Skip to main content
Log in

Exact Solution of the Classical Dimer Model on a Triangular Lattice: Monomer–Monomer Correlations

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We obtain an asymptotic formula, as \({n\to\infty}\), for the monomer–monomer correlation function \({K_2(n)}\) in the classical dimer model on a triangular lattice, with the horizontal and vertical weights \({w_h=w_v=1}\) and the diagonal weight \({w_d=t > 0}\), between two monomers at vertices q and r that are n spaces apart in adjacent rows. We find that \({t_c=\frac{1}{2}}\) is a critical value of t. We prove that in the subcritical case, \({0 < t < \frac{1}{2}}\), as \({n\to\infty, K_2(n)=K_2(\infty)\left[1-\frac{e^{-n/\xi}}{n}\,\Big(C_1+C_2(-1)^n+ \mathcal{O}(n^{-1})\Big) \right]}\), with explicit formulae for \({K_2(\infty), \xi, C_1}\), and \({C_2}\). In the supercritical case, \({\frac{1}{2} < t < 1}\), we prove that as \({n\to\infty, K_2(n)=K_2(\infty)\Bigg[1-\frac{e^{-n/\xi}}{n}\, \Big(C_1\cos(\omega n+\varphi_1)+C_2(-1)^n\cos(\omega n+\varphi_2)+ C_3+C_4(-1)^n + \mathcal{O}(n^{-1})\Big)\Bigg]}\), with explicit formulae for \({K_2(\infty), \xi,\omega}\), and \({C_1, C_2, C_3, C_4, \varphi_1, \varphi_2}\). The proof is based on an extension of the Borodin–Okounkov–Case–Geronimo formula to block Toeplitz determinants and on an asymptotic analysis of the Fredholm determinants in hand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Basor, E.L., Ehrhardt, T.: Asymptotics of block Toeplitz determinants and the classical dimer model. Commun. Math. Phys. 274, 427–455 (2007)

  2. Basor E.L., Widom H.: On a Toeplitz determinant identity of Borodin and Okounkov. Integral Equ. Oper. Theory 37(4), 397–401 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Borodin A., Okounkov A.: A Fredholm determinant formula for Toeplitz determinants. Integral Equ. Oper. Theory 37(4), 386–396 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Böttcher A.: One more proof of the Borodin–Okounkov formula for Toeplitz determinants. Integral Equ. Oper. Theory 41(1), 123–125 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Böttcher A., Silbermann B.: Analysis of Toeplitz Operators. Springer, Berlin (2006) (also: 2nd edn. Springer, Berlin (1990))

  6. Deift, P., Its, A., Krasovsky, I.: On the asymptotics of a Toeplitz determinant with singularities. In: Random Matrix Theory, Interacting Particle Systems, and Integrable Systems. Mathematical Sciences Research Institute Publications, vol. 65, pp. 93–146. Cambridge University Press, New York (2014)

  7. Diep H.T.: Frustrated Spin Systems. World Scientific, Singapore (2013)

    Book  MATH  Google Scholar 

  8. Ehrhardt T.: A status report on the asymptotic behavior of Toeplitz determinants with Fisher–Hartwig singularities. Operator Theory Adv. Appl. 124, 217–241 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fendley P., Moessner R., Sondhi S.L.: Classical dimers on the triangular lattice. Phys. Rev. B 66, 214513 (2002)

    Article  ADS  Google Scholar 

  10. Fisher M.E., Stephenson J.: Statistical mechanics of dimers on a plane lattice. II. Dimer correlations and monomers. Phys. Rev. 132(4), 1411–1431 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Geronimo J.F., Case K.M.: Scattering theory and polynomials orthogonal on the unit circle. J. Math. Phys. 20, 299–310 (1979)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. McCoy, B.: Advanced Statistical Mechanics (International Series of Monographs on Physics). Oxford University Press, Oxford (2009)

  13. McCoy B., Wu T.T.: Theory of Toeplitz determinants and the spin correlations of the two-dimensional Ising model. Phys. Rev. 155(2), 438–452 (1967)

    Article  ADS  Google Scholar 

  14. Moessner, R., Raman K.S.: Quantum dimer models, Trieste Lectures (2007). arXiv:0809.3051

  15. Moessner R., Sondhi S.L.: Resonating valence bond phase and the triangular lattice quantum dimer model. Phys. Rev. Lett. 86, 1881 (2001)

    Article  ADS  Google Scholar 

  16. Moessner R., Sondhi S.L.: Ising and dimer models in two and three dimensions. Phys. Rev. B 68, 054405 (2003)

    Article  ADS  Google Scholar 

  17. Rokhsar D.S., Kivelson S.A.: Superconductivity and the quantum hard-core dimer gas. Phys. Rev. Lett. 61, 2376 (1988)

    Article  ADS  Google Scholar 

  18. Widom H.: Asymptotic behavior of block Toeplitz matrices and determinants. Adv. Math. 13(3), 284–322 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  19. Widom H.: Asymptotic behavior of block Toeplitz matrices and determinants. II. Adv. Math. 21(1), 1–29 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Bleher.

Additional information

Communicated by H. Spohn

P. Bleher supported in part by the National Science Foundation (NSF) Grants DMS-1265172 and DMS-1565602.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basor, E., Bleher, P. Exact Solution of the Classical Dimer Model on a Triangular Lattice: Monomer–Monomer Correlations. Commun. Math. Phys. 356, 397–425 (2017). https://doi.org/10.1007/s00220-017-2985-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-017-2985-8

Navigation