Skip to main content
Log in

Maximal Fluctuations on Periodic Lattices: An Approach via Quantitative Wulff Inequalities

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the Wulff problem arising from the study of the Heitmann–Radin energy of N atoms sitting on a periodic lattice. Combining the sharp quantitative Wulff inequality in the continuum setting with a notion of quantitative closeness between discrete and continuum energies, we provide very short proofs of fluctuation estimates of Voronoi-type sets associated with almost minimizers of the discrete problem about the continuum limit Wulff shape. In the particular case of exact energy minimizers, we recover the well-known, sharp \(N^{3/4}\) scaling law for all considered planar lattices, as well as a sub-optimal scaling law for the cubic lattice in dimension \(d\ge 3\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Au Yeung, Y., Friesecke, G., Schmidt, B.: Minimizing atomic configurations of short range pair potentials in two dimensions: crystallization in the Wulff shape. Calc. Var. Partial Differ. Equ. 44(1–2), 81–100 (2012)

    MathSciNet  MATH  Google Scholar 

  2. Acerbi, E., Fusco, N., Morini, M.: Minimality via second variation for a nonlocal isoperimetric problem. Commun. Math. Phys. 322, 515–557 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  3. Blanc, X., Lewin, M.: The crystallization conjecture: a review. EMS Surv. Math. Sci. 2, 255–306 (2015)

    MathSciNet  MATH  Google Scholar 

  4. Cicalese, M., Leonardi, G.P.: A selection principle for the sharp quantitative isoperimetric inequality. Arch. Ration. Mech. Anal. 206(2), 617–643 (2012)

    MathSciNet  MATH  Google Scholar 

  5. Davoli, E., Piovano, P., Stefanelli, U.: Wulff shape emergence in graphene. Math. Mod. Methods. Appl. Sci. 26(12), 2277–2310 (2016)

    MathSciNet  MATH  Google Scholar 

  6. Davoli, E., Piovano, P., Stefanelli, U.: Sharp \(N^{3/4}\) law for the minimizers of the edge-isoperimetric problem on the triangular lattice. J. Nonlinear Sci. 27(2), 627–660 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  7. Del Nin, G.: Some asymptotic results on the global shape of planar clusters. Ph.D. thesis (forthcoming)

  8. De Luca, L., Friesecke, G.: Crystallization in two dimensions and a discrete Gauss–Bonnet theorem. J. Nonlinear Sci. 28(1), 69–90 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  9. De Luca, L., Friesecke, G.: Classification of particle numbers with unique Heitmann-Radin minimizer. J. Stat. Phys. 167(6), 1586–1592 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  10. Weinan, E., Li, D.: On the crystallization of 2D hexagonal lattices. Commun. Math. Phys. 286(3), 1099–1140 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  11. Figalli, A., Maggi, F., Pratelli, A.: A mass transportation approach to quantitative isoperimetric inequalities. Invent. math. 182, 167 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  12. Flatley, L.C., Tarasov, A., Taylor, M., Theil, F.: Packing twelve spherical caps to maximize tangencies. J. Comput. Appl. Math. 254, 220–225 (2013)

    MathSciNet  MATH  Google Scholar 

  13. Flatley, L.C., Theil, F.: Face-centered cubic crystallization of atomistic configurations. Arch. Ration. Mech. Anal. 218(1), 363–416 (2015)

    MathSciNet  MATH  Google Scholar 

  14. Fonseca, I., Müller, S.: A uniqueness proof for the Wulff theorem. Proc. R. Soc. Edinb. Sect. A 119, 125–136 (1991)

    ADS  MathSciNet  MATH  Google Scholar 

  15. Friedrich, M., Kreutz, L.: Crystallization in the hexagonal lattice for ionic dimers, Math. Models Methods Appl. Sci. (M3AS), to appear. Preprint arXiv:1808.10675

  16. Friedrich, M., Kreutz, L.: Finite crystallization and wulff shape emergence for ionic compounds in the square lattice (2019). arXiv preprint arXiv:1903.00331

  17. Friesecke, G., Theil, F.: Molecular Geometry Optimization, Models, Encyclopedia of Applied and Computational Mathematics. Springer, Berlin (2015)

    Google Scholar 

  18. Fusco, N., Maggi, F., Pratelli, A.: The sharp quantitative isoperimetric inequality. Ann. Math. 168, 941–980 (2008)

    MathSciNet  MATH  Google Scholar 

  19. Harborth, H.: Lösung zu Problem 664A. Elem. Math. 29, 14–15 (1974)

    Google Scholar 

  20. Heitmann, R.C., Radin, C.: The ground states for sticky discs. J. Stat. Phys. 22(3), 281–287 (1980)

    ADS  Google Scholar 

  21. Mainini, E., Stefanelli, U.: Crystallization in carbon nanostructures. Nonlinearity 27, 717–737 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  22. Mainini, E., Piovano, P., Stefanelli, U.: Finite crystallization in the square lattice. Commun. Math. Phys. 328(2), 545–571 (2014)

    ADS  MATH  Google Scholar 

  23. Mainini, E., Piovano, P., Schmidt, B., Stefanelli, U.: \(N^{3/4}\) law in the cubic lattice (preprint )(2018). https://arxiv.org/pdf/1807.00811.pdf

  24. Schmidt, B.: Ground states of the 2D sticky disc model: fine properties and \(N^{3/4}\) law for the deviation from the asymptotic Wulff shape. J. Stat. Phys. 153(4), 727–738 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  25. Taylor, J.: Unique structure of solutions to a class of nonelliptic variational problems. Proc. Symp. Pure Math. AMS 27, 419–427 (1975)

    MathSciNet  Google Scholar 

  26. Theil, F.: A proof of crystallization in two dimensions. Commun. Math. Phys. 262(1), 209–236 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  27. Wales, D.J.: Global optimization by basin-hopping and the lowest energy structures of Lennard–Jones clusters containing up to 110 atoms. J. Phys. Chem. A 101, 5111–5116 (1997)

    Google Scholar 

Download references

Acknowledgements

The work of MC was partially supported by the DFG Collaborative Research Center TRR 109, “Discretization in Geometry and Dynamics”. GP has been partially supported by the INdAM-GNAMPA Project 2019 "Problemi isoperimetrici in spazi euclidei e non". Part of this work was carried out while GP was visiting the department of mathematics of TUM, whose hospitality is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Cicalese.

Additional information

Communicated by H. Duminil-Copin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cicalese, M., Leonardi, G.P. Maximal Fluctuations on Periodic Lattices: An Approach via Quantitative Wulff Inequalities. Commun. Math. Phys. 375, 1931–1944 (2020). https://doi.org/10.1007/s00220-019-03612-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-019-03612-3

Navigation