Google Scholar 

  • Thaler L, Arnott SR, Goodale MA (2011) Neural correlates of natural human echolocation in early and late blind echolocation experts. PLoS ONE 6(5):e20162. doi:10.1371/journal.pone.0020162PONE-D-11-04391

    Article  PubMed  CAS  Google Scholar 

  • Voss P, Zatorre RJ (2012) Organization and reorganization of sensory-deprived cortex. Curr Biol 22:168–173

    Article  Google Scholar 

  • Voss P, Lassonde M, Gougoux F, Fortin M, Guillemot JP, Lepore F (2004) Early- and late-onset blind individuals show supra-normal auditory abilities in far-space. Curr Biol 14:1734–1738

    Article  PubMed  CAS  Google Scholar 

  • Voss P, Gougoux F, Zatorre RJ, Lassonde M, Lepore F (2008) Differential occipital responses in early and late blind individuals during a sound-source discrimination task. Neuroimage 40:746–758

    Article  PubMed  Google Scholar 

  • Voss P, Collignon O, Lassonde M, Lepore F (2010) Adaptation to sensory loss. Wiley Int Rev Cogn Sci 1:308–328

    Article  Google Scholar 

  • Voss P, Lepore F, Gougoux F, Zatorre RJ (2011) Relevance of spectral cues for auditory spatial processing in the occipital cortex of the blind. Front Psychol 2:48

    Article  PubMed  Google Scholar 

  • Wanet MC, Veraart C (1985) Processing of auditory information by the blind in spatial localization tasks. Percept Psychophys 38:91–96

    Article  PubMed  CAS  Google Scholar 

  • Wenzel EM, Arruda M, Kistler DJ, Wightman FL (1993) Localization using nonindividualized head-related transfer functions. J Acoust Soc Am 94:111–123

    Article  PubMed  CAS  Google Scholar 

  • World Health Organization (2010) Tenth revision of the international classification of disease. World Health Organization, Geneva

    Google Scholar 

  • Zahorik P (2002a) Assessing auditory distance perception using virtual acoustics. J Acoust Soc Am 111:1832–1846

    Article  PubMed  Google Scholar 

  • Zahorik P (2002b) Direct-to-reverberant energy ratio sensitivity. J Acoust Soc Am 112:2110–2116

    Article  PubMed  Google Scholar 

  • Zahorik P (2009) Perceptually relevant parameters for virtual listening simulation of small room acoustics. J Acoust Soc Am 126:776–791

    Article  PubMed  Google Scholar 

  • Zahorik P, Brungart DS, Bronkhorst AW (2005) Auditory distance perception in humans: a summary of past and present research. Acta Acust Acust 91:409–420

    Google Scholar 

Download references

Acknowledgments

We thank the participants, Camsight, Action for Blind People East Anglia, The Norfolk & Norwich Association for the Blind, Komal Ramlagun and Amy Scarfe for assistance in collecting data, the editor Ulf Eysel and two anonymous reviewers for comments that strengthened a previous version of the manuscript. The research was supported by the Vision and Eye Research Unit (VERU), Postgraduate Medical Institute at Anglia Ruskin University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Kolarik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolarik, A.J., Cirstea, S. & Pardhan, S. Evidence for enhanced discrimination of virtual auditory distance among blind listeners using level and direct-to-reverberant cues. Exp Brain Res 224, 623–633 (2013). https://doi.org/10.1007/s00221-012-3340-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-012-3340-0

Keywords

Navigation