Skip to main content
Log in

A Unique Connection for Born Geometry

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

It has been known for a while that the effective geometrical description of compactified strings on d-dimensional target spaces implies a generalization of geometry with a doubling of the sets of tangent space directions. This generalized geometry involves an O(d,d) pairing \({\eta}\) and an O(2d) generalized metric \({\mathcal{H}}\). More recently it has been shown that in order to include T-duality as an effective symmetry, the generalized geometry also needs to carry a phase space structure or more generally a para-Hermitian structure encoded into a skew-symmetric pairing \({\omega}\). The consistency of string dynamics requires this geometry to satisfy a set of compatibility relations that form what we call a Born geometry. In this work we prove an analogue of the fundamental theorem of Riemannian geometry for Born geometry. We show that there exists a unique connection which preserves the Born structure \({(\eta,\omega,\mathcal{H})}\) and which is torsionless in a generalized sense. This resolves a fundamental ambiguity that is present in the double field theory formulation of effective string dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dorfman I.: Dirac structures of integrable evolution equations. Phys. Lett. A 125, 240–246 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  2. Courant, T., Weinstein, A.: Beyond poisson structures, seminare sud-rhodanien de. Seminare sud-rhodanien de geometrie VIII. Travaux en Cours 27, Hermann, Paris (1988)

  3. Courant T.J.: Dirac manifolds. Trans. Am. Math. Soc. 319, 631–661 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. Loday J.: Une version non commutative des algèbres de lie: les algèbres de leibniz. Enseign. Math. 39, 269–293 (1993)

    MathSciNet  MATH  Google Scholar 

  5. Liu Z.-J., Weinstein A., Xu P.: Manin triples for lie bialgebroids. J. Differ. Geom. 45, 547–574 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Roytenberg, D.: Courant algebroids, derived brackets and even symplectic supermanifolds. Ph.D. thesis, University of California, Berkeley (1999)

  7. Severa P., Weinstein A.: Poisson geometry with a 3 form background. Prog. Theor. Phys. Suppl. 144, 145–154 (2001) arXiv:math/0107133

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Hitchin N.: Generalized Calabi–Yau manifolds. Quart. J. Math. 54, 281–308 (2003) arXiv:math/0209099

    Article  MathSciNet  MATH  Google Scholar 

  9. Gualtieri, M.: Generalized complex geometry. Ph.D. thesis, Oxford (2003). arXiv:math/0401221

  10. Vaisman I.: Transitive courant algebroids. Int. J. Math. Math. Sci. 2005, 1737–1758 (2005) arXiv:math/0407399

    Article  MathSciNet  MATH  Google Scholar 

  11. Hitchin, N.: Brackets, forms and invariant functionals (2005). arXiv:math/0508618

  12. Gualtieri, M.: Branes on poisson varieties (2007). arXiv:0710.2719

  13. Chen Z., Stienon M., Xu P.: On regular courant algebroids. J. Symplectic Geom. 11, 1–24 (2013) arXiv:0909.0319

    Article  MathSciNet  MATH  Google Scholar 

  14. Ševera, P.: Letters to Alan Weinstein about courant algebroids (2017). arXiv:1707.00265

  15. Jurco, B., Vysoky, J.: Courant algebroid connections and string effective actions. In: Proceedings, workshop on Strings, Membranes and Topological Field Theory. pp. 211–265 (2017). arXiv:1612.01540

  16. Amelino-Camelia G., Freidel L., Kowalski-Glikman J., Smolin L.: The principle of relative locality. Phys. Rev. D84, 084010 (2011) arXiv:1101.0931

    ADS  MATH  Google Scholar 

  17. Amelino-Camelia G., Freidel L., Kowalski-Glikman J., Smolin L.: Relative locality: a deepening of the relativity principle. Gen. Rel. Grav. 43, 2547–2553 (2011) arXiv:1106.0313

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Amelino-Camelia G.: Quantum-spacetime phenomenology. Living Rev. Rel. 16, 5 (2013) arXiv:0806.0339

    Article  Google Scholar 

  19. Freidel L., Leigh R.G., Minic D.: Born reciprocity in string theory and the nature of spacetime. Phys. Lett. B730, 302–306 (2014) arXiv:1307.7080

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Barcaroli L., Brunkhorst L.K., Gubitosi G., Loret N., Pfeifer C.: Hamilton geometry: phase space geometry from modified dispersion relations. Phys. Rev. D92, 084053 (2015) arXiv:1507.00922

    ADS  MathSciNet  Google Scholar 

  21. Freidel, L., Leigh, R.G., Minic, D.: Quantum spaces are modular (2016). arXiv:1606.01829

  22. Guérin, P.A., Brukner, Č.: Observer-dependent locality of quantum events (2018). arXiv:1805.12429

  23. Cruceanu V., Fortuny P., Gadea P.: A survey on paracomplex geometry. Rocky Mt. J. Math. 26, 83–115 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  24. Etayo F., Santamaría R., Trías U.R.: The geometry of a bi-Lagrangian manifold. Diff. Geom. Appl. 24, 33–59 (2006) arXiv:math/0403512

    Article  MathSciNet  MATH  Google Scholar 

  25. Vaisman I.: On the geometry of double field theory. J. Math. Phys. 53, 033509 (2012) arXiv:1203.0836

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Freidel L., Rudolph F.J., Svoboda D.: Generalised kinematics for double field theory. JHEP 11, 175 (2017) arXiv:1706.07089

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Svoboda, D.: Algebroid structures on para-hermitian manifolds (2018). arXiv:1802.08180

  28. Chatzistavrakidis, A., Jonke, L., Khoo, F.S., Szabo, R.J.: Double field theory and membrane sigma-models (2018). arXiv:1802.07003

  29. Friedan D.: Nonlinear models in two epsilon dimensions. Phys. Rev. Lett. 45, 1057 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  30. Siegel W.: Two vierbein formalism for string inspired axionic gravity. Phys. Rev. D47, 5453–5459 (1993) arXiv:hep-th/9302036

    ADS  MathSciNet  Google Scholar 

  31. Siegel W.: Superspace duality in low-energy superstrings. Phys. Rev. D48, 2826–2837 (1993) arXiv:hep-th/9305073

    ADS  MathSciNet  Google Scholar 

  32. Alvarez O.: Target space duality. 1. General theory. Nucl. Phys. B584, 659–681 (2000) arXiv:hep-th/0003177

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Alvarez O.: Target space duality. 2. Applications. Nucl. Phys. B584, 682–704 (2000) arXiv:hep-th/0003178

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Hull C.M.: A Geometry for non-geometric string backgrounds. JHEP 10, 065 (2005) arXiv:hep-th/0406102

    Article  ADS  MathSciNet  Google Scholar 

  35. Ellwood I.T.: NS-NS fluxes in Hitchin’s generalized geometry. JHEP 12, 084 (2007) arXiv:hep-th/0612100

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Hull C.M.: Doubled geometry and T-folds. JHEP 07, 080 (2007) arXiv:hep-th/0605149

    Article  ADS  MathSciNet  Google Scholar 

  37. Grana M., Minasian R., Petrini M., Waldram D.: T-duality, generalized geometry and non-geometric backgrounds. JHEP 04, 075 (2009) arXiv:0807.4527

    Article  ADS  MathSciNet  Google Scholar 

  38. Hull C., Zwiebach B.: Double field theory. JHEP 09, 099 (2009) arXiv:0904.4664

    Article  ADS  MathSciNet  Google Scholar 

  39. Hohm O., Hull C., Zwiebach B.: Generalized metric formulation of double field theory. JHEP 08, 008 (2010) arXiv:1006.4823

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Coimbra A., Strickland-Constable C., Waldram D.: Supergravity as generalised geometry I: Type II theories. JHEP 11, 091 (2011) arXiv:1107.1733

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Aldazabal G., Baron W., Marques D., Nunez C.: The effective action of double field theory. JHEP 11, 052 (2011) arXiv:1109.0290

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Hohm O., Zwiebach B.: On the Riemann tensor in double field theory. JHEP 05, 126 (2012) arXiv:1112.5296

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Hohm O., Zwiebach B.: Towards an invariant geometry of double field theory. J. Math. Phys. 54, 032303 (2013) arXiv:1212.1736

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Aldazabal G., Marques D., Nunez C.: Double field theory: a pedagogical review. Class. Quant. Grav. 30, 163001 (2013) arXiv:1305.1907

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Berman D.S., Blair C.D.A., Malek E., Perry M.J.: The O D,D geometry of string theory. Int. J. Mod. Phys. A29, 1450080 (2014) arXiv:1303.6727

    Article  ADS  MATH  Google Scholar 

  46. Cederwall M.: The geometry behind double geometry. JHEP 09, 070 (2014) arXiv:1402.2513

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Jeon I., Lee K., Park J.-H.: Differential geometry with a projection: application to double field theory. JHEP 04, 014 (2011) arXiv:1011.1324

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Jeon I., Lee K., Park J.-H.: Stringy differential geometry, beyond Riemann. Phys. Rev. D84, 044022 (2011) arXiv:1105.6294

    ADS  Google Scholar 

  49. Berman D.S., Godazgar H., Perry M.J., West P.: Duality invariant actions and generalised geometry. JHEP 02, 108 (2012) arXiv:1111.0459

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Coimbra A., Strickland-Constable C., Waldram D.: \({E_{d(d)} \times \mathbb{R}^+}\) generalised geometry, connections and M theory. JHEP 02, 054 (2014) arXiv:1112.3989

    Article  ADS  MATH  Google Scholar 

  51. Duff M.J.: Duality rotations in string theory. Nucl. Phys. B335, 610 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Tseytlin A.A.: Duality symmetric formulation of string world sheet dynamics. Phys. Lett. B242, 163–174 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  53. Tseytlin A.A.: Duality symmetric closed string theory and interacting chiral scalars. Nucl.Phys. B350, 395–440 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  54. Szabo, R.J.: Higher quantum geometry and non-geometric string theory. In: 17th Hellenic School and Workshops on Elementary Particle Physics and Gravity (CORFU2017) Corfu, Greece, 2–28 Sept 2017 (2018). arXiv:1803.08861. http://inspirehep.net/record/1663966/files/1803.08861.pdf

  55. Berman D.S., Copland N.B., Thompson D.C.: Background field equations for the duality symmetric string. Nucl. Phys. B791, 175–191 (2008) arXiv:0708.2267

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Sfetsos K., Siampos K., Thompson D.C.: Renormalization of Lorentz non-invariant actions and manifest T-duality. Nucl. Phys. B827, 545–564 (2010) arXiv:0910.1345

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Freidel L., Leigh R.G., Minic D.: Quantum gravity, dynamical phase space and string theory. Int. J. Mod. Phys. D23, 1442006 (2014) arXiv:1405.3949

    Article  ADS  Google Scholar 

  58. Freidel L., Leigh R.G., Minic D.: Metastring theory and modular space-time. JHEP 06, 006 (2015) arXiv:1502.08005

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Freidel L., Leigh R.G., Minic D.: Modular spacetime. Int. J. Mod. Phys. D24, 1544028 (2015)

    Article  ADS  MATH  Google Scholar 

  60. Freidel, L., Leigh, R.G., Minic, D.: Intrinsic non-commutativity of closed string theory (2017). arXiv:1706.03305

  61. Freidel, L., Leigh, R.G., Minic, D.: On the non-commutativity of closed string zero modes (2017). arXiv:1707.00312

  62. Freidel, L., Rudolph, F.J., Svoboda, D.: Generalized fluxes from para-Hermitian geometry (in preparation)

  63. Bejan C.-L.: The existence problem of hyperbolic structures on vector bundles. Publ. Inst. Math. Beogr. 53, 133–138 (1993)

    MathSciNet  MATH  Google Scholar 

  64. Vaisman I.: Towards a double field theory on para-Hermitian manifolds. J. Math. Phys. 54, 123507 (2013) arXiv:1209.0152

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. Hull C., Zwiebach B.: The Gauge algebra of double field theory and Courant brackets. JHEP 09, 090 (2009) arXiv:0908.1792

    Article  ADS  MathSciNet  Google Scholar 

  66. Ivanov S., Zamkovoy S.: Para hermitian and para quaternionic manifolds. Differ. Geom. Appl. 23, 205–234 (2005) arXiv:math/0310415

    Article  MATH  Google Scholar 

  67. Loday J.-L.: Overview on Leibniz algebras and their homology. Fields Inst. Comm. 17, 91–102 (1997)

    MathSciNet  MATH  Google Scholar 

  68. Streets, J.: Generalized geometry, T-duality, and renormalization group flow (2013). arXiv:math/1310.5121

  69. Ivanov S., Tsanov V., Zamkovoy S.: Hyper-parahermitian manifolds with torsion. J. Geom. Phys. 56, 670–690 (2006) arXiv:math/0405585

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

F.J.R. would like to thank Chris Blair and Thomas Strobl for useful discussions. L.F. would like to thank long-time collaborator D. Minic for inputs and encouragements. D.S. would like to thank his co-supervisors Ruxandra Moraru and Shengda Hu for their supervision. The work of F.J.R. is supported by DFG Grant TRR33 “The Dark Universe”. D.S. is currently a Ph.D. student at Perimeter institute and University of Waterloo. His research is supported by NSERC Discovery Grants 378721. This research was supported in part by Perimeter Institute for Theoretical Physics. Research at Perimeter Institute is supported by the Government of Canada through Innovation, Science and Economic Development Canada and by the Province of Ontario through the Ministry of Research, Innovation and Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix J. Rudolph.

Additional information

Communicated by P. Chrusciel

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freidel, L., Rudolph, F.J. & Svoboda, D. A Unique Connection for Born Geometry. Commun. Math. Phys. 372, 119–150 (2019). https://doi.org/10.1007/s00220-019-03379-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-019-03379-7

Navigation