Skip to main content
Log in

Scattering in the Energy Space for Boussinesq Equations

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this note we show that all small solutions in the energy space of the generalized 1D Boussinesq equation must decay to zero as time tends to infinity, strongly on slightly proper subsets of the space-time light cone. Our result does not require any assumption on the power of the nonlinearity, working even for the supercritical range of scattering. For the proof, we use two new Virial identities in the spirit of works (Kowalczyk et al. in J Am Math Soc 30:769–798, 2017; Kowalczyk et al. in Lett Math Phys 107(5):921–931, 2017). No parity assumption on the initial data is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alejo M.A., Muñoz C.: Nonlinear stability of mKdV breathers. Commun. Math. Phys. 324(1), 233–262 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Alejo, M.A., Muñoz, C.: Almost sharp nonlinear scattering in one-dimensional Born–Infeld equations arising in nonlinear electrodynamics, preprint 2017, to appear in Proc. AMS.

  3. Alejo M.A., Muñoz C., Palacios J.M.: On the variational structure of breather solutions I: Sine–Gordon equation. J. Math. Anal. Appl. 453(2), 1111–1138 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bambusi D., Cuccagna S.: On dispersion of small energy solutions to the nonlinear Klein Gordon equation with a potential. Am. J. Math. 133(5), 1421–1468 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bona J.L., Sachs R.L.: Global existence of smooth solutions and stability of solitary waves for a generalized Boussinesq equation. Commun. Math. Phys. 118(1), 15–29 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Boussinesq J.: Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. J. Math. Pure Appl. 17(2), 55–108 (1872)

    MathSciNet  MATH  Google Scholar 

  7. Bretherton F.P.: Resonant interaction between waves: the case of discrete oscillations. J. Fluid Mech. 20, 457–479 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  8. Cho Y., Ozawa T.: On small amplitude solutions to the generalized Boussinesq equations. Discrete Contin. Dyn. Syst. 17(4), 691–711 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Farah L.G.: Local solutions in Sobolev spaces with negative indices for the “good” Boussinesq equation. Commun. Partial Differ. Equ. 34(1–3), 52–73 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Farah L.G., Scialom M.: On the periodic “good” Boussinesq equation. Proc. Am. Math. Soc. 138(3), 953–964 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Henry D.B., Perez J.F., Wreszinski W.F.: Stability theory for solitary-wave solutions of scalar field equations. Commun. Math. Phys. 85(3), 351–361 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Kowalczyk M., Martel Y., Muñoz C.: Kink dynamics in the \({\phi^4}\) model: asymptotic stability for odd perturbations in the energy space. J. Am. Math. Soc. 30, 769–798 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kowalczyk M., Martel Y., Muñoz C.: Nonexistence of small, odd breathers for a class of nonlinear wave equations. Lett. Math. Phys. 107(5), 921–931 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Lindblad H., Soffer A.: A Remark on long range scattering for the nonlinear Klein–Gordon equation. J. Hyperbolic Differ. Equ. 2(1), 77–89 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lindblad H., Soffer A.: A remark on asymptotic completeness for the critical nonlinear Klein–Gordon equation. Lett. Math. Phys. 73(3), 249–258 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Lindblad H., Soffer A.: Scattering for the Klein–Gordon equation with quadratic and variable coefficient cubic nonlinearities. TAMS 367(12), 8861–8909 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Linares F.: Global existence of small solutions for a generalized Boussinesq equation. J. Differ. Equ. 106, 257–293 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Linares F., Scialom M.: Asymptotic behavior of solutions of a generalized Boussinesq type equation. Nonlinear Anal. 25(11), 1147–1158 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lindbland H., Tao T.: Asymptotic decay for a one-dimensional nonlinear wave equation. Anal. PDE 5(2), 411–422 (2012) https://doi.org/10.2140/apde.2012.5.411

    Article  MathSciNet  Google Scholar 

  20. Liu Y.: Instability of solitary waves for generalized Boussinesq equations. J. Dyn. Diff. Equ. 53, 537–558 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yue L.: Decay and scattering of small solutions of a generalized Boussinesq equation. J. Funct. Anal. 147, 51–68 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. Martel Y., Merle F.: A Liouville theorem for the critical generalized Korteweg-de Vries equation. J. Math. Pures Appl. (9) 79(4), 339–425 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Martel Y., Merle F.: Asymptotic stability of solitons for subcritical generalized KdV equations. Arch. Ration. Mech. Anal. 157(3), 219–254 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Martel Y., Merle F.: Asymptotic stability of solitons for subcritical gKdV equations revisited. Nonlinearity 18(1), 55–80 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Merle F., Raphaël P.: The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation. Ann. Math. (2) 161(1), 157–222 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pausader B.: Scattering and the Levandosky–Strauss conjecture for fourth-order nonlinear wave equations. J. Diff. Equ. 241(2), 237–278 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Saut, J.C.: Asymptotic models for surface and internal waves, 29th. Coloquio Brasileiro de Matemática, Publicações matemáticas IMPA (2013)

  28. Saut J.C.: Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations. Invent. Math. 136(1), 9–74 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  29. Sterbenz J.: Dispersive Decay for the 1D Klein–Gordon equation with variable coefficient nonlinearities. Trans. Am. Math. Soc. 368, 2081–2113 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Muñoz.

Additional information

Communicated by W. Schlag

C. M. work was partly funded by Chilean research Grants FONDECYT 1150202, Fondo Basal CMM-Chile, MathAmSud EEQUADD and Millennium Nucleus Center for Analysis of PDE NC130017.

F. P. is partially supported by Chilean research Grant FONDECYT 1170466 and DID S-2017-43 (UACh).

J. C. Pozo is partially supported by Chilean research Grant FONDECYT 11160295.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muñoz, C., Poblete, F. & Pozo, J.C. Scattering in the Energy Space for Boussinesq Equations. Commun. Math. Phys. 361, 127–141 (2018). https://doi.org/10.1007/s00220-018-3099-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-018-3099-7

Navigation