Skip to main content
Log in

The Pfaffian Sign Theorem for the Dimer Model on a Triangular Lattice

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We prove the Pfaffian Sign Theorem for the dimer model on a triangular lattice embedded in the torus. More specifically, we prove that the Pfaffian of the Kasteleyn periodic-periodic matrix is negative, while the Pfaffians of the Kasteleyn periodic-antiperiodic, antiperiodic-periodic, and antiperiodic-antiperiodic matrices are all positive. The proof is based on the Kasteleyn identities and on small weight expansions. As an application, we obtain an asymptotic behavior of the dimer model partition function with an exponentially small error term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Cimasoni, D., Pham, A.M.: Identities between dimer partition functions on different surfaces. J. Stat. Mech. Theory Exp. 2016, 103101 (2016)

    Article  MathSciNet  Google Scholar 

  2. Cimasoni, D., Reshetikhin, N.: Dimers on surface graphs and spin structures I. Commun. Math. Phys. 275, 187–208 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Fendley, P., Moessner, R., Sondhi, S.L.: Classical dimers on the triangular lattice. Phys. Rev. B 66, 214513 (2002)

    Article  ADS  Google Scholar 

  4. Galluccio, A., Loebl, M.: On the theory of Pfaffian orientations. I. Perfect matchings and permanents. Electron. J. Combin. 6, R6 (1999)

    MathSciNet  MATH  Google Scholar 

  5. Godsil, C.D.: Algebraic Combinatorics. Chapman and Hall, New York (1993)

    MATH  Google Scholar 

  6. Izmailian, NSh, Kenna, R.: Dimer model on a triangular lattice. Phys. Rev. E 84, 021107 (2011)

    Article  ADS  Google Scholar 

  7. Kenyon, R.W., Sun, N., Wilson, D.B.: On the asymptotics of dimers on tori. Probab. Theory Relat. Fields 166(3), 971–1023 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kasteleyn, P.W.: The statistics of dimers on a lattice. I. The number of dimer arrangements on a quadratic lattice. Physica 27, 1209–1225 (1961)

    Article  ADS  MATH  Google Scholar 

  9. Kasteleyn, P.W.: Dimer statistics and phase transitions. J. Math. Phys. 4, 287–293 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  10. Kasteleyn, P.W.: Graph theory and crystal physics. In: Graph Theory and Theoretical Physics. Academic Press, London (1967)

  11. McCoy, B.M.: Advanced Statistical Mechanics. Oxford University Press, Oxford (2010)

    MATH  Google Scholar 

  12. McCoy, B.M., Wu, T.T.: The Two-Dimensional Ising Model, 2nd edn. Dover Publications Inc., New York (2014)

    MATH  Google Scholar 

  13. Tesler, G.: Matchings in graphs on non-orientable surfaces. J. Combin. Theory Ser. B 78, 198–231 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank Barry McCoy and Dan Ramras for useful discussions, and the referee for a simplified proof of Theorem 5.2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Bleher.

Additional information

Pavel Bleher is supported in part by the National Science Foundation (NSF) Grants DMS-1265172 and DMS-1565602.

Appendices

Appendix A: Proof of Lemma 2.1

We have that

$$\begin{aligned} \sigma \cup \sigma '=\bigsqcup _{i=1}^{r}\gamma _i. \end{aligned}$$
(A.1)

Since each vertex in \(\gamma _i\) is occupied by a dimer either from \(\sigma \) or \(\sigma ',\) and the dimers in \(\sigma \cup \sigma '\) alternate, we conclude that each \(\gamma _i\) is of even length.

By (2.15),

$$\begin{aligned} {\mathrm{Pf}\,}A=\sum _{\sigma \in \Sigma _{m,n}}{\mathrm{sgn}\,}(\sigma )w(\sigma ). \end{aligned}$$
(A.2)

If we enumerate the vertices on \(\Gamma _{m,n}\), i.e. permute the set of vertices \(V_{m,n},\) then by the well-known fact (see e.g. [5]) that for an arbitrary matrix P of order \(mn\times mn,\)

$$\begin{aligned} {\mathrm{Pf}\,}(PAP^{T})=\det (P){\mathrm{Pf}\,}(A), \end{aligned}$$
(A.3)

we get

$$\begin{aligned} {\mathrm{Pf}\,}\rho (A)=(-1)^{\rho }{\mathrm{Pf}\,}(A), \end{aligned}$$
(A.4)

where \(\rho \) is some permutation on \(V_{m,n}.\) Here \(\rho (A)\) denotes a matrix A whose rows and columns have been permuted by \(\rho .\) In other words,

$$\begin{aligned} {\mathrm{Pf}\,}A=\sum _{\sigma \in \Sigma _{m,n}}{\mathrm{sgn}\,}(\sigma )w(\sigma ) =\sum _{\sigma \in \Sigma _{m,n}}(-1)^{\rho }[{\mathrm{sgn}\,}(\sigma )]_{\rho }w(\sigma ), \end{aligned}$$
(A.5)

where \([{\mathrm{sgn}\,}(\sigma )]_{\rho }\) indicates the sign of \(\sigma \) with respect to some new enumeration \(\rho \) of vertices. From (A.5), we have that

$$\begin{aligned} {\mathrm{sgn}\,}(\sigma )=(-1)^{\rho }[{\mathrm{sgn}\,}(\sigma )]_{\rho }. \end{aligned}$$
(A.6)

If we take any two configurations \(\sigma \) and \(\sigma '\), then (A.6) implies that

$$\begin{aligned} {\mathrm{sgn}\,}(\sigma )\cdot {\mathrm{sgn}\,}(\sigma ')=[{\mathrm{sgn}\,}(\sigma )]_{\rho }\cdot [{\mathrm{sgn}\,}(\sigma ')]_{\rho }, \end{aligned}$$
(A.7)

i.e. the sign of \(\sigma \cup \sigma '\) is invariant under any renumeration of vertices.

Let

$$\begin{aligned} \rho = \left( \begin{matrix} 1 &{} 2 &{} \cdots &{} n_1 &{} n_1+1 &{} \cdots &{} n_1+n_2 &{} \cdots &{} n_1+\ldots +n_{r-1}+n_r \\ v_{1,1} &{} v_{1,2} &{} \cdots &{} v_{1,n_1} &{} v_{2,1} &{} \cdots &{} v_{2,n_2} &{} \cdots &{} v_{r,n_r} \end{matrix}\right) , \end{aligned}$$
(A.8)

where \(v_{j,k}\in \{1,2,\ldots ,mn\}\) denotes the k-th vertex of the j-th contour. Note that \(\rho \) is a renumeration of vertices so that along each \(\gamma _i\) they are rearranged in a cyclical order, starting from one contour and continuing to the next one. Now, the underlying permutations \(\pi (\sigma )\) and \(\pi (\sigma ')\) with respect to \(\rho \) are then:

$$\begin{aligned}&[\pi (\sigma )]_{\rho }=\mathrm{Id},\end{aligned}$$
(A.9)
$$\begin{aligned}&[\pi (\sigma ')]_{\rho }=\prod _{i=1}^{r}C(\gamma _i), \end{aligned}$$
(A.10)

where

$$\begin{aligned} C(\gamma _i) = \left( \begin{matrix} v_{i,1} &{} \cdots &{} v_{i,n_i} \\ v_{i,2} &{} \cdots &{} v_{i,1} \end{matrix}\right) . \end{aligned}$$
(A.11)

From this equation, Eq. (A.7), and the fact that each \(\gamma _i\) corresponds to a cycle of even length, Lemma 2.1 follows.

Appendix B: Numerical Data for the Pfaffians \(A_i\)

In this Appendix we present numerical data for the Pfaffians \(A_i\) on the \(m\times n\) lattices on the torus for different values m and n. It is interesting to compare these data with the asymptotics of the Pfaffians \(A_i\), obtained in Sects. 6 and 7 above, and also with the identities \({\mathrm{Pf}\,}A_1=-{\mathrm{Pf}\,}A_2\), \({\mathrm{Pf}\,}A_3={\mathrm{Pf}\,}A_4\) for odd n, proven in Sect. 5.

The Pfaffians \(A_i\) for \(m=4\), \(n=3\).

$$\begin{aligned} \begin{aligned} {\mathrm{Pf}\,}A_1&=-4z_hz_d(3z_v^2+z_d^2)(4z_h^2+3z_v^2+3z_d^2),\\ {\mathrm{Pf}\,}A_2&=4z_hz_d(3z_v^2+z_d^2)(4z_h^2+3z_v^2+3z_d^2),\\ {\mathrm{Pf}\,}A_3&=2(z_h^2+z_d^2)[(2z_h^2+3z_v^2)(2z_h^2+3z_v^2+4z_d^2)+z_d^4],\\ {\mathrm{Pf}\,}A_4&=2(z_h^2+z_d^2)[(2z_h^2+3z_v^2)(2z_h^2+3z_v^2+4z_d^2)+z_d^4]. \end{aligned} \end{aligned}$$

The Pfaffians \(A_i\) for \(m=4\), \(n=4\).

$$\begin{aligned} \begin{aligned} {\mathrm{Pf}\,}A_1&=-256z_h^2z_v^2z_d^2(z_h^2+z_v^2+z_d^2),\\ {\mathrm{Pf}\,}A_2&=16(z_v^2+z_d^2)^2(2z_h^2+z_v^2+z_d^2)^2,\\ {\mathrm{Pf}\,}A_3&=16(z_v^2+z_d^2)^2(z_h^2+2z_v^2+z_d^2)^2,\\ {\mathrm{Pf}\,}A_3&=16(z_v^2+z_d^2)^2(z_h^2+z_v^2+2z_d^2)^2. \end{aligned} \end{aligned}$$

The Pfaffians \(A_i\) for \(m=4\), \(n=6\).

$$\begin{aligned} \begin{aligned} {\mathrm{Pf}\,}A_1&=-16z_h^2z_d^2(4z_h^2+3z_v^2+3z_d^2)^2(3z_v^2+z_d^2)^2,\\ {\mathrm{Pf}\,}A_2&=16z_v^2(4z_h^2+z_v^2+z_d^2)^2(z_h^2+z_v^2+z_d^2)(z_v^2+3z_d^2)^2,\\ {\mathrm{Pf}\,}A_3&=4(z_d^2 + z_h^2)^2(z_d^4 + 4z_d^2 (2z_h^2 + 3z_v^2) + (2z_h^2 + 3z_v^2)^2)^2,\\ {\mathrm{Pf}\,}A_4&=4(z_d^2 + z_h^2 + 2z_v^2)^2(z_d^4 + 8z_d^2z_h^2 + 4z_h^4 + 4z_d^2z_v^2 + 4z_h^2z_v^2 + z_v^4)^2. \end{aligned} \end{aligned}$$

The Pfaffians \(A_i\) for \(m=4\), \(n=8\).

$$\begin{aligned} \begin{aligned} {\mathrm{Pf}\,}A_1&=-4096z_d^2z_h^2z_v^2(z_d^2 + z_v^2)^2(z_d^2 + z_h^2 + z_v^2)(z_d^2 + 2z_h^2 + z_v^2)^2,\\ {\mathrm{Pf}\,}A_2&=16(z_d^4 + 6z_d^2z_v^2 + z_v^4)^2(z_d^4 + 8z_h^4 + 8z_h^2 z_v^2 + z_v^4 + 2z_d^2 (4z_h^2 + z_v^2))^2,\\ {\mathrm{Pf}\,}A_3&=256(z_d^2 + z_h^2)^2(z_h^2 + z_v^2)^2(2z_d^2 + z_h^2 + z_v^2)^2(z_d^2 + z_h^2 +2z_v^2)^2,\\ {\mathrm{Pf}\,}A_4&=16(z_d^4 + 2z_h^4 + 4z_h^2z_v^2 + z_v^4 + 2z_d^2(2z_h^2 + z_v^2))^2(z_d^4 + 2z_h^4 + 4z_h^2z_v^2\\&\quad + z_v^4 + z_d^2 (4z_h^2 + 6z_v^2))^2. \end{aligned} \end{aligned}$$

The Pfaffians \(A_i\) for \(m=6\), \(n=6\).

$$\begin{aligned} \begin{aligned} {\mathrm{Pf}\,}A_1&=-4z_d^2(z_d^2 + 3z_h^2)^2(z_d^2 + 3z_v^2)^2 (z_d^2 + 3 (z_h^2 + z_v^2))^2 (4z_d^2 + 3 (z_h^2 + z_v^2))^2,\\ {\mathrm{Pf}\,}A_2&=4 z_v^2 (3 z_d^2 + z_v^2)^2 (3 z_h^2 + z_v^2)^2 (3 (z_d^2 + z_h^2) + z_v^2)^2 (3 (z_d^2 + z_h^2) + 4 z_v^2)^2,\\ {\mathrm{Pf}\,}A_3&=4 z_h^2 (3 z_d^2 + z_h^2)^2 (z_h^2 + 3 z_v^2)^2 (3 z_d^2 + z_h^2 + 3 z_v^2)^2 (3 z_d^2 + 4 z_h^2 + 3 z_v^2)^2,\\ {\mathrm{Pf}\,}A_4&=4 (z_d^2 + z_h^2 + z_v^2)^3 (4 z_d^2 + z_h^2 + z_v^2)^2 (z_d^2 + 4 z_h^2 + z_v^2)^2 (z_d^2 + z_h^2 + 4 z_v^2)^2. \end{aligned} \end{aligned}$$

The Pfaffians \(A_i\) for \(m=8\), \(n=8\).

$$\begin{aligned} \begin{aligned} {\mathrm{Pf}\,}A_1&=-1048576 z_h^2z_v^2z_d^2 (z_d^2 + z_h^2)^2 (z_d^2 + z_v^2)^2 (z_h^2 + z_v^2)^2 (z_d^2 + z_h^2 + z_v^2) (2 z_d^2 + z_h^2 + z_v^2)^2 \\&\quad \times (z_d^2 + 2 z_h^2 + z_v^2)^2 (z_d^2 +z_h^2 + 2z_v^2)^2,\\ {\mathrm{Pf}\,}A_2&=256(z_d^4 +6z_d^2z_v^2 + z_v^4)^2(z_d^4 + 4z_d^2z_h^2 + 2z_h^4 + 2z_d^2z_v^2 + 4z_h^2z_v^2 +z_v^4)^2\\&\quad \times (z_d^4 + 4z_d^2z_h^2 + 2z_h^4 + 6z_d^2z_v^2 + 4z_h^2z_v^2 + z_v^4)^2\\&\quad \times (z_d^4+ 8z_d^2z_h^2 + 8z_h^4 + 2z_d^2z_v^2 + 8z_h^2z_v^2 +z_v^4)^2,\\ {\mathrm{Pf}\,}A_3&=256(z_d^4 + 6z_d^2z_h^2 + z_h^4)^2(z_d^4 + 2z_d^2z_h^2 + z_h^4 + 4z_d^2z_v^2 + 4z_h^2 z_v^2 + 2z_v^4)^2\\&\quad \times (z_d^4 + 6z_d^2z_h^2 + z_h^4 + 4z_d^2z_v^2 + 4z_h^2z_v^2 + 2z_v^4)^2 (z_d^4 + 2z_d^2z_h^2 + z_h^4\\&\quad + 8z_d^2z_v^2 + 8z_h^2z_v^2 + 8z_v^4)^2,\\ {\mathrm{Pf}\,}A_4&=256 (2 z_d^4 + 4 z_d^2 z_h^2 + z_h^4 + 4 z_d^2 z_v^2 + 2 z_h^2 z_v^2 + z_v^4)^2\\&\quad \times (8 z_d^4+ 8 z_d^2 z_h^2 + z_h^4 + 8 z_d^2 z_v^2 + 2 z_h^2 z_v^2 +z_v^4)^2 \\&\quad \times (z_h^4 + 6 z_h^2 z_v^2 + z_v^4)^2 (2 z_d^4 + 4 z_d^2 z_h^2 + z_h^4 +4 z_d^2 z_v^2 + 6 z_h^2 z_v^2 + z_v^4)^2. \end{aligned} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bleher, P., Elwood, B. & Petrović, D. The Pfaffian Sign Theorem for the Dimer Model on a Triangular Lattice. J Stat Phys 171, 400–426 (2018). https://doi.org/10.1007/s10955-018-2007-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-018-2007-z

Keywords

Navigation