Skip to main content
Log in

Energy Concentrations and Type I Blow-Up for the 3D Euler Equations

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We exclude Type I blow-up, which occurs in the form of atomic concentrations of the \(L^2\) norm for the solution of the 3D incompressible Euler equations. As a corollary we prove nonexistence of discretely self-similar blow-up in the energy conserving scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, M., Craig, W.: On the size of the Navier–Stokes singular set. Discrete Contin. Dyn. Syst. 28(3), 1165–1177 (2010)

    MathSciNet  MATH  Google Scholar 

  2. Beale, J.T., Kato, T., Majda, A.: Remarks on the breakdown of smooth solutions for the 3-D Euler equations. Commun. Math. Phys. 94, 61–66 (1984)

    ADS  MathSciNet  MATH  Google Scholar 

  3. Bergh, J., Löfström, J.: Interpolation Spaces, Grundlehren der Mathematischen Wissenschaften, vol. 223. Springer, Berlin (1976)

    MATH  Google Scholar 

  4. Cattabriga, L.: Su un problema al contorno relativo al sistema di equazioni di Stokes. Rend. Sem. Univ. Padova 31, 308–340 (1961)

    MathSciNet  MATH  Google Scholar 

  5. Chae, D.: Nonexistence of self-similar singularities for the 3D incompressible Euler equations. Commun. Math. Phys. 273(1), 203–215 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  6. Chae, D.: Euler’s equations and the maximum principle. Math. Ann. 361, 51–66 (2015)

    MathSciNet  MATH  Google Scholar 

  7. Chae, D., Shvydkoy, R.: On formation of a locally self-similar collapse in the incompressible Euler equations. Arch. Ration. Mech. Anal. 209(3), 999–1017 (2013)

    MathSciNet  MATH  Google Scholar 

  8. Chae, D., Wolf, J.: On the Liouville type theorems for self-similar solutions to the Navier–Stokes equations. Arch. Ration. Mech. Anal. 225, 549–572 (2017)

    MathSciNet  MATH  Google Scholar 

  9. Chae, D., Wolf, J.: Removing discretely self-similar singularities for the 3D Navier–Stokes equations. Commun. Partial Differ. Equ. 42(9), 1359–1374 (2017)

    MathSciNet  MATH  Google Scholar 

  10. Constantin, P.: On the Euler equations of incompressible fluids. Bull. Am. Math. Soc. 44(4), 603–621 (2007)

    MathSciNet  MATH  Google Scholar 

  11. Constantin, P., Weinan, E., Titi, E.: Onsager’s conjecture on the energy conservation for solutions of Euler’s equation. Commun. Math. Phys. 165(1), 207–209 (1994)

    ADS  MathSciNet  MATH  Google Scholar 

  12. Constantin, P., Fefferman, C., Majda, A.: Geometric constraints on potential singularity formulation in the 3-D Euler equations. Commun. Partial Differ. Equ. 21(3–4), 559–571 (1996)

    MATH  Google Scholar 

  13. Deng, J., Hou, T.Y., Yu, X.: Improved geometric conditions for non-blow up of the 3D incompressible Euler equations. Commun. Partial Differ. Equ. 31(1–3), 293–306 (2006)

    MATH  Google Scholar 

  14. Galdi, G.P., Simader, C., Sohr, H.: On the Stokes problem in Lipschitz domains. Ann. Mat. Pura Appl. (IV) 167, 147–163 (1994)

    MathSciNet  MATH  Google Scholar 

  15. Grauer, R., Sideris, T.: Finite time singularities in ideal fluids with swirl. Physica D 88(2), 116–132 (1995)

    ADS  MathSciNet  MATH  Google Scholar 

  16. Greene, J.M., Pelz, R.B.: Stability of postulated, self-similar, hydrodynamic blowup solutions. Phys. Rev. E 62(6), 7982–7986 (2000)

    ADS  MathSciNet  Google Scholar 

  17. Herrero, M.A., Velázquez, J.J.L.: Singularity patterns in a chemotaxis model. Math. Ann. 306, 583–623 (1996)

    MathSciNet  MATH  Google Scholar 

  18. Kato, T.: Nonstationary flows of viscous and ideal fluids in \(\mathbb{R}^n\). J. Funct. Anal. 9, 296–305 (1972)

    MATH  Google Scholar 

  19. Kerr, R.M.: Computational Euler history. arXiv:physics/0607148 (2006)

  20. Kozono, H., Taniuchi, Y.: Limiting case of the Sobolev inequality in BMO, with applications to the Euler equations. Commun. Math. Phys. 214, 191–200 (2000)

    ADS  MathSciNet  MATH  Google Scholar 

  21. Leslie, T.M., Shvydkoy, R.: The energy measure for the Euler and Navier–Stokes equations. Arch. Ration. Mech. Anal. 230(2), 459–492 (2018)

    MathSciNet  MATH  Google Scholar 

  22. Luo, G., Hou, T.: Toward the finite-time blowup of the 3D axisymmetric Euler equations: a numerical investigati. Multiscale Model. Simul. 12(4), 1722–1776 (2014)

    MathSciNet  MATH  Google Scholar 

  23. Majda, A., Bertozzi, A.: Vorticity and Incompressible Flow. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  24. Merle, F.: Construction of solutions with exact \(k\) blow-up points for the Schrödinger equation with critical power. Commun. Math. Phys. 129, 223–240 (1990)

    ADS  MATH  Google Scholar 

  25. Merle, F., Tsutsumi, Y.: \(L^2\) concentration of blow up solutions for nonlinear Schrödinger equation with critical power nonlinearity. J. Differ. Equ. 84, 205–214 (1990)

    ADS  MATH  Google Scholar 

  26. Shvydkoy, R.: A study of energy concentration and drain in incompressible fluids. Nonlinearity 26, 425–438 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  27. Simon, J.: Compact sets in the space \(L^p (0, T; B)\). Ann. Mat. Pura Appl. 146, 65–96 (1987)

    MathSciNet  MATH  Google Scholar 

  28. Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  29. Tao, T.: Finite time blowup for Lagrangian modifications of the three-dimensional Euler equation. Ann. PDE 2(2), 79 (2016). Art. 9

    MathSciNet  MATH  Google Scholar 

  30. Wolf, J.: On the local regularity of suitable weak solutions to the generalized Navier–Stokes equations. Ann. Univ. Ferrara 61, 149–171 (2015)

    MathSciNet  MATH  Google Scholar 

  31. Wolf, J.: On the local pressure of the Navier–Stokes equations and related systems. Adv. Differ. Equ. 22, 305–338 (2017)

    MathSciNet  MATH  Google Scholar 

  32. Yosida, K.: Functional Analysis, 6th edn. Springer, Berlin (1970)

    MATH  Google Scholar 

Download references

Acknowledgements

Chae was partially supported by NRF Grants 2016R1A2B3011647, while Wolf has been supported by NRF Grants 2017R1E1A1A01074536.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongho Chae.

Additional information

Communicated by C. De Lellis

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Some Auxiliary Lemmas

Some Auxiliary Lemmas

Here we prove fundamental properties of a harmonic function used in the proof of the main theorem.

Lemma A.1

Let \( p\in L^2(\Omega )\) be a harmonic function on \( \Omega \). Then for every \( \phi \in C^{\infty }_c(\Omega )\) and for all \( m\in \mathbb {N}\) it holds

$$\begin{aligned} \int \limits _{\Omega } | \nabla ^m p|^2 \phi dx = \frac{1}{2^m} \int \limits _{\Omega } p^2 \Delta ^m \phi dx. \end{aligned}$$
(A.1)

Proof

We show (A.1) by an inductive argument. First, (A.1) with \(m=1\) is clear by the integration by parts. Assume (A.1) holds for \( m\in \mathbb {N}\). Then we have \( | \nabla ^{ m+1} p|^2 = \sum _{i=1}^{n} | \nabla ^{ m} \partial _i p|^2 \). Using the assumption that (A.1) holds for \( \partial _i p \) in place of p, and integrating it by parts, we infer

$$\begin{aligned} \int \limits _{\Omega } | \nabla ^{ m+1} p|^2 \phi dx&= \sum _{i=1}^{n}\int \limits _{\Omega } | \nabla ^{ m} \partial _ip|^2 \phi dx\\&=\frac{1}{2^m} \int \limits _{\Omega } | \nabla p|^2 \Delta ^m \phi dx =\frac{1}{2^{ m+1}} \int \limits _{\Omega } p^2 \Delta ^{ m+1} \phi dx. \end{aligned}$$

\(\quad \square \)

Lemma A.2

Let \( U = \mathbb {R}^{n} \setminus \overline{B(r)}, 0< r<+\infty \). Let \( \zeta \in C^{\infty }(U)\) denote a cut off function such that \( 0 \le \zeta \le 1\) with supp \(\zeta \subset U\), and \( | \nabla ^k\zeta | \le c r^{ -k}\), \( k=1, \ldots , n+1\). Then for every \( u\in L^{ \frac{2n}{n-1}}(U)\) which is harmonic in U it holds

$$\begin{aligned} \Vert \nabla u \zeta \Vert _{ \infty } \le c r^{ -\frac{n+1}{2}} \Vert u \Vert _{ L^{ \frac{2n}{n-1}}(U)}. \end{aligned}$$
(A.2)

Proof

First, let \( x\in \mathbb {R}^{n} \setminus B(2r)\). Applying the mean value property of harmonic functions and Jensen’s inequality, we get

$$\begin{aligned} | \nabla u(x) \zeta (x)| \le | \nabla u(x)| \le c r^{ -n-1} \int \limits _{B(x, r)} | u| dx \le c r^{ -\frac{n+1}{2}} \Vert u\Vert _{ L^{ \frac{2n}{n-1}}(U)}. \end{aligned}$$

Secondly, let \( x\in U\cap B(2r) \). By \( \eta \in C^{\infty }_{ c}(B(4r))\) we denote a cut off function such that \( 0 \le \eta \le 1\) in \( B(4r), \eta \equiv 1\) on B(2r) and \( | \nabla ^k \eta | \le c r^{ -k}\), \( k=1, \ldots , n+1\). Using Sobolev’s embedding theorem, and applying Lemma A.1 with \( \phi = | \nabla ^j(\zeta \eta )|^2 \), \( j=1, \ldots , n\), we estimate

$$\begin{aligned} | \nabla u(x) \zeta (x)|&\le \Vert \nabla u \zeta \eta \Vert _{ L^\infty (B(4r))} \\&\le c \sum _{k=0}^{n} r^{ - \frac{n}{2} +k}\Vert \nabla ^k (\nabla u \zeta \eta )\Vert _{ L^{2}(B(4r))} \\&\le c\sum _{k=0}^{n} \sum _{j=0}^{k} r^{ - \frac{n}{2} +k}\Vert \nabla ^{ k-j+1} u \nabla ^{ j}(\zeta \eta )\Vert _{ L^{2}(B(4r))} \\&\le cr^{ - \frac{n+2}{2}} \Vert u\Vert _{ L^{2}(U\cap B(4r))} \le cr^{ - \frac{n+1}{2}} \Vert u\Vert _{ L^{ \frac{2n}{n-1}}(U)}. \end{aligned}$$

The assertion now follows from the above two estimates. \(\quad \square \)

Lemma A.3

Let \( \{ p_k\}\) be a sequence of harmonic functions in \( L^2(\Omega )\), which converges weakly to some limit p in \( L^2(\Omega )\) as \( k \rightarrow +\infty \). Then p is harmonic and for every compact set \(K \subset \Omega \) and every multi index \( \alpha = (\alpha _1, \ldots , \alpha _n)\) it holds

$$\begin{aligned} D^{ \alpha } p_k \rightarrow D^{ \alpha } p \quad { uniformly~ on~}K\quad { as}\quad k \rightarrow +\infty . \end{aligned}$$
(A.3)

Proof

By virtue of Weyl’s lemma it is clear that p is harmonic in \( \Omega \). Let \( x\in \Omega \), and let \( B(x, r) \subset \Omega \) be a ball. By the weak convergence and the mean value property of harmonic functions we obtain

This shows that \( p_k \rightarrow p\) pointwise as \( k \rightarrow +\infty \). In particular, \( p_k \rightarrow p\) in \( L^2(\Omega ')\) as \( k \rightarrow +\infty \) for every \( \Omega ' \Subset \Omega \). Applying the identity (A.1) for a suitable cut off function \( \phi \ge 0\) it follows that \( p_k \rightarrow p\) in \( H^m(\Omega ')\) as \( k \rightarrow +\infty \) for every \( \Omega ' \Subset \Omega \) and for all \( m\in \mathbb {N}\). The uniform convergences (A.3) is now an immediate consequence of Sobolev’s embedding theorem. \(\quad \square \)

Lemma A.4

For \( 0< R< +\infty \) define \( Q(R)= B(R) \times I(R), I(R)= (- R^{ \frac{n+2}{2}}, 0)\). Let \( f\in L^p(Q(R); \mathbb {R}^{n^2})\), \( 1< p< +\infty \). Let \( u\in L^p(Q(R))\), solving the equation

$$\begin{aligned} -\Delta u = \sum _{i,j=1}^{n} \partial _i \partial _j f_{ ij}\quad \text { in}\quad Q(R) \end{aligned}$$
(A.4)

in the sense of distributions. Assume for some \( \lambda \in (0,n) \) it holds

$$\begin{aligned} \sup _{ 0< \rho< R} \rho ^{ - \lambda } \Vert f\Vert ^p_{ L^p(Q(\rho ))} < +\infty . \end{aligned}$$
(A.5)

Then there exists a constant \( c>0\) depending only on np and \( \lambda \) such that

$$\begin{aligned} \sup _{ 0< \rho< R} \rho ^{ - \lambda } \Vert u\Vert ^p_{ L^p(Q(\rho ))} \le c \Big (R^{ -\lambda }\Vert u\Vert ^p_{ L^p(Q(R))}+ \sup _{ 0< \rho < R} \rho ^{ - \lambda } \Vert f\Vert ^p_{ L^p(Q(\rho ))}\Big ). \end{aligned}$$
(A.6)

Proof

By a routine scaling argument we may assume that \( R=1\). We extend f(t) by zero outside B(1), and denote this extension again by f. Clearly, the family of annalus \( U_j = B(2^{ j+1}) \setminus \overline{B(2^{ j-1})} , j\in \mathbb {Z}, j \le 1\), cover \( \overline{B(2)} \). By \( \{ \psi _j\}\) we denote a corresponding partition of unity of smooth radial symmetric functions, such that \( \sum _{j=-\infty }^{1} \psi _j =1\) on B(2) together with \( | \nabla \psi _j | \le c 2^{ -j}\) and \( | \nabla ^2 \psi _j | \le c 2^{ -2j}\) for all \( j\in \mathbb {Z}, j \le 1\). Let \( m\in \mathbb {Z}\), with \( m \le 0\) be arbitrarily chosen, but fixed. We write \( u= u_1+ u_2+ u_3\), where

$$\begin{aligned} u_1(x, t)&= \sum _{j=-\infty }^{m} P.V. \int \limits _{ \mathbb {R}^{n}} f(x-y, t): \nabla ^2 N(y) \psi _j(y)dy, \\ u_2 (x, t)&= \sum _{j=m+1}^{1} P.V. \int \limits _{ \mathbb {R}^{n}} f(x-y, t) : \nabla ^2 N(y) \psi _j(y)dy, \\ u_{ 3}(x,t )&= u(x, t)- u_1(x, t)- u_2(x,t),\quad (x, t)\in Q(1), \end{aligned}$$

where N stands for the Newton potential in \( \mathbb {R}^{n}\).

Our aim will be to estimate the \(L^p\) norm of \(u_1, u_2\) and \( u_3\) over \( Q(2^m)\) separately.

First, by triangle inequality we see that for \( x\in B(2^{ m})\) and \( | x-y| \ge 2^{ m+2}\) we get \( | y| \ge 2^{ m+1}\). Thus, by Calderón-Zygmund inequality we find for almost every \( t\in (-1, 0)\)

$$\begin{aligned} \Vert u_1(t)\Vert _{ L^p(B(2^m))}^p \le c \Vert f (t) \Vert ^p_{ L^p(B(2^{ m+2}))}. \end{aligned}$$

Integration of both sides over \( I(2^m)\) with respect to time along with (A.5) yields

$$\begin{aligned} \Vert u_1\Vert _{ L^p(Q(2^m))}^p \le c \Vert f \Vert ^p_{ L^p(Q(2^{ m+2}))} \le c 2 ^{ m \lambda } \sup _{ 0< \rho < R} \rho ^{ - \lambda } \Vert f\Vert ^p_{ L^p(Q(\rho ))}. \end{aligned}$$

Next, fix \( x\in B(2^{ m})\). It is readily seen that for all \( j \ge m+1\) it holds \( B(x, 2^{j+1 }) \subset B(2^{ j+1}+ 2^m) \subset B(2^{ j+2})\). Noting that \( | k(y)| \le c | y|^{ -n}\) it follows \( | k|\psi _j \le c 2^{ -jn}\). Accordingly, by the aid of Jensen’s inequality, and observing (A.5), we estimate

$$\begin{aligned} | u_2(x,t)|&\le c \sum _{j=m+2}^{1}\int \limits _{U_j} f(x-y, t) 2^{ -jn} dx \le \sum _{j=m+2}^{1} 2^{ j \frac{n}{p}}\bigg (\int \limits _{B(2^{ j+2})} | f(y, t)|^p dy \bigg )^{ \frac{1}{p}} \end{aligned}$$

Taking the \( {\text {ess sup}}\) over \( x\in B(2^m)\), and taking the \( \Vert \cdot \Vert _{ L^p(I(2^m))}\) of both sides with respect to t, using Minkowski’s inequality, and observing (A.5), we are led to

$$\begin{aligned} \bigg ( \int \limits _{I(2^m)}\Vert u_2(t)\Vert ^p_{ L^\infty (B(2^m))} dt \bigg )^{ \frac{1}{p}}&\le \bigg (\sum _{j=m+2}^{1} 2^{ j n}\int \limits _{Q(2^{ j+2})} | f(y, t)|^p dy \bigg )^{ \frac{1}{p}} \\&\le c\Big (\sum _{j=m+2}^{1} 2^{ - j(n-\lambda ) } \sup _{ 0< \rho< R} \rho ^{ - \lambda } \Vert f\Vert ^p_{ L^p(Q(\rho ))}\Big )^{ \frac{1}{p}} \\&\le c 2 ^{ -m \frac{n-\lambda }{p}}\Big (\sup _{ 0< \rho < R} \rho ^{ - \lambda } \Vert f\Vert ^p_{ L^p(Q(\rho ))}\Big )^{ \frac{1}{p}}. \end{aligned}$$

Consequently,

$$\begin{aligned} \Vert u_2\Vert ^p_{ L^p(Q(2^m))} \le c 2^{ mn } \int \limits _{I(2^m)}\Vert u_2(t)\Vert ^p_{ L^\infty (B(2^m))} dt \le c 2 ^{ m \lambda } \sup _{ 0< \rho < R} \rho ^{ - \lambda } \Vert f\Vert ^p_{ L^p(Q(\rho ))}. \end{aligned}$$

In only remains to estimate \( u_3\). By the definition of \( u_1\) and \( u_2\), recalling that \( f(t) \equiv 0\) on \( \mathbb {R}^{n} \setminus B(1)\), we see that for almost all \( t\in (-1,0)\) and for all \( x\in B( 1)\) it holds

$$\begin{aligned} u_1(x, t) + u_2(x,t)&= \sum _{j=-\infty }^{1} P.V. \int \limits _{B(2)} f(x-y, t): \nabla ^2 N(y) \psi _j(y)dy \nonumber \\&= \int \limits _{ \mathbb {R}^{n}} f(x-y,t): \nabla ^2 N(y) dy. \end{aligned}$$
(A.7)

In particular, \( u_1 + u_2\) solves (A.4) in the sense of distributions. By Weyl’s lemma we deduce that \( u_3(t) = u(t)- u_1(t)-u_2(t) \) is harmonic. Thus,

$$\begin{aligned} \Vert u_3\Vert _{ L^p(Q(2^m))}^p&\le c 2^{ m n} \Vert u_3\Vert _{ L^p(I(2^m); L^\infty ( B(2^m))}^p \\&\le c 2^{ m \lambda } \Big (\Vert u\Vert _{ L^p(Q(2^m))}^p + \Vert f\Vert _{ L^p(Q(1))}^p\Big ). \end{aligned}$$

Combining the estimates of \( u_1, u_2\) and \( u_3\) we get for all \( m\in \mathbb {Z}\), \( m \le 0\),

$$\begin{aligned} 2^{ - m \lambda }\Vert u\Vert ^p_{ L^p(Q(2^m ))} \le c \Big (\Vert u\Vert ^p_{ L^p(Q(1))}+ \sup _{ 0< \rho < R} \rho ^{ - \lambda } \Vert f\Vert ^p_{ L^p(Q(\rho ))}\Big ). \end{aligned}$$

Taking the supremum over all \( m\in \mathbb {Z}\), \( m \le 0\) on the left-hand side, we obtain the assertion (A.6). \(\quad \square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chae, D., Wolf, J. Energy Concentrations and Type I Blow-Up for the 3D Euler Equations. Commun. Math. Phys. 376, 1627–1669 (2020). https://doi.org/10.1007/s00220-019-03566-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-019-03566-6

Navigation