Skip to main content
Log in

Blind subjects process auditory spectral cues more efficiently than sighted individuals

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The goal of the present study was to investigate how monaural sound localization on the horizontal plane in blind humans is affected by manipulating spectral cues. As reported in a previous study (Lessard et al. 1998), blind subjects are able to calibrate their auditory space despite their congenital lack of vision. Moreover, the performance level of half of the blind subjects was superior to that of sighted subjects under monaural listening conditions. Here, we first tested ten blind subjects and five controls in free-field (1) binaural and (2) monaural sound localization tasks. Results showed that, contrary to controls and half the blind subjects, five of the blind listeners were able to localize the sounds with one ear blocked. The blind subjects who showed good monaural localization performances were then re-tested in three additional monaural tasks, but we manipulated their ability to use spectral cues to carry out their discrimination. These subjects thus localized these same sounds: (3) with acoustical paste on the pinna, (4) with high-pass sounds and unobstructed pinna and (5) with low-pass sounds and unobstructed pinna. A significant increase in localization errors was observed when their ability to use spectral cues was altered. We conclude that one of the reasons why some blind subjects show supra-normal performances might be that they more effectively utilize auditory spectral cues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a
Fig. 2
Fig. 3a–e
Fig. 4

Similar content being viewed by others

References

  • Asano F, Suzuki Y, Sone T (1990) Role of spectral cues in median plane localization. J Acoust Soc Am 88:159–168

    CAS  PubMed  Google Scholar 

  • Batteau DW (1967) The role of the pinna in human localization. Proc R Soc Lond B Biol Sci 168:158–180

    CAS  PubMed  Google Scholar 

  • Bilecen D, Seifritz E, Radü EW, Schmid N, Wetzel S, Probst R, Scheffler K (2000) Cortical reorganization after acute unilateral hearing loss traced by fMRI. Neurology 54:765–767

    CAS  PubMed  Google Scholar 

  • Burlingame JA, Butler RA (1998) The effects of attenuation of frequency segments on binaural localization of sound. Percept Psychophys 60:1374–1383

    CAS  PubMed  Google Scholar 

  • Butler RA, Flannery R (1980) The spatial attributes of stimulus frequency and their role in monaural localization of sound in the horizontal plane. Percept Psychophys 28:449–457

    CAS  PubMed  Google Scholar 

  • Butler RA, Humanski RA (1992) Localization of sound in the vertical plane with and without high-frequency spectral cues. Percept Psychophys 51:182–186

    CAS  PubMed  Google Scholar 

  • Cohen LG, Ceinik P, Pascual-Leone A, Corwell B, Faiz L, Dambrosia J, Honda M, Sadato N, Gerloff C, Catala DM, Hallett M (1997) Functional relevance of cross-modal plasticity in blind humans. Nature 389:180–183

    Article  CAS  PubMed  Google Scholar 

  • Elbert T, Sterr A, Rockstroh B, Pantev C, Müller MM, Taub E (2002) Expansion of the tonotopic area in the auditory cortex of the blind. J Neurosci 22:9941–9944

    CAS  PubMed  Google Scholar 

  • Flannery R, Butler RA (1981) Spectral cues provided by the pinna for monaural localization in the horizontal plane. Percept Psychophys 29:438–444

    CAS  PubMed  Google Scholar 

  • Fuzessery ZM (1986) Speculations on the role of frequency in sound localization. Brain Behav Evol 28:95–108

    CAS  PubMed  Google Scholar 

  • Fuzessery ZM (1996) Monaural and binaural spectral cues created by the external ears of the pallid bat. Hear Res 95:1–17

    Article  CAS  PubMed  Google Scholar 

  • Gardner MB, Gardner RS (1973) Problems of localization in the median plane: effect of pinna cavity occlusion. J Acoust Soc Am 53:400–408

    CAS  PubMed  Google Scholar 

  • Hofman PM, Van Riswick JG, Van Opstal AJ (1998) Relearning sound localization with new ears. Nat Neurosci 1:417–421

    Article  CAS  PubMed  Google Scholar 

  • Hogg RV, Tanis EA (1988) Probability and statistical inference. Third Edition. New York: Macmillan Publishing Company

    Google Scholar 

  • Humanski RA, Butler RA (1988) The contribution of the near and far ear toward localization of sound in the sagittal plane. J Acoust Soc Am 83:2300–2310

    CAS  PubMed  Google Scholar 

  • King AJ, Paarsons C (1999) Improved auditory spatial acuity in visually deprived ferrets. Eur J Neurosci 11:3945–3956

    Article  CAS  PubMed  Google Scholar 

  • Knudsen EI (1985) Experience alters the spatial tuning of auditory units in the optic tectum during a sensitive period in the barn owl. J Neurosci 5:3094–3109

    CAS  PubMed  Google Scholar 

  • Kujala T, Alho K, Paavilainen P, Summala H, Näätänen R (1992) Neural plasticity in processing of sound location by the early blind: an event-related potential study. Electroencephalogr Clin Neurophysiol 84:469–472

    Article  CAS  PubMed  Google Scholar 

  • Kujala T, Alho K, Näätanen R (2000) Cross-modal reorganization of human cortical functions. Trends Neurosci 23:115–120

    Article  CAS  PubMed  Google Scholar 

  • Lawrence BD, Simmons JA (1982) Echolocation in bats: the external ear and perception of the vertical positions of targets. Science 218:481–483

    CAS  PubMed  Google Scholar 

  • Leclerc C, Saint-Amour D, Lavoie ME, Lassonde M, Lepore F (2000) Brain functional reorganization in early blind humans revealed by auditory event-related potentials. Neuroreport 11:545–550

    CAS  PubMed  Google Scholar 

  • Lessard N, Paré M, Lepore F, Lassonde M (1998) Early-blind human subjects localize sound sources better than sighted subjects. Nature 395:278–280

    Article  CAS  PubMed  Google Scholar 

  • Lewald J (2002) Vertical sound localization in blind humans. Neuropsychologia 40:1868–1872

    Article  PubMed  Google Scholar 

  • Liotti M, Kathy R, Woldorff MG (1998) Auditory attention in the congenitally blind: where, when and what gets reorganized? Neuroreport 9:1007–1012

    CAS  PubMed  Google Scholar 

  • Middlebrooks JC (1992) Narrow-band sound localization related to external ear acoustics. J Acoust Soc of Am 92:2607–2624

    CAS  Google Scholar 

  • Morgan M (1999) Sensory perception: Supernormal hearing in the blind? Curr Biol 9:R53-R54

    Article  CAS  PubMed  Google Scholar 

  • Näätänen R, Picton T (1987) The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology 24:375–416

    PubMed  Google Scholar 

  • Oldfield SR, Parker SP (1984) Acuity of sound localization: a topography of auditory space. II. Pinna cues absent. Perception 13:601–617

    CAS  PubMed  Google Scholar 

  • Pantev C, Ross B, Fujioka T, Trainor LJ, Schulte M, Schulz M (2003) Music and learning-induced cortical plasticity. Ann N Y Acad Sci 999:438–450

    Article  PubMed  Google Scholar 

  • Perrett S, Noble W (1997) The contribution of head motion cues to localization of low-pass noise. Percept Psychophys 59:1018–1026

    CAS  PubMed  Google Scholar 

  • Perrott DR, Ambarsoom H, Tucker J (1987) Changes in head position as a measure of auditory localization performance: auditory psychomotor coordination under monaural and binaural listening conditions. J Acoust Soc Am 82:1637–1645

    CAS  PubMed  Google Scholar 

  • Pollack I, Rose M (1967) Effect of head movement on the localization of sounds in the equatorial plane. Percept Psychophys 2:591–596

    Google Scholar 

  • Rauschecker JP (1999) Auditory cortical plasticity: a comparison with other sensory systems. Trends Neurosci 22:74–80

    Article  CAS  PubMed  Google Scholar 

  • Rauschecker JP (2001) Cortical plasticity and music. Ann N Y Acad Sci 930:330–336

    CAS  PubMed  Google Scholar 

  • Rauschecker JP, Kniepert U (1994) Auditory localization behaviour in visually deprived cats. Eur J Neurosci 6:149–160

    Google Scholar 

  • Röder B, Rosler F (2003) Memory for environmental sounds in sighted, congenitally blind and late blind adults: evidence for cross-modal compensation. Int J Psychophysiol 50:27–39

    Article  PubMed  Google Scholar 

  • Röder B, Teder-Sälejärvi W, Sterr A, Rösler F, Hillyard SA, Neville H (1999) Improved auditory spatial tuning in blind humans. Nature 400:162–166

    Article  PubMed  Google Scholar 

  • Röder B, Rosler F, Neville HJ (2001) Auditory memory in congenitally blind adults: a behavioral-electrophysiological investigation. Brain Res Cogn Brain Res 11:289–303

    Article  PubMed  Google Scholar 

  • Sadato N, Pascual-Leone A, Grafman J, Ibanez V, Deiber MP, Dold G, Hallett M (1996) Activation of the primary visual cortex by Braille reading in blind subjects. Nature 380:526–528

    Article  CAS  PubMed  Google Scholar 

  • Searle CL (1976) Model for auditory localization. J Acoust Soc Am 60:1164–1175

    CAS  PubMed  Google Scholar 

  • Shaw EAG (1974) Transformation of sound pressure level from the free field to the eardrum in the horizontal plane. J Acoust Soc Am 56:1848–1861

    CAS  PubMed  Google Scholar 

  • Slattery WH, Middlebrooks J (1994) Monaural sound localization: acute versus chronic unilateral impairment. Hear Res 75:38–46

    Article  PubMed  Google Scholar 

  • Weeks R, Horwitz B, Aziz-Sultan A, Tian B, Wessinger CM, Cohen LG, Hallett M, Rauschecker JP (2000) A Positron Emission Tomographic study of auditory localization in the congenitally blind. J Neurosci 20:2664–2672

    CAS  PubMed  Google Scholar 

  • Wightman FL, Kistler DJ (1992) The dominant role of low-frequency interaural time differences in sound localization. J Acoust Soc Am 91:1648–1661

    CAS  PubMed  Google Scholar 

  • Wightman FL, Kistler DJ (1997) Monaural sound localization revisited. J Acoust Soc Am 101:1050–1063

    Article  CAS  PubMed  Google Scholar 

  • Wotton JM, Jenison RL (1997) A back propagation network model of the monaural localization information available in the bat echolocation system. J Acoust Soc Am 101:2964–2972

    Article  CAS  PubMed  Google Scholar 

  • Zwiers MP, Van Opstal AJ, Cruysberg JRM (2001a) A spatial hearing deficit in early-blind humans. J Neurosci 21:RC142–147

    PubMed  Google Scholar 

  • Zwiers MP, Van Opstal AJ, Cruysberg JRM (2001b) Two-dimensional sound-localization behavior of early-blind humans. Exp Brain Res 140:206–222

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Aurélie Goldberg, Frédéric Gougoux and Antoine Conne for their assistance in the testing sessions. We are grateful to Frédéric Gosselin for having proofread this article. This research was supported by grants from the Natural Sciences and Engineering Research Council (NSERC), from the Canadian Institutes of Health Research (CIHR), the Fonds pour la Formation de Chercheurs et l’Aide à la Recherche (FCAR) and the Canada Research Chair (CRC) program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Lepore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doucet, ME., Guillemot, JP., Lassonde, M. et al. Blind subjects process auditory spectral cues more efficiently than sighted individuals. Exp Brain Res 160, 194–202 (2005). https://doi.org/10.1007/s00221-004-2000-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-004-2000-4

Keywords

Navigation