Skip to main content
Log in

The Second-Order Correction to the Ground State Energy of the Dilute Bose Gas

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We establish the Lee–Huang–Yang formula for the ground state energy of a dilute Bose gas for a broad class of repulsive pair-interactions in 3D as a lower bound. Our result is valid in an appropriate parameter regime of soft potentials and confirms that the Bogoliubov approximation captures the right second-order correction to the ground state energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Note that we allow but not require R to be smaller than \(\rho ^{-1/3}\).

References

  1. Aaen, A.: The ground state energy of a dilute Bose gas in dimension \(n >3\). arXiv:1401.5960 (2014)

  2. Boccato, C., Brennecke, C., Cenatiempo, S., Schlein, B.: Bogoliubov theory in the Gross–Pitaevskii limit. Acta Math. 222(2), 219–335 (2019), arXiv:1801.01389 (2018)

    Article  MathSciNet  Google Scholar 

  3. Boccato, C., Brennecke, C., Cenatiempo, S., Schlein, B.: Complete Bose–Einstein condensation in the Gross–Pitaevskii regime. Commun. Math. Phys. 359, 975–1026 (2018), arXiv:1703.04452 (2017)

    Article  MathSciNet  Google Scholar 

  4. Boccato, C., Brennecke, C., Cenatiempo, S., Schlein, B.: Optimal rate for Bose–Einstein condensation in the Gross–Pitaevskii regime. Commun. Math. Phys. (2019), arXiv:1812.03086 (2018)

  5. Boccato, C., Brennecke, C., Cenatiempo, S., Schlein, B.: The excitation spectrum of Bose gases interacting through singular potentials (to appear on J. Eur. Math. Soc.), arXiv:1704.04819 (2017)

  6. Bogoliubov, N.N.: On the theory of superfluidity. Proc. Inst. Math. Kiev 9, 89–103 (1947). Eng. Trans. J. Phys. (USSR), 11, 23 (1947). Rus. Trans. Izv. Akad. Nauk USSR, 11, 77–90 (1947). See also Lectures on Quantum Statistics, Gordon and Breach (1968)

  7. Brietzke, B.: On the Second Order Correction to the Ground State Energy of the Dilute Bose Gas, PhD Thesis (2017)

  8. Brietzke, B., Fournais, S., Solovej, J. P.: A simple 2nd order lower bound to the energy of dilute Bose gases. arXiv:1901.00539 (2019)

  9. Conlon, J.G., Lieb, E.H., Yau, H.-T.: The \(N^{7/5}\) law for charged bosons. Commun. Math. Phys. 116, 417–448 (1988)

    Article  ADS  Google Scholar 

  10. Dyson, F.J.: Ground-state energy of a hard-sphere gas. J. Math. Phys. 106, 20–26 (1957)

    MATH  Google Scholar 

  11. Erdős, L., Schlein, B., Yau, H.-T.: Ground state energy of a low-density Bose gas: a second-order upper bound. Phys. Rev. A 78(5), 053627 (2008)

    Article  ADS  Google Scholar 

  12. Foldy, L. L.: Charged Boson gas. Phys. Rev. 124, 649-651 (1961). Errata ibid125, 2208 (1962)

    Article  ADS  Google Scholar 

  13. Fournais, S., Solovej, J. P.: The energy of dilute Bose gases. arXiv:1904.06164 (2019)

  14. Girardeau, M., Arnowitt, R.: Theory of many-Boson systems: pair theory. Phys. Rev. 113, 755–761 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  15. Giuliani, A., Seiringer, R.: The ground state energy of the weakly interacting Bose gas at high density. J. Stat. Phys. 135, 915–934 (2009). arXiv:0811.1166 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  16. Lee, T.D., Huang, K., Yang, C.N.: Eigenvalues and eigenfunctions of a Bose system of hard spheres and its low-temperature properties. Phys. Rev. 106, 1135–1145 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  17. Lenz, W.: Die Wellenfunktion und Geschwindigkeitsverteilung des entarteten Gases. Z. Phys. 56, 778–789 (1929)

    Article  ADS  Google Scholar 

  18. Lieb, E.H.: The Bose Fluid. In: Brittin, W.E. (ed.) Lecture Notes in Theoretical Physics VIIC, pp. 175–224. University of Colorado Press, Boulder (1964)

    Google Scholar 

  19. Lieb, E.H.: Simplified approach to the ground-state energy of an imperfect Bose gas. Phys. Rev. 130, 2518–2528 (1963)

    Article  ADS  Google Scholar 

  20. Lieb, E.H., Liniger, W.: Exact analysis of an interacting Bose gas. I. The general solution and the ground state. Phys. Rev. 130, 1605–1616 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  21. Lieb, E.H., Loss, M.: Analysis. American Mathematical Society, Providence (2001)

    MATH  Google Scholar 

  22. Lieb, E. H., Solovej, J. P.: Ground state energy of the one-component charged Bose gas. Commun. Math. Phys. 217, 127–163 (2001). Ibid Erratum 225, 219–221 (2002), arXiv:cond-mat/0007425 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  23. Lieb, E. H., Solovej, J. P.: Ground state energy of the two-component charged Bose gas. Commun. Math. Phys. 252, 485–534 (2004), arXiv:math-ph/0311010 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  24. Lieb, E.H., Seiringer, R., Solovej, J.P., Yngvason, J.: The Mathematics of the Bose Gas and Its Condensation. Birkhäuser, Berlin (2005)

    MATH  Google Scholar 

  25. Lieb, E.H., Yngvason, J.: Ground state energy of the low density Bose gas. Phys. Rev. Lett. 80, 2504–2507 (1998)

    Article  ADS  Google Scholar 

  26. Napiórkowski, N., Reuvers, R., Solovej, J.P.: The Bogoliubov free energy functional II: The dilute limit. Commun. Math. Phys. 360, 347–403 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  27. Robinson, D.W.: The Thermodynamic Pressure in Quantum Statistical Mechanics. Lecture Notes in Physics, vol. 9. Springer, Berlin (1971)

    Book  Google Scholar 

  28. Yau, H.-T., Yin, J.: The second order upper bound for the ground energy of a Bose gas. J. Stat. Phys. 136, 453–503 (2009). arXiv:0903.5347

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This project started out many years ago from a fruitful discussion with E. H. Lieb, who the authors are very grateful to. This work was primarily done in Copenhagen and the authors acknowledge support by ERC Advanced grant 321029 and by VILLUM FONDEN via the QMATH Centre of Excellence (Grant No. 10059). BB also gratefully acknowledges support from the DFG (Grant No. AOBJ 643360 KN 102013-1) and under Germany’s Excellence Strategy EXC-2181/1 – 390900948.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birger Brietzke.

Additional information

Communicated by Jan Derezinski.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Taylor Expansions for the Bogoliubov Integral

Appendix A: Taylor Expansions for the Bogoliubov Integral

The quadratic Hamiltonian and thus the integral \(\int h_0(k) \, {\mathrm {d}}k\) (see Lemma 4.4) plays an important role in this article. In this appendix, we will estimate this integral using Taylor approximations to various order on different regions. The resulting estimates are given in a general form as powers in n. This allows us in several lemmas to obtain bounds on the energy from bounds on n, respectively, to obtain bounds on n for states which have sufficiently low energy.

Throughout this appendix we will assume that \(n\ge 1\) and that the condition on \(n|{B} |^{-1}\) in Lemma 4.6 is satisfied, so that by Lemma 4.4 we have the lower bounds

$$\begin{aligned} H_{\mathrm{Quad}}\ge \frac{1}{2}(2\pi )^{-3}\int _{{\mathbb {R}}^3} h_{0}(k) \, {\mathrm {d}}k -Cn_+a\min \{R^{-3},|B|^{-1}\}\max \chi _B^2 \end{aligned}$$

and

$$\begin{aligned} h_0(k)\ge&\!-\!\left( \!n^{-1}\!\tau _B(k^2)\!+\!|B|^{-1}\!\widehat{W} (k) \!-\!\sqrt{\!n^{-2}\tau _B(k^2)^2\! +\!2n^{-1}\!|B|^{-1}\tau _B(k^2)\widehat{W}(k)\!}\right) \!n_0 \int \chi _B^2. \end{aligned}$$
(A.1)

1.1 A.1. Bounds for the Quadratic Part of \(H_B\)

We estimate the operator-valued integral \(\frac{1}{2}(2\pi )^{-3}\int h_0(k)\, {\mathrm {d}}k\) using the following facts.

Around \(x=0\) we can write \(\sqrt{1+x}=1+\frac{1}{2}x-\frac{1}{8}x^2+\frac{1}{16}x^3+O(x^4)\) yielding the bounds

$$\begin{aligned}&1+\frac{1}{2}x-Cx^2\le \sqrt{1+x}\le 1+\frac{1}{2}x-\frac{1}{8}x^2+C|{x} |^3 \end{aligned}$$
(A.2)
$$\begin{aligned}&\quad \quad \quad \quad \quad \,\, \quad \quad \sqrt{1+x}\ge 1+\frac{1}{2}x-\frac{1}{8}x^2\qquad (\text {if and only if }x\ge 0)\end{aligned}$$
(A.3)
$$\begin{aligned}&1+\frac{1}{2}x-\frac{1}{8}x^2-C|{x} |^3\le \sqrt{1+x}\le 1+\frac{1}{2}x. \end{aligned}$$
(A.4)

If B is either a small or a large box, then, for all \(k\in {\mathbb {R}}^3\), the parentheses in (A.1) is positive.

This is easy to see. If B is a small box and \(|{k} |\le (ds\ell )^{-1}\), then \(\tau _B(k^2)=0\) and \(\widehat{W}(k)>0\) by (104) since \((ds\ell )^{-1}<R^{-1}\). For \(|{k} |>(ds\ell )^{-1}\) we have \(\tau _B(k^2)>0\) and apply (A.4). For the large box the claim is proven analogously. We may therefore replace \(n_0\) by n in (A.1) when bounding \(h_0\) from below such that

$$\begin{aligned} h_0(k)\ge&\!-\!\left( \!n^{-1}\tau _B(k^2)\!+\!|B|^{-1}\widehat{W}(k)\!-\!\sqrt{\!n^{-2}\tau _B(k^2)^2\! +\!2n^{-1}|B|^{-1}\tau _B(k^2)\widehat{W}(k)\!}\right) \!n \int \chi _B^2. \end{aligned}$$
(A.5)

Provided \(\tau _B(k^2)>0\), we write

$$\begin{aligned} h_0(k)\ge&-\!\left( \tau _B(k^2)+n|B|^{-1}\widehat{W} (k) -\tau _B(k^2)\sqrt{1 +\frac{2n\widehat{W}(k)}{|B|\tau _B(k^2)}}\right) \int \chi _B^2. \end{aligned}$$
(A.6)

1.1.1 A.1.1. Estimates on the Small Box

\(\tau _B(k^2)=0\) if \(|{k} |<(ds\ell )^{-1}\) while \(\widehat{W}(k)>0\) if \(|{k} |<R^{-1}\). Since \(\sqrt{1+x}\ge 1\) if \(x\ge 0\), we have

$$\begin{aligned} \overset{{}}{\underset{{|{k} |<2(ds\ell )^{-1}}}{\int }} h_0(k)\, {\mathrm {d}}k \ge&-\overset{{}}{\underset{{|{k} |<2(ds\ell )^{-1}}}{\int }}\frac{n_0}{|{B} |}\widehat{W}(k)\, {\mathrm {d}}k\int \chi _B^2 \ge -C\frac{n}{|{B} |}a(ds\ell )^{-3}\int \chi _B^2. \end{aligned}$$
(A.7)

Using (A.3) for \(2(ds\ell )^{-1}<|{k} |<R^{-1}\) and (A.4) for \(|{k} |>R^{-1}\) gives

$$\begin{aligned} \frac{1}{2}(2\pi )^{-3}\overset{{}}{\underset{{|{k} |>2(ds\ell )^{-1}}}{\int }} h_0(k)\, {\mathrm {d}}k \ge&\frac{1}{2}(2\pi )^{-3}\overset{{}}{\underset{{|{k} |>2(ds\ell )^{-1}}}{\int }}-\frac{1}{2}\frac{n^2}{|{B} |^2}\frac{\widehat{W}(k)^2}{\tau _B(k^2)}\, {\mathrm {d}}k \int \chi _B^2\nonumber \\&-C\overset{{}}{\underset{{|{k} |>R^{-1}}}{\int }}\,\frac{n^3}{|{B} |^3}\frac{|{\widehat{W}(k)} |^3}{\tau _B(k^2)^2}\, {\mathrm {d}}k \int \chi _B^2. \end{aligned}$$
(A.8)

Since \(\tau _B=(1-\varepsilon _0)[|{k} |-(ds\ell )^{-1}]_+^2\ge C|{k} |^2\) if \(|{k} |\ge 2(ds\ell )^{-1}\) and we have \(|{\widehat{W}(k)} |\le \widehat{W}(0)\le Ca\), it is easy to estimate the last term in (A.8)

$$\begin{aligned} \,\overset{{}}{\underset{{|{k} |>R^{-1}}}{\int }}\frac{n^3}{|{B} |^3}\frac{|{\widehat{W}(k)} |^3}{\tau _B(k^2)^2}\, {\mathrm {d}}k\int \chi _B^2\le C\overset{{}}{\underset{{|{k} |>R^{-1}}}{\int }}\frac{n^3}{|{B} |^3}\frac{a^3}{|{k} |^4}\, {\mathrm {d}}k \int \chi _B^2 \le C\frac{n^3}{|{B} |^3}a^3\!R \int \chi _B^2. \end{aligned}$$
(A.9)

The integral \(\int _{{|{k} |>2(ds\ell )^{-1}}}^{{}}\frac{\widehat{W}(k)^2}{\tau _B(k^2)}\, {\mathrm {d}}k\) is related to the second Born term, and we have to estimate it carefully. Recall that on the small box we have by (31) that \(v_R(x)\le W(x)\le v_R(x)(1+C(\frac{R}{d\ell })^2)\). Thus we have

$$\begin{aligned} \vert \vert {v_R-W} \vert \vert _{\frac{6}{5}}\le C({\textstyle \frac{R}{d\ell }})^2\vert \vert {v_R} \vert \vert _{\frac{6}{5}}\qquad \text {and}\qquad \vert \vert {v_R} \vert \vert _{\frac{6}{5}}= R^{-\frac{1}{2}}\vert \vert {v_{1}} \vert \vert _{\frac{6}{5}}. \end{aligned}$$
(A.10)

Since \(v_R(x)=\frac{1}{R^3} v_{1}(\frac{x}{R})\), we have \(\widehat{v_R}(k)=\widehat{v_{1}}(Rk)\) and that

$$\begin{aligned} \int _{{|{k} |\ge 2(ds\ell )^{-1}}}^{{}}\frac{\widehat{v_R}(k)^2}{|{k} |^2}\, {\mathrm {d}}k =\frac{1}{R}\int _{{|{k} |\ge 2(ds\ell )^{-1}R}}^{{}}\frac{\widehat{v}_{1}(k)^2}{|{k} |^2}\, {\mathrm {d}}k. \end{aligned}$$
(A.11)

For \(f\in L^{\frac{6}{5}}({\mathbb {R}}^{3})\) a real space representation (see [21] Cor 5.10) followed by an application of the Hardy–Littlewood–Sobolev inequality gives

$$\begin{aligned} \int |{\widehat{f}(k)} |^2|{k} |^{-2}\, {\mathrm {d}}k\le C \vert \vert {f} \vert \vert _{\frac{6}{5}}^2. \end{aligned}$$
(A.12)

On the small box, we have for \(|{k} |>2(ds\ell )^{-1}\)

$$\begin{aligned} \tau _B(k^2)^{-1}\le (1+C\varepsilon _0)|{k} |^{-2}+C(ds\ell )^{-1}|{k} |^{-3}. \end{aligned}$$
(A.13)

We use a Cauchy–Schwarz inequality, (A.10) and (A.12) to obtain the estimate

$$\begin{aligned} \overset{{}}{\underset{{|{k} |>2(ds\ell )^{-1}}}{\int }}\frac{\widehat{W}(k)^2}{|{k} |^2}\, {\mathrm {d}}k \le {}&\overset{{}}{\underset{{|{k} |>2(ds\ell )^{-1}}}{\int }}\frac{\widehat{v}_R(k)^2}{|{k} |^2}\, {\mathrm {d}}k\nonumber \\&+2 \bigg (\overset{{}}{\underset{{|{k} |>2(ds\ell )^{-1}}}{\int }}\frac{|{\widehat{W}(k)-\widehat{v}_R(k)} |^2}{|{k} |^2}\, {\mathrm {d}}k\bigg )^{\frac{1}{2}}\bigg (\overset{{}}{\underset{{|{k} |>2(ds\ell )^{-1}}}{\int }}\frac{\widehat{v}_R(k)^2}{|{k} |^2}\, {\mathrm {d}}k\bigg )^{\frac{1}{2}}\nonumber \\&+ \overset{{}}{\underset{{|{k} |>2(ds\ell )^{-1}}}{\int }}\frac{|{\widehat{W}(k)-\widehat{v}_R(k)} |^2}{|{k} |^2}\, {\mathrm {d}}k\nonumber \\ \le {}&\frac{1}{R}\overset{{}}{\underset{{|{k} |>2(ds\ell )^{-1}R}}{\int }}\frac{\widehat{v}_{1}(k)^2}{|{k} |^2}\, {\mathrm {d}}k+C\vert \vert {W-v_R} \vert \vert _{\frac{6}{5}}\vert \vert {v_R} \vert \vert _\frac{6}{5}+ C\vert \vert {W-v_R} \vert \vert _{\frac{6}{5}}^2\nonumber \\ \le {}&\frac{1}{R}\overset{{}}{\underset{{|{k} |>2(ds\ell )^{-1}R}}{\int }}\frac{\widehat{v}_{1}(k)^2}{|{k} |^2}\, {\mathrm {d}}k+ C\left( {\frac{R}{d\ell }}\right) ^2\frac{a^2}{R}. \end{aligned}$$
(A.14)

Using \(|{\widehat{W}(k)} |\le Ca\), gives

$$\begin{aligned} \overset{{}}{\underset{{|{k} |>2(ds\ell )^{-1}}}{\int }}\widehat{W}\left( {k}\right) ^2|{k} |^{-3} \, {\mathrm {d}}k ={}&\overset{{}}{\underset{{2(ds\ell )^{-1}< |{k} |< R^{-1}}}{\int }}\widehat{W}(k)^2|{k} |^{-3}\, {\mathrm {d}}k+ \overset{{}}{\underset{{ |{k} |>R^{-1}}}{\int }}\widehat{W}\left( {k}\right) ^2|{k} |^{-3} \, {\mathrm {d}}k \nonumber \\ \le {}&C\overset{{}}{\underset{{2(ds\ell )^{-1}R< |{k} | < 1 }}{\int }}\widehat{W}(0)^2|{k} |^{-3}\, {\mathrm {d}}k+ R\overset{{}}{\underset{{|{k} |>2(ds\ell )^{-1}}}{\int }}\widehat{W}\left( {k}\right) ^2|{k} |^{-2} \, {\mathrm {d}}k \nonumber \\ \le {}&Ca^2\ln \Big ( \frac{ds\ell }{R}\Big ). \end{aligned}$$
(A.15)

Combining (A.13), (A.14) and (A.15), we arrive at

$$\begin{aligned} \overset{{}}{\underset{{|{k} |>2(ds\ell )^{-1}}}{\int }}\frac{\widehat{W}(k)^2}{\tau _B(k^2)}\, {\mathrm {d}}k \le {}&(1+C\varepsilon _0)\overset{{}}{\underset{{|{k} |>2(ds\ell )^{-1}}}{\int }}\frac{\widehat{W}(k)^2}{|{k} |^2}\, {\mathrm {d}}k+C(ds\ell )^{-1}\overset{{}}{\underset{{|{k} |>2(ds\ell )^{-1}}}{\int }}\frac{\widehat{W}\left( {k}\right) ^2}{|{k} |^{3}} \, {\mathrm {d}}k \nonumber \\ \le {}&(1+C\varepsilon _0)\frac{1}{R}\overset{{}}{\underset{{}}{\int }}\frac{\widehat{v}_{1}(k)^2}{|{k} |^2}\, {\mathrm {d}}k +Ca\frac{a}{ds\ell }\ln \Big (\frac{ds\ell }{R}\Big ). \end{aligned}$$
(A.16)

In the last inequality, we used that the second term in (A.14) and the positive term \((1+C\varepsilon _0)\frac{1}{R}\int _{{|{k} |<2(ds\ell )^{-1}R}}^{{}}\frac{\widehat{v}_{1}(k)^2}{|{k} |^2}\, {\mathrm {d}}k\) by Condition 1 are bounded by the last term in (A.16).

1.1.2 A.1.2. Estimates on the Large Box

Recall that on the large box, we have \({\int \chi _B^2=|{B} |}\) and that

$$\begin{aligned} {\tau _B(k^2)=(1-\varepsilon _0)(1-\varepsilon _{T})\left[ {{|k|-{\textstyle \frac{1}{2}} (s\ell )^{-1}}}\right] _+^2+(1-\varepsilon _0)\varepsilon _{T}\,\left[ {{|k|-{\textstyle \frac{1}{2}} (ds\ell )^{-1}}}\right] _+^2}. \end{aligned}$$

Hence, as in (A.7),

$$\begin{aligned} \overset{{}}{\underset{{|{k} |<(s\ell )^{-1}}}{\int }} h_0(k)\, {\mathrm {d}}k \ge&-\overset{{}}{\underset{{|{k} |<(s\ell )^{-1}}}{\int }}\frac{n_0}{|{B} |}\widehat{W}(k)\, {\mathrm {d}}k\int \chi _B^2 \ge -C\frac{n}{|{B} |}a(s\ell )^{-3}|{B} |. \end{aligned}$$
(A.17)

Analogously to (A.8), we have

$$\begin{aligned} \frac{1}{2}(2\pi )^{-3}\overset{{}}{\underset{{|{k} |>(s\ell )^{-1}}}{\int }} h_0(k)\, {\mathrm {d}}k \ge \frac{1}{2}(2\pi )^{-3}\overset{{}}{\underset{{|{k} |>(s\ell )^{-1}}}{\int }}-\frac{1}{2}\frac{n^2}{|{B} |^2}\frac{\widehat{W}(k)^2}{\tau _B(k^2)}\, {\mathrm {d}}k |{B} |-C\overset{{}}{\underset{{|{k} |>R^{-1}}}{\int }}\frac{n^3}{|{B} |^3}\frac{|{\widehat{W}(k)} |^3}{\tau _B(k^2)^2}\, {\mathrm {d}}k |{B} |. \end{aligned}$$
(A.18)

The last term in (A.18) is estimated in the same way as the last term in (A.8)

$$\begin{aligned}&\overset{{}}{\underset{{|{k} |>R^{-1}}}{\int }}\frac{n^3}{|{B} |^3}\frac{|{\widehat{W}(k)} |^3}{\tau _B(k^2)^2}\, {\mathrm {d}}k\int \chi _B^2\le C\overset{{}}{\underset{{|{k} |>R^{-1}}}{\int }}\frac{n^3}{|{B} |^3}\frac{a^3}{|{k} |^4}\, {\mathrm {d}}k |{B} |\le C\frac{n^3}{|{B} |^3}a^3R |{B} |. \end{aligned}$$
(A.19)

By (30), we have \(v_R(x)\!\le \! W(x)\!\le \! v_R(x)(1\!+\!C(\!\frac{R}{\ell })^2)\!\). Thus, similarly to (A.14),

$$\begin{aligned} \overset{{}}{\underset{{|{k} |>(s\ell )^{-1}}}{\int }}\frac{\widehat{W}(k)^2}{|{k} |^2}\, {\mathrm {d}}k \le&\overset{{}}{\underset{{|{k} |>(s\ell )^{-1}}}{\int }}\frac{\widehat{v}_{R}(k)^2}{|{k} |^2}\, {\mathrm {d}}k+ C\frac{a^2R}{\ell ^2}. \end{aligned}$$
(A.20)

Similarly to (A.15), we have

$$\begin{aligned} \overset{{}}{\underset{{|{k} |>(s\ell )^{-1}}}{\int }}\widehat{W}\left( {k}\right) ^2|{k} |^{-3} \, {\mathrm {d}}k \le Ca^2\ln \left( { \frac{s\ell }{R}}\right) . \end{aligned}$$
(A.21)

Since

$$\begin{aligned} \tau _B(k^2)^{-1}\!\le \!{\left\{ \begin{array}{ll} \!\left( {1\!+\!C\varepsilon _0\!+\!C\varepsilon _T\!}\right) \!|{k} |^{{-}2}\!+\!C(s\ell )^{-1}|{k} |^{{-}3} &{} \text {for }(s\ell )^{-1}\!<\!|{k} |\!<\!(ds\ell )^{-1}\\ \!\left( {1\!+\!C\varepsilon _0\!}\right) \!|{k} |^{{-}2}\!+\!C\!\left( {(s\ell )^{-1}\!+\!\varepsilon _T(ds\ell )^{-1}\!}\right) \!|{k} |^{{-}3}\! &{} \text {for }|{k} |\ge (ds\ell )^{-1}, \end{array}\right. } \end{aligned}$$
(A.22)

we have, similar to (A.16),

$$\begin{aligned} \,\overset{{}}{\underset{{|{k} |>(s\ell )^{-1}}}{\int }}\frac{\widehat{W}(k)^2}{\tau _B(k^2)}\, {\mathrm {d}}k \le&\,(1+C\varepsilon _0+C\varepsilon _T)\overset{{}}{\underset{{(s\ell )^{-1}<|{k} |<(ds\ell )^{-1}}}{\int }}\frac{\widehat{W}(k)^2}{|{k} |^2}+C(s\ell )^{-1}\frac{\widehat{W}(k)^2}{|{k} |^3}\! \, {\mathrm {d}}k\nonumber \\&+\!\left( {1\!+\!C\varepsilon _0}\right) \overset{{}}{\underset{{|{k} |>(ds\ell )^{-1}}}{\int }}\frac{\widehat{W}(k)^2}{|{k} |^2}+C\!\left( {(s\ell )^{-1}+\!\varepsilon _T(ds\ell )^{-1}}\right) \! \frac{\widehat{W}(k)^2}{|{k} |^3}\!\, {\mathrm {d}}k\nonumber \\ \le {}&\overset{{}}{\underset{{|{k} |>(s\ell )^{-1}}}{\int }}\frac{\widehat{v_R}(k)^2}{|{k} |^2}\, {\mathrm {d}}k +C\varepsilon _0a\frac{a}{R}+ C\frac{a^2R}{\ell ^2}+C\varepsilon _Ta^2(ds\ell )^{-1}\nonumber \\&+C(s\ell )^{-1}a^2\ln \left( {\frac{s\ell }{R}}\right) +C\varepsilon _T(ds\ell )^{-1}a^2\ln \left( {\frac{ds\ell }{R}}\right) \nonumber \\ \le {}&\int _{{}}^{{}}\frac{\widehat{v_R}(k)^2}{|{k} |^2}\, {\mathrm {d}}k +C\varepsilon _0a\frac{a}{R} +C(s\ell )^{-1}a^2\ln \left( {\frac{s\ell }{R}}\right) \nonumber \\&+C\varepsilon _T(ds\ell )^{-1}a^2\ln \left( {\frac{ds\ell }{R}}\right) . \end{aligned}$$
(A.23)

In the last inequality, we used that by Condition 1 the terms \(C\frac{aR}{\ell ^2}a\) and \(\int _{{|{k} |<(s\ell )^{-1}}}^{{}}\,\frac{\widehat{v}_{R}(k)^2}{|{k} |^2}\, {\mathrm {d}}k\) are bounded by the second to last term in (A.23).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brietzke, B., Solovej, J.P. The Second-Order Correction to the Ground State Energy of the Dilute Bose Gas. Ann. Henri Poincaré 21, 571–626 (2020). https://doi.org/10.1007/s00023-019-00875-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-019-00875-3

Navigation