Skip to main content

Advertisement

Log in

A Simple 2nd Order Lower Bound to the Energy of Dilute Bose Gases

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

For a dilute system of non-relativistic bosons interacting through a positive, radial potential v with scattering length a we prove that the ground state energy density satisfies the bound \(e(\rho ) \ge 4\pi a \rho ^2 (1- C \sqrt{\rho a^3} \,)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. When comparing results in the literature, one should notice that some authors study the energy per particle, i.e. \(\lim E_0(N, \Lambda ) /N = {\widetilde{\rho }\,}^{-1} e({\widetilde{\rho }}\,)\) instead of the energy density, leading, of course, to slightly different formulae.

References

  1. Boccato, C., Brennecke, C., Cenatiempo, S., Schlein, B.: The excitation spectrum of Bose gases interacting through singular potentials. To appear in JEMS

  2. Boccato, C., Brennecke, C., Cenatiempo, S., Schlein, B.: Bogoliubov theory in the Gross–Pitaevskii limit. Acta Math. 222, 219–335 (2019)

    Article  MathSciNet  Google Scholar 

  3. Boccato, C., Brennecke, C., Cenatiempo, S., Schlein, B.: Complete Bose–Einstein condensation in the Gross–Pitaevskii regime. Commun. Math. Phys. 359, 975–1026 (2018)

    Article  MathSciNet  Google Scholar 

  4. Boccato, C., Brennecke, C., Cenatiempo, S., Schlein, B.: Optimal rate for Bose–Einstein condensation in the Gross–Pitaevskii regime. Commun. Math. Phys. (2019). https://doi.org/10.1007/s00220-019-03555-9

    Article  MATH  Google Scholar 

  5. Bogolyubov, N.N.: On the theory of superfluidity. Proc. Inst. Math. Kiev 9, 89–103 (1947). Eng. Trans. J. Phys. (USSR) 11, 23 (1947). Rus. Trans. Izv. Akad. Nauk USSR 11, 77–90 (1947). See also Lectures on quantum statistics, Gordon and Breach (1968)

  6. Brietzke, B., Solovej, J.P.: The second-order correction to the ground state energy of the dilute Bose gas. Ann. Henri Poincaré 21, 571–626 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  7. Dyson, F.J.: Ground-state energy of a hard-sphere gas. Phys. Rev. 106, 20–26 (1957)

    Article  ADS  Google Scholar 

  8. Erdös, L., Schlein, B., Yau, H.-T.: Ground-state energy of a low-density Bose gas: a second-order upper bound. Phys. Rev. A 78, 053627 (2008)

    Article  ADS  Google Scholar 

  9. Fournais, S., Solovej, J.P.: The energy of dilute Bose gases. arXiv:1904.06164 (2019)

  10. Giuliani, A., Seiringer, R.: The ground state energy of the weakly interacting Bose gas at high density. J. Stat. Phys. 135, 915–934 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  11. Lee, T.D., Huang, K., Yang, C.N.: Eigenvalues and eigenfunctions of a Bose system of hard spheres and its low-temperature properties. Phys. Rev. 106, 1135–1145 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  12. Lenz, W.: Die Wellenfunktion und Geschwindigkeitsverteilung des entarteten Gases. Zeitschrift für Physik 56, 778–789 (1929)

    Article  ADS  Google Scholar 

  13. Lieb, E.H., Seiringer, R., Solovej, J.P., Yngvason, J.: The Mathematics of the Bose Gas and Its Condensation. Birkhäuser, Basel (2005)

    MATH  Google Scholar 

  14. Lieb, E.H., Solovej, J.P.: Ground state energy of the one-component charged Bose gas. Commun. Math. Phys. 217, 127–163 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  15. Lieb, E.H., Solovej, J.P.: Ground state energy of the two-component charged Bose gas. Commun. Math. Phys. 252, 485–534 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  16. Lieb, E.H., Yngvason, J.: Ground state energy of the low density Bose gas. Phys. Rev. Lett. 80, 2504–2507 (1998)

    Article  ADS  Google Scholar 

  17. Napiórkowski, M., Reuvers, R., Solovej, J.P.: The Bogoliubov free energy functional II: the dilute limit. Commun. Math. Phys. 360, 347–403 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  18. Napiórkowski, M., Reuvers, R., Solovej, J.P.: The Bogoliubov free energy functional I: existence of minimizers and phase diagram. Arch. Ration. Mech. Anal. 229, 1037–1090 (2018)

    Article  MathSciNet  Google Scholar 

  19. Yau, H.-T., Yin, J.: The second order upper bound for the ground energy of a Bose gas. J. Stat. Phys. 136, 453–503 (2009)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

BB and JPS were partially supported by the Villum Centre of Excellence for the Mathematics of Quantum Theory (QMATH) and the ERC Advanced Grant 321029. BB also gratefully acknowledges support from the DFG under Germany’s Excellence Strategy EXC-2181/1 - 390900948 and Grant No. AOBJ 643360 KN 102013-1. SF was partially supported by a Sapere Aude Grant from the Independent Research Fund Denmark, Grant No. DFF–4181-00221.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birger Brietzke.

Additional information

Communicated by R. Seiringer

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Bogoliubov Method

A Bogoliubov Method

In this section we recall a simple consequence of the Bogoliubov method. In [6] we use the following version (and allow \({\mathcal {B}}=-{\mathcal {A}}\) if \(\kappa =0\))—see also [14, Theorem 6.3].

Theorem A.1

(Simple case of Bogoliubov’s method). For arbitrary \({\mathcal {A}},{\mathcal {B}}\in {\mathbb {R}}\) satisfying \({\mathcal {A}}>0\), \(-{\mathcal {A}}<{\mathcal {B}}\le {\mathcal {A}}\) and \(\kappa \in {\mathbb {C}}\) we have the operator inequality

$$\begin{aligned}&{\mathcal {A}}(b^*_+b^{}_+ +b^*_{-}b^{}_{-})+{\mathcal {B}}(b^*_+b^*_{-}+b^{}_+b^{}_{-})+ \kappa (b^*_++b^{}_{-})+{\overline{\kappa }}(b^{}_++b^*_{-})\\&\qquad \ge -\frac{1}{2}({\mathcal {A}}-\sqrt{{\mathcal {A}}^2-{\mathcal {B}}^2}) ([b^{}_{+},b^*_{+}]+[b^{}_{-},b^*_{-}])-\frac{2|\kappa |^2}{{\mathcal {A}}+{\mathcal {B}}}, \end{aligned}$$

where \(b_\pm \) are operators on a Hilbert space satisfying \([b_+,b_-]=0\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brietzke, B., Fournais, S. & Solovej, J.P. A Simple 2nd Order Lower Bound to the Energy of Dilute Bose Gases. Commun. Math. Phys. 376, 323–351 (2020). https://doi.org/10.1007/s00220-020-03715-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-020-03715-2

Navigation