Skip to main content
Log in

Electronic nose and its application in the food industry: a review

  • Review Article
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Food is closely related to human life. With the development of the times, the human demand for food has changed dramatically. People pay closer attention to the safety, health, composition, brand, origin, and processing method of food, which is precisely inseparable from food testing technology. Currently, there are many food inspection technologies, and the electronic nose (E-nose), as an efficient, fast, non-destructive, and promising technology, has been successfully applied in many aspects of the food industry and has shown promising results. This paper first introduces the basic principle and composition of the E-nose. Then it describes in detail the key elements, including gas sensor selection, sampling method design, data acquisition and information processing. Further summarizes the various typical applications of E-nose technology in the food industry in recent years, including six application directions: freshness assessment, process monitoring, flavor evaluation, authenticity evaluation, quality control, origin traceability and pesticide residue detection. Finally, the critical problems that need to be solved in the current application of E-nose technology in the food industry are discussed, and the potential future research directions in this field are foreseen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Li Y, Ye Z, Li Q (2023) Precise identification of food smells to enable human–computer interface for digital smells. Electronics 12(2) [Online]. Available: https://www.mdpi.com/2079-9292/12/2/418

  2. Loutfi A, Coradeschi S, Mani GK, Shankar P, Rayappan JBB (2015) Electronic noses for food quality: a review. J Food Eng 144:103–111. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0260877414003276

  3. Cascos G, Lozano J, Arroyo P, Ruiz-Canales A, Oates MJ, Martín-Vertedor D (2023) Fusion data of digital olfation devises for the evaluation of the quality of fresh coffee beans

  4. Wei M, Liu X, Xie P, Lei Y, Yu H, Han A, Xie L, Jia H, Lin S, Bai Y, Sun B, Zhang S (2022) Characterization of volatile profiles and correlated contributing compounds in pan-fried steaks from different chinese yellow cattle breeds through gc-q-orbitrap, e-nose, and sensory evaluation. Molecules 27(11) [Online]. Available: https://www.mdpi.com/1420-3049/27/11/3593

  5. Gonzalez Viejo C, Fuentes S (2022) Digital detection of olive oil rancidity levels and aroma profiles using near-infrared spectroscopy, a low-cost electronic nose and machine learning modelling. Chemosensors 10(5) [Online]. Available: https://www.mdpi.com/2227-9040/10/5/159

  6. Wang L, Tan S, Wang P, Yan H, Tian H, Zhan P (2022) Effects of zanthoxylum bungeanum m. and capsicum annuum l. oil on the formation of aroma characteristics of jiao-ma chicken as evaluated by gc-ms and e-nose. Food Sci Technol

  7. Yang C, Ye Z, Mao L, Zhang L, Zhang J, Ding W, Han J, Mao K (2022) Analysis of volatile organic compounds and metabolites of three cultivars of asparagus (asparagus officinalis l.) using e-nose, gc-ims, and lc-ms/ms. Bioengineered 4

  8. Pan W, Benjakul S, Sanmartin C, Guidi A, Ying X, Ma L, Weng X, Yu J, Deng S (2022)Characterization of the flavor profile of bigeye tuna slices treated by cold plasma using e-nose and gc-ims. Fishes 7(1). [Online]. Available: https://www.mdpi.com/2410-3888/7/1/13

  9. Wu H, Viejo CG, Fuentes S, Dunshea FR, Suleria HAR (2023) The impact of wet fermentation on coffee quality traits and volatile compounds using digital technologies. Fermentation 9(1). [Online]. Available: https://www.mdpi.com/2311-5637/9/1/68

  10. Demarigny Y, Legrand E, Sánchez J, Hallier A, Laurent N, Slimani S, Livache T, Picque D (2021) Utilisation of a Portable Electronic Nose, NeOse Pro, to Follow the Microbial Fermentation of a Yoghurt. Food Nutr Sci 12(01):90–105, Jan [Online]. Available: https://isara.hal.science/hal-03708795

  11. Hanif M, Xie B, Wei S, Li J, Gao C, Wang R, Ali S, Xiao X, Yu J, Al-Hashimi A, Brestic M (2022) Characterization of the volatile profile from six different varieties of chinese chives by HS-SPME/GC-MS coupled with E. nose. J King Saud Univ Sci 34(4):101971. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1018364722001525

  12. Nasiru MM, Umair M, Boateng EF, Alnadari F, Khan K-uR, Wang Z, Luo J, Yan W, Zhuang H, Majrashi A, Zhang J, Korma SA (2022)Characterisation of flavour attributes in egg white protein using hs-gc-ims combined with e-nose and e-tongue: effect of high-voltage cold plasma treatment time. Molecules 27(3). [Online]. Available: https://www.mdpi.com/1420-3049/27/3/601

  13. Gonzalez Viejo C, Harris NM, Fuentes S (2022) Quality traits of sourdough bread obtained by novel digital technologies and machine learning modelling. Fermentation 8(10). [Online]. Available: https://www.mdpi.com/2311-5637/8/10/516

  14. Tatli S, Mirzaee-Ghaleh E, Rabbani H, Karami H, Wilson AD (2022) Rapid detection of urea fertilizer effects on voc emissions from cucumber fruits using a mos e-nose sensor array. Agronomy 12(1). [Online]. Available: https://www.mdpi.com/2073-4395/12/1/35

  15. Mirhoseini-Moghaddam SM, Yamaghani MR, Bakhshipour A (2023) Application of electronic nose and eye systems for detection of adulteration in olive oil based on chemometrics and optimization approaches. J Univ Comput Sci 29(4):300–325

    Google Scholar 

  16. Jiang C, Ning J, Mei Z, Chen J, Gao Y, Yi X, Wu P (2021) Development of food electronic nose for prawn (macrobrachium rosenbergii) quality rapid assessment and their relationship with the physicochemical index. Int J Food Proper 24(1):346–353. https://doi.org/10.1080/10942912.2021.1879135

    Article  CAS  Google Scholar 

  17. Minami K, Kobayashi H, Matoba M, Kamiya Y, Maji S, Nemoto T, Tohno M, Nakakubo R, Yoshikawa G (2023) Measurement of volatile fatty acids in silage through odors with nanomechanical sensors. Biosensors 13(2). [Online]. Available: https://www.mdpi.com/2079-6374/13/2/152

  18. Sharmilan T, Premarathne I, Wanniarachchi I, Kumari S, Wanniarachchi D (2022)Application of electronic nose to predict the optimum fermentation time for low-country sri lankan tea. J Food Qual

  19. Gonzalez Viejo C, Fuentes S (2022) Digital assessment and classification of wine faults using a low-cost electronic nose, near-infrared spectroscopy and machine learning modelling. Sensors 22(6). [Online]. Available: https://www.mdpi.com/1424-8220/22/6/2303

  20. Fei C, Ren C, Wang Y, Li L, Li W, Yin F, Lu T, Yin W (2021) Identification of the raw and processed crataegi fructus based on the electronic nose coupled with chemometric methods. Sci Rep 11(1):1849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wilkens WF, Hartman JD (1964) An electronic analog for the olfactory processes a. J Food Sci 29(3):372–378

    Article  Google Scholar 

  22. Buck T, Allen F, Dalton J (1965) Detection of chemical species by surface effects on metals and semiconductors. Bell Telephone Laboratories Murray Hill, NJ, USA

  23. Dravnieks A, Trotter P (1965) Polar vapour detector based on thermal modulation of contact potential. J Sci Instr 42(8):624

    Article  CAS  Google Scholar 

  24. Persaud K, Dodd G (1982) Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature 299(5881):352–355

    Article  CAS  PubMed  Google Scholar 

  25. Gardner JW, Bartlett P, Dodd G, Shurmer H (1988) Pattern recognition in the warwick electronic nose. In 8th Int. Congress of the European Chemoreception Research Organisation, p. 9

  26. Gardner JW, Bartlett PN (1994) A brief history of electronic noses. Sensors Actuators B: Chem 18(1–3):210–211

    Article  Google Scholar 

  27. Khorramifar A, Rasekh M, Karami H, Covington JA, Derakhshani SM, Ramos J, Gancarz M (2022) Application of mos gas sensors coupled with chemometrics methods to predict the amount of sugar and carbohydrates in potatoes. Molecules 27(11):3508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mohindroo P, Varma KS, Bhagat J, Zala Y, Kadam S, Sarvaiya J (2023) A rapid pesticide detection approach in food forensics using hyphenated technology of tlc-electronic nose. Food Human 1:188–198. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2949824423000277

  29. Sánchez R, Boselli E, Fernández A, Arroyo P, Lozano J, Martín-Vertedor D (2022) Determination of the masking effect of the ’zapateria’ defect in flavoured stuffed olives using e-nose. Molecules 27(13). [Online]. Available: https://www.mdpi.com/1420-3049/27/13/4300

  30. Ghosh A, Ghosh TK, Das S, Ray H, Mohapatra D, Modhera B, Ghosh D, Parua S, Pal S, Tiwari S et al. (2022) Development of electronic nose for early spoilage detection of potato and onion during post-harvest storage. J Mater NanoSci 9(2):101–114

    CAS  Google Scholar 

  31. Xu K, Yi Y, Deng J, Wang Y, Zhao B, Sun Q, Gong C, Yang Z, Wan H, He et al., R (2022)Evaluation of the freshness of rainbow trout (oncorhynchus mykiss) fillets by the nir, e-nose and spme-gc-ms. RSC Adv 12(19):11591–11603

  32. Barea-Ramos JD, Cascos G, Mesías M, Lozano J, Martín-Vertedor D (2022) Evaluation of the olfactory quality of roasted coffee beans using a digital nose. Sensors 22(22). [Online]. Available: https://www.mdpi.com/1424-8220/22/22/8654

  33. Marinoni L, Buccheri M, Bianchi G, Cattaneo TMP (2022) Aquaphotomic, e-nose and electrolyte leakage to monitor quality changes during the storage of ready-to-eat rocket. Molecules 27(7).[Online]. Available: https://www.mdpi.com/1420-3049/27/7/2252

  34. Deng Y, Wang R, Zhang Y, Li X, Gooneratne R, Li J (2022) Comparative analysis of flavor, taste, and volatile organic compounds in opossum shrimp paste during long-term natural fermentation using e-nose, e-tongue, and hs-spme-gc-ms. Foods 11(13) [Online]. Available: https://www.mdpi.com/2304-8158/11/13/1938

  35. Sánchez R, Martín-Tornero E, Lozano J, Boselli E, Arroyo P, Meléndez F, Martín-Vertedor D (2021) E-nose discrimination of abnormal fermentations in spanish-style green olives. Molecules 26(17). [Online]. Available: https://www.mdpi.com/1420-3049/26/17/5353

  36. Munekata PES, Finardi S, de Souza CK, Meinert C, Pateiro M, Hoffmann TG, Domínguez R, Bertoli SL, Kumar M, Lorenzo JM (2023) Applications of electronic nose, electronic eye and electronic tongue in quality, safety and shelf life of meat and meat products: a review. Sensors 23(2), 2023. [Online]. Available: https://www.mdpi.com/1424-8220/23/2/672

  37. Abu-Khalaf N, Masoud W et al. (2022) Electronic nose for differentiation and quantification of yeast species in white fresh soft cheese. Appl Bionics Biomech

  38. Carrillo-Gómez JK, Durán Acevedo CM, García-Rico RO (2021) Detection of the bacteria concentration level in pasteurized milk by using two different artificial multisensory methods. Sens Bio-Sens Res 33:100428. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2214180421000337

  39. Cui S, Cao L, Acosta N, Zhu H, Ling PP (2021) Development of portable e-nose system for fast diagnosis of whitefly infestation in tomato plant in greenhouse. Chemosensors 9(11). [Online]. Available: https://www.mdpi.com/2227-9040/9/11/297

  40. Balivo A, Cipolletta S, Tudisco R, Iommelli P, Sacchi R, Genovese A (2023) Electronic nose analysis to detect milk obtained from pasture-raised goats. Appl Sci 13(2) [Online]. Available: https://www.mdpi.com/2076-3417/13/2/861

  41. Claus P, Cattenoz T, Landaud S, Chaillou S, Peron A-C, Coeuret G, Slimani S, Livache T, Demarigny Y, Picque D (2022) Discrimination of spoiled beef and salmon stored under different atmospheres by an optoelectronic nose. comparison with gc-ms measurements. Future Foods 5:100106. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2666833521000927

  42. Summerson V, Gonzalez Viejo C, Pang A, Torrico DD, Fuentes S (2021) Assessment of volatile aromatic compounds in smoke tainted cabernet sauvignon wines using a low-cost e-nose and machine learning modelling. Molecules 26(16). [Online]. Available: https://www.mdpi.com/1420-3049/26/16/5108

  43. Summerson V, Gonzalez Viejo C, Torrico DD, Pang A, Fuentes S (2021) Digital smoke taint detection in pinot grigio wines using an e-nose and machine learning algorithms following treatment with activated carbon and a cleaving enzyme. Fermentation 7(3). [Online]. Available: https://www.mdpi.com/2311-5637/7/3/119

  44. Zou X, Wang C, Luo M, Ren Q, Liu Y, Zhang S, Bai Y, Meng J, Zhang W, Su SW (2022) Design of electronic nose detection system for apple quality grading based on computational fluid dynamics simulation and k-nearest neighbor support vector machine. Sensors 22(8):2997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang Y, Xiang F, Zhang Z, Hou Q, Guo Z (2021) Characterization of bacterial community and flavor differences of different types of douchi. Food Sci Nutr 9(7):3460–3469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ardani MS, Sarno R, Khosasih M, Malikhah M, Purbawa D, Fatichah C, Sunaryono D, Susilo R, Sabila S, Sungkono K (2022) Electronic nose signals for analysing similarity of male and female axillary odour to food material aroma. Int J Intell Eng Syst 15:60106

    Google Scholar 

  47. Astuti SD, Tamimi MH, Pradhana AA, Alamsyah KA, Purnobasuki H, Khasanah M, Susilo Y, Triyana K, Kashif M, Syahrom A (2021) Gas sensor array to classify the chicken meat with e. coli contaminant by using random forest and support vector machine. Biosens Bioelectron 9:100083. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2590137021000194

  48. Bai S, Wang Y, Luo R, Ding D, Bai H, Shen F (2021) Characterization of flavor volatile compounds in industrial stir-frying mutton sao zi by gc-ms, e-nose, and physicochemical analysis. Food Sci Nutr 9(1):499–513

    Article  CAS  PubMed  Google Scholar 

  49. Wang H, Hu Z, Long F, Guo C, Yuan Y, Yue T (2016) Early detection of Zygosaccharomyces rouxii-spawned spoilage in apple juice by electronic nose combined with chemometrics. Int J Food Microbiol 217:68–78. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0168160515301434

  50. Esfahani S, Wicaksono A, Mozdiak E, Arasaradnam RP, Covington JA (2018) Non-invasive diagnosis of diabetes by volatile organic compounds in urine using faims and fox4000 electronic nose. Biosensors 8(4). [Online]. Available: https://www.mdpi.com/2079-6374/8/4/121

  51. Needham R, Williams J, Beales N, Voysey P, Magan N (2005) Early detection and differentiation of spoilage of bakery products. Sensors Actuators B Chem 106(1):20–23, iSOEN 2003—Selected Papers from the 10th International Symposium on Olfaction and Electronic Noses. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0925400504003909

  52. Gan Z, Yang Y, Li J, Wen X, Zhu M, Jiang Y, Ni Y (2016) Using sensor and spectral analysis to classify botanical origin and determine adulteration of raw honey. J Food Eng 178:151–158. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0260877416300164

  53. Bleibaum RN, Stone H, Tan T, Labreche S, Saint-Martin E, Isz S (2002) Comparison of sensory and consumer results with electronic nose and tongue sensors for apple juices. Food Qual Preference 13(6):409–422. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0950329302000174

  54. Gobbi E, Falasconi M, Zambotti G, Sberveglieri V, Pulvirenti A, Sberveglieri G (2015) Rapid diagnosis of enterobacteriaceae in vegetable soups by a metal oxide sensor based electronic nose. Sensors Actuators B Chem 207:1104–1113, a Special Issue in Honour of Professor Yu. G. Vlasov. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0925400514012611

  55. Wilson AD, Oberle CS, Oberle DF (2013) Detection of off-flavor in catfish using a conducting polymer electronic-nose technology. Sensors 13(12):15968–15984. [Online]. Available: https://www.mdpi.com/1424-8220/13/12/15968

  56. Gancarz M, Wawrzyniak J, Gawrysiak-Witulska M, Wiacek D, Nawrocka A, Rusinek R (2017) Electronic nose with polymer-composite sensors for monitoring fungal deterioration of stored rapeseed. Int Agrophys 31:3

    Article  Google Scholar 

  57. Kadiroğlu P, Korel F (2015) Chemometric studies on zNose and machine vision technologies for discrimination of commercial extra virgin olive oils. J Am Oil Chem Soc 92:1235–1242

    Article  Google Scholar 

  58. Adak MF, Yumusak N (2016) Classification of e-nose aroma data of four fruit types by abc-based neural network. Sensors 16(3). [Online]. Available: https://www.mdpi.com/1424-8220/16/3/304

  59. Martin A, Mallikarjunan K, Zoecklein BW (2008) Discrimination of wines produced from cabernet sauvignon grapes treated with aqueous ethanol post-bloom using an electronic nose. Int J Food Eng 4(2). [Online]. Available: https://doi.org/10.2202/1556-3758.1410

  60. Lee W-H, Choi S, Oh I-N, Shim J-Y, Lee K-S, An G, Park J-T (2017) Multivariate classification of the geographic origin of Chinese cabbage using an electronic nose-mass spectrometry. Food Sci Biotechnol 26:603–609

    Article  PubMed  PubMed Central  Google Scholar 

  61. De Vito S, Massera E, Miglietta M, Fattoruso G, Di Francia G (2013) Electronic nose as an ndt tool for aerospace industry. Physics Procedia, vol. 62, pp. 23–28, 2015, 3rd International Conference Frontiers in Diagnostic Technologies, ICFDT3 2013, 25-27 November, Laboratori Nazionali di Frascati, Italy. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1875389215000371

  62. Mohamed RR, Hashim W (2023) et al. Food freshness detection using smart machine learning classification. J Pharmac Negat Results, pp 7410–7426

  63. Gaggiotti S, Scroccarello A, Della Pelle F, Ferraro G, Del Carlo M, Mascini M, Cichelli A, Compagnone D (2022) An electronic nose based on 2d group vi transition metal dichalcogenides/organic compounds sensor array. Biosens Bioelectron 218:114749. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0956566322007898

  64. Wu C, Li J (2023) Portable fbar based e-nose for cold chain real-time bananas shelf time detection. Nanotechnol Precis Eng (NPE), 6(1)

  65. Strani L, D’Alessandro A, Ballestrieri D, Durante C, Cocchi M (2022) Fast GC E-nose and chemometrics for the rapid assessment of basil aroma. Chemosensors 10(3). [Online]. Available: https://www.mdpi.com/2227-9040/10/3/105

  66. Labanska M, van Amsterdam S, Jenkins S, Clarkson JP, Covington JA (2022) Preliminary studies on detection of fusarium basal rot infection in onions and shallots using electronic nose. Sensors 22(14). [Online]. Available: https://www.mdpi.com/1424-8220/22/14/5453

  67. Jiang X, Jia P, Luo R, Deng B, Duan S, Yan J (2017) A novel electronic nose learning technique based on active learning: Eqbc-rbfnn. Sensors Actuators B Chem 249:533–541. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S092540051730672X

  68. Liu T, Cao J, Li D, Chen Y, Yang T, Zhu X (2020) Active instance selection for drift calibration of an electronic nose. Sensors Actuators A Phys 312:112149. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0924424720301497

  69. Esteves CH, Iglesias BA, Li RW, Ogawa T, Araki K, Gruber J (2014) New composite porphyrin-conductive polymer gas sensors for application in electronic noses. Sensors Actuators B Chem 193:136–141. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0925400513013646

  70. Esteves CHA, Iglesias BA, Ogawa T, Araki K, Hoehne L, Gruber J (2018) Identification of tobacco types and cigarette brands using an electronic nose based on conductive polymer/porphyrin composite sensors. Acs Omega 3(6):6476–6482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Campos M, Bulhes L, Lindino CA (2000) Gas-sensitive characteristics of metal/semiconductor polymer schottky device. Sensors Actuators A Phys 87(1):67–71. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0924424700004659

  72. Lloyd Spetz A, Tobias P, Unéus L, Svenningstorp H, Ekedahl L-G, Lundström I (2000) High temperature catalytic metal field effect transistors for industrial applications. Sensors Actuators B Chem 70(1):67–76, special Issue in Memory of Professor Wolfgang Gopel. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0925400500005591

  73. Kodogiannis VS (2017) Application of an electronic nose coupled with fuzzy-wavelet network for the detection of meat spoilage. Food Bioprocess Technol 10:730–749

    Article  Google Scholar 

  74. Sharma P, Ghosh A, Tudu B, Sabhapondit S, Baruah BD, Tamuly P, Bhattacharyya N, Bandyopadhyay R (2015) Monitoring the fermentation process of black tea using qcm sensor based electronic nose. Sensors Actuators B Chem 219:146–157. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0925400515005882

  75. Bahos FA, Sainz-Vidal A, Sánchez-Pérez C, Saniger JM, Gràcia I, Saniger-Alba MM, Matatagui D (2019) Zif nanocrystal-based surface acoustic wave (saw) electronic nose to detect diabetes in human breath. Biosensors 9(1). [Online]. Available: https://www.mdpi.com/2079-6374/9/1/4

  76. Sunil T, Chaudhuri S, Mishra V (2015) Optimal selection of saw sensors for e-nose applications. Sensors Actuators B Chem 219:238–244. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0925400515005705

  77. Thongsai N, Tanawannapong N, Praneerad J, Kladsomboon S, Jaiyong P, Paoprasert P (2019) Real-time detection of alcohol vapors and volatile organic compounds via optical electronic nose using carbon dots prepared from rice husk and density functional theory calculation. Colloids Surf A Physicochem Eng Aspects 560:278–287 [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0927775718312378

  78. Zhang W, Tian F, Song A, Hu Y (2018) Research on electronic nose system based on continuous wide spectral gas sensing. Microchem J 140:1–7. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0026265X18300389

  79. Huang Y, Doh I-J, Bae E (2021) Design and validation of a portable machine learning-based electronic nose. Sensors 21(11). [Online]. Available: https://www.mdpi.com/1424-8220/21/11/3923

  80. Okur S, Sarheed M, Huber R, Zhang Z, Heinke L, Kanbar A, Wll C, Nick P, Lemmer U (2021) Identification of mint scents using a qcm based e-nose. Chemosensors 9(2). [Online]. Available: https://www.mdpi.com/2227-9040/9/2/31

  81. Anisimov DS, Chekusova VP, Trul AA, Abramov AA, Borshchev OV, Agina EV, Ponomarenko SA (2021) Fully integrated ultra-sensitive electronic nose based on organic field-effect transistors. Sci Rep 11(1):10683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bonaccorsi L, Donato A, Fotia A, Frontera P, Gnisci A (2022) Competitive detection of volatile compounds from food degradation by a zinc oxide sensor. Appl Sci 12(4). [Online]. Available: https://www.mdpi.com/2076-3417/12/4/2261

  83. Anisimov DS, Abramov AA, Gaidarzhi VP, Kaplun DS, Agina EV, Ponomarenko SA (2023) Food freshness measurements and product distinguishing by a portable electronic nose based on organic field-effect transistors. ACS Omega 8(5):4649–4654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. GAWANDE TP, Deshmukh R, Deshmukh S (2023) Mems based electronic-nose system for measurement of industrial gases with drift correction methodology. Meas Sci Technol

  85. Wijaya DR, Afianti F, Arifianto A, Rahmawati D, Kodogiannis VS (2022) Ensemble machine learning approach for electronic nose signal processing. Sens Bio-Sens Res 36:100495. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2214180422000241

  86. Abu-Khalaf N (2021) Identification and quantification of olive oil quality parameters using an electronic nose. Agriculture 11(7). [Online]. Available: https://www.mdpi.com/2077-0472/11/7/674

  87. Zhang S, Xie C, Zeng D, Li H, Liu Y, Cai S (2009) A sensor array optimization method for electronic noses with sub-arrays. Sensors Actuators B Chem 142(1):243–252. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0925400509006339

  88. Liu Y, Sang Y, Guo J, Zhang W, Zhang T, Wang H, Cheng S, Chen G (2021) Analysis of volatility characteristics of five jujube varieties in xinjiang province, china, by hs-spme-gc/ms and e-nose. Food Sci Nutr 9(12):6617–6626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Górska-Horczyczak E, Zalewska M, Wierzbicka A (2022) Chromatographic fingerprint application possibilities in food authentication. Eur Food Res Technol 248(4):1163–1177

    Article  Google Scholar 

  90. Wang J-Y, Meng Q-H, Jin X-W, Sun Z-H (2021) Design of handheld electronic nose bionic chambers for chinese liquors recognition. Measurement 172:108856. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0263224120313476

  91. Sanaeifar A, ZakiDizaji H, Jafari A, de la Guardia M (2017) Early detection of contamination and defect in foodstuffs by electronic nose: a review. TrAC Trends Anal Chem 97:257–271. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0165993617302005

  92. Lozano J, Santos JP, Horrillo MC (2016) Chapter 14—wine applications with electronic noses. In: Rodríguez Méndez ML (ed) Electronic noses and tongues in food science. San Diego: Academic Press, pp. 137–148. [Online]. Available: https://www.sciencedirect.com/science/article/pii/B9780128002438000147

  93. Kiani S, Minaei S, Ghasemi-Varnamkhasti M (2016) Application of electronic nose systems for assessing quality of medicinal and aromatic plant products: a review. J Appl Res Med Aromatic Plants 3(1):1–9. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2214786115300206

  94. Tatli S, Mirzaee-Ghaleh E, Rabbani H, Karami H, Wilson AD (2022) Prediction of residual npk levels in crop fruits by electronic-nose voc analysis following application of multiple fertilizer rates. Appl Sci 12(21). [Online]. Available: https://www.mdpi.com/2076-3417/12/21/11263

  95. Liu T, Zhang W, Li J, Ueland M, Forbes SL, Zheng WX, Su SW (2022) A multiscale wavelet kernel regularization-based feature extraction method for electronic nose. IEEE Trans Syst Man Cybern Syst 52(11):7078–7089

    Article  Google Scholar 

  96. Wen J, Zhao Y, Rong Q, Yang Z, Yin J, Peng Z (2022) Rapid odor recognition based on relieff algorithm using electronic nose and its application in fruit identification and classification. J Food Meas Character 16(3):2422–2433

    Article  Google Scholar 

  97. Jerath K, Brennan S, Lagoa C (2018) Bridging the gap between sensor noise modeling and sensor characterization. Measurement 116:350–366. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S026322411730578X

  98. Savand-Roumi E, Mohtasebi SS, Rafiee S, Ghanavati H, .Khoshnevisan B (2022) Introducing new monitoring indices from the headspace of biogas digester via e-nose: a case study. Measurement 190:110769. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0263224122000690

  99. Zhang W, Wang D, Tan X (2018) Data cleaning and classification in the presence of label noise with class-specific autoencoder. International symposium on neural networks. Springer, Berlin, pp 256–264

    Google Scholar 

  100. Gao X, Shen S, Hu Z, Wang Z (2019) Ground and aerial meta-data integration for localization and reconstruction: a review. Pattern Recogn Lett 127:202–214, advances in Visual Correspondence: Models, Algorithms and Applications (AVC-MAA). [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0167865518303544

  101. McMurdie PJ (2018) Normalization of microbiome profiling data. Microbiome analysis: methods and protocols, pp 143–168

  102. Li S, Marsaglia N, Garth C, Woodring J, Clyne J, Childs H (2018) Data reduction techniques for simulation, visualization and data analysis. In Computer graphics forum, vol. 37, no. 6.Wiley Online Library, pp. 422–447

  103. Wang J, Zhang C, Chang M, He W, Lu X, Fei S, Lu G (2021) Optimization of electronic nose sensor array for tea aroma detecting based on correlation coefficient and cluster analysis. Chemosensors 9(9):266

    Article  Google Scholar 

  104. Yan J, Guo X, Duan S, Jia P, Wang L, Peng C, Zhang S (2015) Electronic nose feature extraction methods: a review. Sensors 15(11):27804–27831. [Online]. Available: https://www.mdpi.com/1424-8220/15/11/27804

  105. Tang C-L, Chou T-I, Yang S-R, Lin Y-J, Ye Z-K, Chiu S-W, Lee S-W, Tang K-T (2023) Development of a nondestructive moldy coffee beans detection system based on electronic nose. IEEE Sensors Lett 7(2):1–4

    Article  CAS  Google Scholar 

  106. Rasekh M, Karami H, Wilson AD, Gancarz M (2021) Performance analysis of mau-9 electronic-nose mos sensor array components and ann classification methods for discrimination of herb and fruit essential oils. Chemosensors 9(9). [Online]. Available: https://www.mdpi.com/2227-9040/9/9/243

  107. Barata MA, Noersasongko E, Soeleman MA et al. (2023) Improving the accuracy of c4. 5 algorithm with chi-square method on pure tea classification using electronic nose. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) 7(2):226–235

    Article  Google Scholar 

  108. Fang C, Li H-Y, Li L, Su H-Y, Tang J, Bai X, Liu H (2022) Smart electronic nose enabled by an all-feature olfactory algorithm. Adv Intell Syst 4(7):2200074

    Article  Google Scholar 

  109. Amkor A, El Barbri N (2023) Classification of potatoes according to their cultivated field by svm and knn approaches using an electronic nose. Bull Electr Eng Inform 12(3):1471–1477

    Article  Google Scholar 

  110. Angra S, Ahuja S (2017) Machine learning and its applications: a review. In: International Conference on Big Data Analytics and Computational Intelligence (ICBDAC) 2017:57–60

  111. Hinton GE, Osindero S, Teh Y-W (2006) A fast learning algorithm for deep belief nets. Neural Comput 18(7):1527–1554. [Online]. Available: https://doi.org/10.1162/neco.2006.18.7.1527

  112. Khorramifar A, Rasekh M, Karami H, Malaga-Tobola U, Gancarz M (2021) A machine learning method for classification and identification of potato cultivars based on the reaction of mos type sensor-array. Sensors 21(17). [Online]. Available: https://www.mdpi.com/1424-8220/21/17/5836

  113. Gonzalez Viejo C, Tongson E, Fuentes S (2021) Integrating a low-cost electronic nose and machine learning modelling to assess coffee aroma profile and intensity. Sensors 21:6, [Online]. Available: https://www.mdpi.com/1424-8220/21/6/2016

  114. Khorramifar A, Karami H, Wilson AD, Sayyah AHA, Shuba A, Lozano J (2022) Grape cultivar identification and classification by machine olfaction analysis of leaf volatiles. Chemosensors 10:4, [Online]. Available: https://www.mdpi.com/2227-9040/10/4/125

  115. Bi M, Lu H, Zhang S, Lei M, Yan Z (2018) Deep feed-forward sequential memory networks for speech synthesis. in 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).IEEE, 4794–4798

  116. Li X, Jie Z, Feng J, Liu C, Yan S (2018) Learning with rethinking: Recurrently improving convolutional neural networks through feedback. Pattern Recogn 79:183–194, [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0031320318300153

  117. Schuster M, Paliwal KK (1997) Bidirectional recurrent neural networks. IEEE Trans Signal Process 45(11):2673–2681

    Article  Google Scholar 

  118. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324

    Article  Google Scholar 

  119. Krizhevsky A, Sutskever I, Hinton GE (2017) Imagenet classification with deep convolutional neural networks. Commun ACM 60(6):84–90, [Online]. Available: https://doi.org/10.1145/3065386

  120. Zeiler, MD, Fergus R (2014) Visualizing and understanding convolutional networks. In Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part I 13.Springer, 818–833

  121. Sermanet P, Eigen D, Zhang X, Mathieu M, Fergus R, LeCun Y (2013) Overfeat: integrated recognition, localization and detection using convolutional networks. arXiv preprint arXiv:1312.6229

  122. Lin M, Chen Q, Yan S (2013) Network in network. arXiv preprint arXiv:1312.4400

  123. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556

  124. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition, 1–9

  125. He K, Zhang X, Ren S, Sun S (2016) Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, 770–778

  126. Xie S, Girshick R, Dollár P, Tu Z, He K (2017) Aggregated residual transformations for deep neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, 1492–1500

  127. Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition, 779–788

  128. Hu J, Shen L, Albanie S, Sun G, Wu E (2019) Squeeze-and-excitation networks

  129. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Ł. Kaiser, Polosukhin I (2017) Attention is all you need. Adv Neural Inf Process Syst 30

  130. Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, Adam H (2017) Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861

  131. Zhang X, Zhou X, Lin M, Sun J (2018) Shufflenet: An extremely efficient convolutional neural network for mobile devices. In Proceedings of the IEEE conference on computer vision and pattern recognition, 6848–6856

  132. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, 4700–4708

  133. Brown T, Mann B, Ryder N, Subbiah M, Kaplan JD, Dhariwal P, Neelakantan A, Shyam P, Sastry G, Askell A et al. (2020) Language models are few-shot learners. Adv Neural Inf Process syst 33:1877–1901

    Google Scholar 

  134. Ding X, Zhang X, Ma N, Han J, Ding G, Sun J (2021) Repvgg: Making vgg-style convnets great again. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 13 733–13 742

  135. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A et al. (2021) Highly accurate protein structure prediction with alphafold. Nature 596(7873):583–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Xiong Y, Li Y, Wang C, Shi H, Wang S, Yong C, Gong Y, Zhang W, Zou X (2023) Non-destructive detection of chicken freshness based on electronic nose technology and transfer learning. Agriculture 13(2):496

    Article  CAS  Google Scholar 

  137. Mo Z, Luo D, Wen T, Cheng Y, Li X (2021) Fpga implementation for odor identification with depthwise separable convolutional neural network. Sensors 21:3, [Online]. Available: https://www.mdpi.com/1424-8220/21/3/832

  138. Zhang Q, Yang LT, Chen Z, Li P (2018) A survey on deep learning for big data. Inf Fus 42: 146–157 [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1566253517305328

  139. Sánchez R, Lozano J, Fernández A, Arroyo P, Martín-Tornero E, Meléndez F, Martín-Vertedor D (2022) Electronic nose application for the discrimination of sterilization treatments applied to Californian-style black olive varieties. J Sci Food Agric 102(6):2232–2241

    Article  PubMed  Google Scholar 

  140. Sánchez R, Martín-Tornero E, Lozano J, Arroyo P, Meléndez F, Martín-Vertedor D (2022) Evaluation of the olfactory pattern of black olives stuffed with flavored hydrocolloids. LWT 163:113556. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0023643822004911

  141. Xiong S, Sun X, Tian M, Xu D, Jiang A (2023) 1-methylcyclopropene treatment delays the softening of actinidia arguta fruit by reducing cell wall degradation and modulating carbohydrate metabolism. Food Chem 411:135485. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0308814623001012

  142. Yan H, Chen H, Zhao J, Yao T, Ding X (2023) Postharvest H\(_2\)O\(_2\) treatment affects flavor quality, texture quality and ros metabolism of ’Hongshi’ kiwifruit fruit kept at ambient conditions. Food Chem 405:134908. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0308814622028709

  143. Zheng K, Li B, Liu Y, Wu D, Bai Y, Xiang Q (2023) Effect of chitosan coating incorporated with oregano essential oil on microbial inactivation and quality properties of refrigerated chicken breasts. LWT 176:114547. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0023643823001263

  144. Zhang B, Liu Y, Wang H, Liu W, leong Cheong K, Teng B (2021) Effect of sodium alginate-agar coating containing ginger essential oil on the shelf life and quality of beef. Food Control 130:108216. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0956713521003546

  145. Fan H, Liu H, Li W, Su W, Wang D, Zhang S, Liu T, Zhang Y (2023) Effect of tremella fuciformis polysaccharide on the stalling and flavor of tteok during storage. Food Sci Human Wellness 12(1):254–265. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2213453022001124

  146. Qiu L, Zhang M, Mujumdar AS, Chang L (2021) Effect of edible rose (rosa rugosa cv. plena) flower extract addition on the physicochemical, rheological, functional and sensory properties of set-type yogurt. Food Biosci 43:101249. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2212429221003746

  147. Mu Q, Su H, Zhou Q, Xiao S, Zhu L, Xu X, Pan S, Hu H (2022) Effect of ultrasound on functional properties, flavor characteristics, and storage stability of soybean milk. Food Chem 381:32158. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0308814622001194

  148. Song F, Wu J, Liu B, Jiang J, Li Z, Song C, Li J, Jin G (2022) Intelligent green tea fixation with sensor fusion technology. J Food Eng 317:110846. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0260877421003721

  149. Li J, Gong Y, Li J, Fan L (2023) Stir-frying treatment improves the color, flavor, and polyphenol composition of flos sophorae immaturus tea. J Food Compos Anal 116:105045. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0889157522006639

  150. Sun Y, Zhang M, Ju R, Mujumdar A (2020) Novel nondestructive nmr method aided by artificial neural network for monitoring the flavor changes of garlic by drying. Dry Technol, pp 1–12

  151. Makarichian A, Amiri Chayjan R, Ahmadi E, Mohtasebi SS (2021) Assessment the influence of different drying methods and pre-storage periods on garlic (allium sativum l.) aroma using electronic nose. Food Bioprod Process 127:198–211. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0960308521000420

  152. Liu J, Liu Y, Li X, Zhu J, Wang X, Ma L (2023) Drying characteristics, quality changes, parameters optimization and flavor analysis for microwave vacuum drying of garlic (allium sativum l.) slices. LWT 173:114372. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S002364382201307X

  153. Yang Y, Chen J, Jiang Y, Qian MC, Deng Y, Xie J, Li J, Wang J, Dong C, Yuan H (2022) Aroma dynamic characteristics during the drying process of green tea by gas phase electronic nose and gas chromatography-ion mobility spectrometry. LWT 154:112691. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0023643821018442

  154. Yang Y, Qian MC, Deng Y, Yuan H, Jiang Y (2022) Insight into aroma dynamic changes during the whole manufacturing process of chestnut-like aroma green tea by combining gc-e-nose, gc-ims, and gc - gc-tofms. Food Chem 387:132813. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0308814622007750

  155. Liu H-Y, Liu Y, Li M-Y, Mai Y-H, Guo H, Wadood SA, Raza A, Wang Y, Zhang J-Y, Li H-B, Gan R-Y (2022) The chemical, sensory, and volatile characteristics of instant sweet tea (lithocarpus litseifolius [hance] chun) using electronic nose and gc-ms-based metabolomics analysis. LWT 163:113518. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0023643822004534

  156. Yu D-X, Guo S, Wang J-M, Yan H, Zhang Z-Y, Yang J, Duan J-A (2022) Comparison of different drying methods on the volatile components of ginger (zingiber officinale roscoe) by hs-gc-ms coupled with fast gc e-nose. Foods 11(11). [Online]. Available: https://www.mdpi.com/2304-8158/11/11/1611

  157. Lu X, Hou H, Fang D, Hu Q, Chen J, Zhao L (2021) Identification and characterization of volatile compounds in lentinula edodes during vacuum freeze-drying. J Food Biochem

  158. Boateng ID, Yang X-M (2021) Thermal and non-thermal processing affect maillard reaction products, flavor, and phytochemical profiles of ginkgo biloba seed. Food Biosci 41:101044. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2212429221001693

  159. Zhang K, Cheng J, Hong Q, Dong W, Chen X, Wu G, Zhang Z (2022) Identification of changes in the volatile compounds of robusta coffee beans during drying based on hs-spme/gc-ms and e-nose analyses with the aid of chemometrics. LWT 161:113317. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0023643822002523

  160. Chen F, Shen L, Shi X, Deng Y, Qiao Y, Wu W, Xiong G, Wang L, Li X, Ding A, Shi L (2023) Characterization of flavor perception and characteristic aroma of traditional dry-cured fish by flavor omics combined with multivariate statistics. LWT 173:114240. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0023643822011756

  161. Alnadari F, Al-Dalali S, Nasiru MM, Frimpong EB, Hu Y, Abdalmegeed D, Dai Z, AL-Ammari A, Chen G, Zeng X (2023) A new natural drying method for food packaging and preservation using biopolymer-based dehydration film. Food Chem 404:134689. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0308814622026516

  162. Guo H-L, Chen Y, Xu W, Xu M-T, Sun Y, Wang X-C, Wang X-Y, Luo J, Zhang H, Xiong Y-K, (2022) Assessment of drying kinetics, textural and aroma attributes of mentha haplocalyx leaves during the hot air thin-layer drying process. Foods 11(6). [Online]. Available: https://www.mdpi.com/2304-8158/11/6/784

  163. Rahimzadeh H, Sadeghi M, Mireei SA, Ghasemi-Varnamkhasti M (2022) Unsupervised modelling of rice aroma change during ageing based on electronic nose coupled with bio-inspired algorithms. Biosyst Eng 216:132–146. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1537511022000435

  164. Men H, Liu M, Shi Y, Yuan H, Liu J, Wang Q (2022) Ultra-lightweight dynamic attention network combined with gas sensor for distinguishing the quality of rice. Comput Electron Agric 197:106939. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0168169922002563

  165. Xu J, Liao H, Zhang C (2023) ZnSnO\(_3\) based gas sensors for pyridine volatile marker detection in rice aging during storage. Food Chem 408:135204. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0308814622031661

  166. Li Y, Gao C, Wang Y, Fan M, Wang L, Qian H (2023) Analysis of the aroma volatile compounds in different stabilized rice bran during storage. Food Chem 405:134753. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0308814622027157

  167. Gao C, Li Y, Pan Q, Fan M, Wang L, Qian H (2021) Analysis of the key aroma volatile compounds in rice bran during storage and processing via hs-spme gc/ms. J Cereal Sci 99:103178. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0733521021000199

  168. Jiang Q, Yingchao C (2021) Qualitative identification of the edible oil storage period using a homemade portable electronic nose combined with multivariate analysis. J Sci Food Agric 101(8)

  169. Karami H, Rasekh M, Ghaleh EM (2021) Identification of olfactory characteristics of edible oil during storage period using metal oxide semiconductor sensor signals and ANN methods. J Food Process Preserv 10

  170. Lan T, Bao S, Wang J, Ge Q, Zhang H, Yang W, Sun X, Ma T (2021) Shelf life of non-industrial fresh mango juice: microbial safety, nutritional and sensory characteristics. Food Biosci 42:101060. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2212429221001851

  171. Fagundes GA, Benedetti S, Pagani MA, Fiorentini AM, Severo J, Salas-Mellado M (2021) Electronic sensory assessment of bread enriched with cobia (Rachycentron canadum). J Food Process Eng

  172. Chen L, Ning F, Zhao L, Ming H, Zhang J, Yu W, Yi S, Luo L (2023) Quality assessment of royal jelly based on physicochemical properties and flavor profiles using hs-spme-gc/ms combined with electronic nose and electronic tongue analyses. Food Chem 403:134392. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0308814622023548

  173. Liu Z, Liu Q, Wei S, Sun Q, Xia Q, Zhang D, Shi W, Ji H, Liu S (2021) Quality and volatile compound analysis of shrimp heads during different temperature storage. Food Chem 12:100156. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2590157521000444

  174. Qi J, wen Zhang W, Xu Y, fei Xie X, yuan Xiong G, lian Xu X, hong Zhou G, Ye M (2021)Enhanced flavor strength of broth prepared from chicken following short-term frozen storage. Food Chem 356:129678. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0308814621006841

  175. Castrica M, Chiesa LM, Nobile M, Battisti FD, Siletti E, Pessina D, Panseri S, Balzaretti CM (2021) Rapid safety and quality control during fish shelf-life by using a portable device. J Sci Food Agric 101(1):315–326

    Article  CAS  PubMed  Google Scholar 

  176. Liu X, Wang X, Cheng Y, Wu Y, Yan Y, Li Z (2023) Variations in volatile organic compounds in zhenyuan daocai samples at different storage durations evaluated using e-nose, e-tongue, gas chromatography, and spectrometry. LWT 173:114186. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0023643822011215

  177. Bassey AP, Boateng EF, Zhu Z, Zhou T, Nasiru MM, Guo Y, Dou H, Ye K, Li C, Zhou G (2022) Volatilome evaluation of modified atmosphere packaged chilled and super-chilled pork loins using electronic nose and hs-gc-ims integration. Food Packaging Shelf Life 34:100953. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2214289422001454

  178. Li H, Wang Y, Zhang J, Li X, Wang J, Yi S, Zhu W, Xu Y, Li J (2023) Prediction of the freshness of horse mackerel (trachurus japonicus) using e-nose, e-tongue, and colorimeter based on biochemical indexes analyzed during frozen storage of whole fish. Food Chem 402:134325. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0308814622022877

  179. Kim KH, Park CS, Park SJ, Kim J, Seo SE, An JE, Ha S, Bae J, Phyo S, Lee J, Kim K, Moon D, Park TH, Song HS, Kwon OS (2022) In-situ food spoilage monitoring using a wireless chemical receptor-conjugated graphene electronic nose. Biosensors Bioelectron 200:113908. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0956566321009453

  180. Kim KH, Moon D, An JE, Park SJ, Seo SE, Ha S, Kim J, Kim K, Phyo S, Lee J, Kim H-Y, Kim M, Park TH, Song HS, Kwon OS (2022) Wireless portable bioelectronic nose device for multiplex monitoring toward food freshness/spoilage. Biosensors Bioelectron 215:114551. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0956566322005917

  181. Liu C, Chu Z, Weng S, Zhu G, Han K, Zhang Z, Huang L, Zhu Z, Zheng S (2022) Fusion of electronic nose and hyperspectral imaging for mutton freshness detection using input-modified convolution neural network. Food Chem 385:132651. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0308814622006136

  182. Zhang D, Zhu L, Jiang Q, Ge X, Fang Y, Peng J, Liu Y (2023) Real-time and rapid prediction of tvb-n of livestock and poultry meat at three depths for freshness evaluation using a portable fluorescent film sensor. Food Chem 400:134041. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0308814622020039

  183. Jiang S, Ni C, Chen G, Liu Y (2021) A novel data fusion strategy based on multiple intelligent sensory technologies and its application in the quality evaluation of jinhua dry-cured hams. Sensors Actuators B Chem 344:130324. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0925400521008923

  184. Andre RS, Facure MH, Mercante LA, Correa DS (2022) Electronic nose based on hybrid free-standing nanofibrous mats for meat spoilage monitoring. Sensors Actuators B Chem 353:131114. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0925400521016828

  185. Grassi S, Benedetti S, Magnani L, Pianezzola A, Buratti S (2022) Seafood freshness: e-nose data for classification purposes. Food Control 138:108994. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0956713522001876

  186. Li P, Niu Z, Shao K, Wu Z (2021) Quantitative analysis of fish meal freshness using an electronic nose combined with chemometric methods. Measurement 179:109484. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0263224121004681

  187. Xiong Y, Chen Y, Chen C, Wei X, Xue Y, Wan H, Wang P (2021) An odor recognition algorithm of electronic noses based on convolutional spiking neural network for spoiled food identification. J Electrochem Soc 168(7):077519. https://doi.org/10.1149/1945-7111/ac1699

    Article  CAS  Google Scholar 

  188. Luo J, Zhu Z, Lv W, Wu J, Yang J, Zeng M, Hu N, Su Y, Liu R, Yang Z (2023) E-nose system based on fourier series for gases identification and concentration estimation from food spoilage. IEEE Sensors J 23(4):3342–3351

    Article  CAS  Google Scholar 

  189. da Silva Ferreira MV, de Moraes IA, Passos RVL, Barbin DF, Barbosa JL (2023)Determination of pitaya quality using portable nir spectroscopy and innovative low-cost electronic nose. Sci Horticult 310:111784. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0304423822008937

  190. Palumbo M, Cozzolino R, Laurino C, Malorni L, Picariello G, Siano F, Stocchero M, Cefola M, Corvino A, Romaniello R, Pace B (2022) Rapid and non-destructive techniques for the discrimination of ripening stages in candonga strawberries. Foods 11(11). [Online]. Available: https://www.mdpi.com/2304-8158/11/11/1534

  191. Kim C, Kim S-J, Lee Y, Nguyen TM, Lee J-M, Moon J-S, Han D-W, Oh J-W (2022) A phage- and colorimetric sensor-based artificial nose model for banana ripening analysis. Sensors Actuators B Chem 362:131763. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0925400522004051

  192. Li Y, Leng W, Xue J, Yuan L, Liu H, Gao R (2023) A multi-omics-based investigation into the flavor formation mechanisms during the fermentation of traditional chinese shrimp paste. Food Res Int 166: 112585. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0963996923001308

  193. Li Y, Yuan L, Liu H, Liu H, Zhou Y, Li M, Gao R (2023) Analysis of the changes of volatile flavor compounds in a traditional chinese shrimp paste during fermentation based on electronic nose, spme-gc-ms and hs-gc-ims. Food Sci Human Wellness 12(1):173–182. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2213453022001422

  194. Sánchez R, Pérez-Nevado F, Montero-Fernàndez I, Lozano J, Meléndez F, Martín-Vertedor D (2022) Application of electronic nose to discriminate species of mold strains in synthetic brines. Front Microbiol 13. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fmicb.2022.897178

  195. Martínez-García R, Moreno J, Bellincontro, Centioni L, Puig-Pujol A, Peinado RA, Mauricio JC, García-Martínez T (2021) Using an electronic nose and volatilome analysis to differentiate sparkling wines obtained under different conditions of temperature, ageing time and yeast formats. Food Chem 334:127574. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0308814620314369

  196. Gerhards S, Talaverano MI, Andres AI, Sánchez-Vicente C, Lozano J, García-Latorre C, Petrón MJ, Rodrigo S. Different dry hopping and fermentation methods: influence on the beer nutritional quality. J Sci Food Agric

  197. Chen L, Wang S, Liu B, Feng S (2023) Flavor characteristics of hulless barley wine fermented with mixed starters by molds and yeasts isolated from jiuqu. Food Biosci 52:102349. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2212429222008082

  198. Zhang J, Wang T, Zhao N, Xu J, Qi Y, Wei X, Fan M (2021) Performance of a novel \(\beta\)-glucosidase bgl0224 for aroma enhancement of cabernet sauvignon wines. LWT 144:111244. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0023643821003972

  199. Jeong CH, Lee SH, Kim HY (2022) Microbiological composition and sensory characterization analysis of fermented sausage using strains isolated from korean fermented foods. Food Sci Anim Resour 6

  200. Hu Y, Li Y, ao Li X, Zhang H, Chen Q, Kong B (2022) Application of lactic acid bacteria for improving the quality of reduced-salt dry fermented sausage: Texture, color, and flavor profiles. LWT 154:112723. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0023643821018764

  201. Hu Y, Wang J, Liu Q, Wang Y, Ren J, Chen Q, Kong B (2022) Unraveling the difference in flavor characteristics of dry sausages inoculated with different autochthonous lactic acid bacteria. Food Biosci 47:101778. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2212429222002371

  202. Wen R, Kong B, Yin X, Zhang H, Chen Q (2022) Characterisation of flavour profile of beef jerky inoculated with different autochthonous lactic acid bacteria using electronic nose and gas chromatography-ion mobility spectrometry. Meat Sci 183:108658. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0309174021002345

  203. Tian Z, Zhu Q, Chen Y, Zhou Y, Hu K, Li H, Lu K, Zhou J, Liu Y, Chen X (2022) Studies on flavor compounds and free amino acid dynamic characteristics of fermented pork loin ham with a complex starter. Foods 11(10). [Online]. Available: https://www.mdpi.com/2304-8158/11/10/1501

  204. Farahmand E, Razavi SH, Mohtasebi SS (2020) Investigating effective variables to produce desirable aroma in sourdough using e-nose and sensory panel. J Food Process Preserv 4

  205. He W, Xue M, Yu H, Zhang X, Lin Y, Chen Y, Wang L (2023) Co-culture fermentation characteristics of antifreeze yeast and mining of related freezing-resistant genes. Eur Food Res Technol 249(5):1161–1172

    Article  CAS  Google Scholar 

  206. Wu J, Ren L, Zhao N, Wu T, Liu R, Sui W, Zhang M (2022) Solid-state fermentation by rhizopus oryzae improves flavor of wheat bran for application in food. J Cereal Sci 107:103536. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0733521022001254

  207. Yang Y, Wu YN, Ce LGE, Ge XGBR, Shuang Q, Zhang FM (2023) Analysis of microbial community and its correlation with flavor compounds during congee fermentation. Food Biosci 51:102261. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2212429222007209

  208. Xing Y, Yi R, Yue T, Bi X, Wu L, Pan H, Liu X, Che Z (2023) Effect of dense phase carbon dioxide treatment on the flavor, texture, and quality changes in new-paocai. Food Res Int 165:112431. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0963996922014892

  209. Hu W, Yang X, Ji Y, Guan Y (2021) Effect of starter cultures mixed with different autochthonous lactic acid bacteria on microbial, metabolome and sensory properties of chinese northeast sauerkraut. Food Res Int 148:110605. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0963996921005044

  210. Zhang X, Tian W, Xie B, Sun Z (2022) Insight into the influence of lactic acid bacteria fermentation on the variations in flavor of chickpea milk. Foods 11(16). [Online]. Available: https://www.mdpi.com/2304-8158/11/16/2445

  211. Xiao Y, Huang Y, Chen Y, Zhu M, He C, Li Z, Wang Y, Liu Z (2022) Characteristic fingerprints and change of volatile organic compounds of dark teas during solid-state fermentation with eurotium cristatum by using hs-gc-ims, hs-spme-gc-ms, e-nose and sensory evaluation. LWT 169:113925. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S002364382200860X

  212. Chen Q, Wang Y, Wu Y, Li C, Li L, Yang X, Chen S, Zhao Y, Cen J, Yang S, Wang D (2021) Investigation of fermentation-induced changes in the volatile compounds of trachinotus ovatus (meixiangyu) based on molecular sensory and interpretable machine-learning techniques: Comparison of different fermentation stages. Food Res Int 150:110739. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0963996921006396

  213. Gao J, Fang D, Muinde Kimatu B, Chen X, Wu X, Du J, Yang Q, Chen H, Zheng H, An X, Zhao L, Hu Q (2021) Analysis of umami taste substances of morel mushroom (morchella sextelata) hydrolysates derived from different enzymatic systems. Food Chem 362:130192. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0308814621011985

  214. Weng Z, Sun L, Wang F, Sui X, Fang Y, Tang X, Shen X (2021) Assessment the flavor of soybean meal hydrolyzed with alcalase enzyme under different hydrolysis conditions by E-nose, E-tongue and HS-SPME-GC-MS. Food Chem 12:100141. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2590157521000298

  215. Li M, Zhang J, Li L, Wang S, Liu Y, Gao M (2023) Effect of enzymatic hydrolysis on volatile flavor compounds of monascus-fermented tartary buckwheat based on headspace gas chromatography-ion mobility spectrometry. Food Res Int 163:112180. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0963996922012388

  216. Li J, Han D, Huang F, Zhang C (2023) Effect of reheating methods on eating quality, oxidation and flavor characteristics of braised beef with potatoes dish. Int J Gastron Food Sci 31:100659. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1878450X2300001X

  217. Liu H, Hui T, Fang F, Li S, Wang Z, Zhang D (2022) The formation of key aroma compounds in roasted mutton during the traditional charcoal process. Meat Sci 184:108689. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0309174021002655

  218. Jiang S, Zhu Y, Peng J, Zhang Y, Zhang W, Liu Y (2023) Characterization of stewed beef by sensory evaluation and multiple intelligent sensory technologies combined with chemometrics methods. Food Chem 408:135193. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0308814622031557

  219. Andaleeb R, Zhang D, Jiang S, Zhang Y, Liu Y (2023) Volatile profile and multivariant analysis of sanhuang chicken breast in combination with chinese 5-spice blend and garam masala. Food Sci Human Wellness 12(1):57–68. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2213453022001306

  220. Fedorov FS, Yaqin A, Krasnikov DV, Kondrashov VA, Ovchinnikov G, Kostyukevich Y, Osipenko S, Nasibulin AG (2021) Detecting cooking state of grilled chicken by electronic nose and computer vision techniques. Food Chem 345:128747. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0308814620326091

  221. Zhan F, Sun L, Zhao G, Li M, Zhu C (2022) Multiple technologies combined to analyze the changes of odor and taste in daokou braised chicken during processing. Foods 11(7). [Online]. Available: https://www.mdpi.com/2304-8158/11/7/963

  222. Zhu Z, Pius Bassey A, Cao Y, Du X, Huang T, Cheng Y, Huang M (2022) Meat quality and flavor evaluation of nanjing water boiled salted duck (nwsd) produced by different muscovy duck (cairina moschata) ingredients. Food Chem 397:133833. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0308814622017952

  223. Du C, Qi J, Yang C, Zhang Q, Liu D (2022) Enrichment of taste and aroma perceptions in chicken meat stewed in braised soup used repeatedly. J Food Sci 6:87

    Google Scholar 

  224. Bai S, Wang Y, Luo R, Shen F, Bai H, Ding D (2021) Formation of flavor volatile compounds at different processing stages of household stir-frying mutton sao zi in the northwest of china. LWT 139:110735. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0023643820317230

  225. Optimizing conditions of electronic nose for rapid detection of flavor substances in ningxiang pork. J Food Process Eng, 2021

  226. Bai J, Fan Y, Zhu L, Wang Y, Hou H (2022) Characteristic flavor of antarctic krill (euphausia superba) and white shrimp (penaeus vannamei) induced by thermal treatment. Food Chem 378:132074. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0308814622000358

  227. Shen S-K, Wu Z-Y, Chen Y-W, Dong X-P, Liu F-J, Ding Z-W (2022) Monitoring the lipid oxidation and flavor of russian sturgeon fillets treated with low temperature vacuum heating: formation and relationship. J Sci Food Agric 102(11):4609–4619 . [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/jsfa.11819

  228. Luo X, Xiao S, Ruan Q, Gao Q, An Y, Hu Y, Xiong S (2022) Differences in flavor characteristics of frozen surimi products reheated by microwave, water boiling, steaming, and frying. Food Chem 372:131260. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0308814621022664

  229. Jin W, Fan X, Jiang C, Liu Y, Zhu K, Miao X, Jiang P (2023) Characterization of non-volatile and volatile flavor profiles of coregonus peled meat cooked by different methods. Food Chem 17:100584. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2590157523000263

  230. Chen J, Tao L, Zhang T, Zhang J, Wu T, Luan D, Ni L, Wang X, Zhong J (2021) Effect of four types of thermal processing methods on the aroma profiles of acidity regulator-treated tilapia muscles using e-nose, hs-spme-gc-ms, and hs-gc-ims. LWT 147:111585. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0023643821007386

  231. Wang X, Meng Q, Song H (2022) Characterization of odor-active compounds in high-salt liquid-state soy sauce after cooking. Food Chem 373:131460. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0308814621024663

  232. Ni R, Wang P, Zhan P, Tian H, Li T (2021) Effects of different frying temperatures on the aroma profiles of fried mountain pepper (litsea cubeba (lour.) pers.) oils and characterization of their key odorants. Food Chem 357:129786. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0308814621007925

  233. Zhang J, Zhang M, Chen K, Bhandari B, Deng D (2023) Impact of cooking methods on the quality, sensory and flavor compounds of sichuan pepper oleoresin. Food Chem 427:136639. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0308814623012578

  234. Majchrzak T, Wojnowski W, Glowacz-Rózynska A, Wasik A (2021) On-line assessment of oil quality during deep frying using an electronic nose and proton transfer reaction mass spectrometry. Food Control 121:107659. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0956713520305752

  235. Sireyil G, Alim A (2022) Effects of onion paste on flavor of a different kind of bread (naan) analyzed with e-nose and gc-ims. J Food Process Preserv 46(4):e16457, e16457 JFPP-09-21-2345.R1. [Online]. Available: https://ifst.onlinelibrary.wiley.com/doi/abs/10.1111/jfpp.16457

  236. Go H-Y, Lee S-H, Kim H-Y (2022) The effect of hot-air dried lentinula edodes on the quality and oranoleptic properties of rolled-dumplings. Food Sci Anim Resour 42(4):593–608

    Article  PubMed  PubMed Central  Google Scholar 

  237. Cao X, Islam MN, Ning X, Luo Z, Wang L (2023) Effects of superheated steam processing on the physicochemical properties of sea rice bran. Food Sci Technol Int 29(2):115–125, pMID: 34894797. [Online]. Available: https://doi.org/10.1177/10820132211062711

  238. Gancarz M, Malaga-Toboa U, Oniszczuk A, Tabor S, Oniszczuk T, Gawrysiak-Witulska M, Rusinek R (2021) Detection and measurement of aroma compounds with the electronic nose and a novel method for mos sensor signal analysis during the wheat bread making process. Food Bioprod Process 127:90–98. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0960308521000298

  239. Cai J-S, Zhu Y-Y, Ma R-H, Thakur K, Zhang J-G, Wei Z-J (2021) Effects of roasting level on physicochemical, sensory, and volatile profiles of soybeans using electronic nose and HS-SPME-GC-MS. Food Chem 340:127880. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0308814620317428

  240. Adelina NM, Wang H, Zhang L, Zhao Y (2021) Comparative analysis of volatile profiles in two grafted pine nuts by headspace-SPME/GC-MS and electronic nose as responses to different roasting conditions. Food Res Int 140:110026. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0963996920310516

  241. Guan C, Liu T, Li Q, Wang D, Zhang Y (2022) Analyzing the effect of baking on the flavor of defatted tiger nut flour by e-tongue, e-nose and hs-spme-gc-ms. Foods 11(3). [Online]. Available: https://www.mdpi.com/2304-8158/11/3/446

  242. Wang C, Zhang Z, Zhang X, Tian X, Chen K, Zeng X (2022) Characterization of volatile compounds by hs-gc-ims and chemical composition analysis of colored highland barley roasted at different temperatures. Foods 11(18). [Online]. Available: https://www.mdpi.com/2304-8158/11/18/2921

  243. Zhang L, Hu Y, Wang Y, Kong B, Chen Q (2021) Evaluation of the flavour properties of cooked chicken drumsticks as affected by sugar smoking times using an electronic nose, electronic tongue, and hs-spme/gc-ms. LWT 140:110764. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0023643820317539

  244. Du H, Chen Q, Liu Q, Wang Y, Kong B (2021) Evaluation of flavor characteristics of bacon smoked with different woodchips by hs-spme-gc-ms combined with an electronic tongue and electronic nose. Meat Sci 182:108626. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0309174021002023

  245. Yin X, Wen R, Sun F, Wang Y, Kong B, Chen Q (2021) Collaborative analysis on differences in volatile compounds of harbin red sausages smoked with different types of woodchips based on gas chromatography-mass spectrometry combined with electronic nose. LWT 143:111144. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0023643821002978

  246. Chang H, Wang Y, Xia Q, Pan D, He J, Zhang H, Cao J (2021) Characterization of the physicochemical changes and volatile compound fingerprinting during the chicken sugar-smoking process. Poultry Sci 100(1):377–387. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0032579120307112

  247. Al-Dalali S, Li C, Xu B (2022) Evaluation of the effect of marination in different seasoning recipes on the flavor profile of roasted beef meat via chemical and sensory analysis. J Food Biochem 46(6):e13962. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1111/jfbc.13962

  248. Hui T, Fang Z, Ma Q, Hamid N, Li Y (2023) Effect of cold atmospheric plasma-assisted curing process on the color, odor, volatile composition, and heterocyclic amines in beef meat roasted by charcoal and superheated steam. Meat Sci 196:109046. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S030917402200314X

  249. Ren Y, Huang X, Aheto JH, Wang C, Ernest B, Tian X, He P, Chang X, Wang C (2021)Application of volatile and spectral profiling together with multimode data fusion strategy for the discrimination of preserved eggs. Food Chem 343:128515. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0308814620323773

  250. Xiao N, Xu H, Jiang X, Sun T, Luo Y, Shi W (2022) Evaluation of aroma characteristics in grass carp mince as affected by different washing processes using an e-nose, hs-spme-gc-ms, hs-gc-ims, and sensory analysis. Food Res Int 158:111584. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0963996922006421

  251. Chen Q, Jiang X, Xiao N, Feng Q, Liu J, Shi W (2022)Characterization of the effect of different sugar on volatile flavor compounds of dried fish floss using e-nose combined with hs-spme/gc-ms. J Food Process Preserv 46(5):e16567, e16567 JFPP-10-21-2822.R2. [Online]. Available: https://ifst.onlinelibrary.wiley.com/doi/abs/10.1111/jfpp.16567

  252. Yang W, Li J, Ren D, Cao W, Lin H, Qin X, Wu L, Zheng H (2021) Construction of a water-in-oil-in-water (w/o/w) double emulsion system based on oyster peptides and characterisation of freeze-dried products. Int J Food Sci Technol 56(12):6635–6648. [Online]. Available: https://ifst.onlinelibrary.wiley.com/doi/abs/10.1111/ijfs.15354

  253. Chen L, Zhang H, Shi H, Xue C, Wang Q, Yu F, Xue Y, Wang Y, Li Z (2022) The flavor profile changes of pacific oysters (crassostrea gigas) in response to salinity during depuration. Food Chem 16:100485. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2590157522002838

  254. Liu X, Zhang C, Wang H, Wang Y, Zhu D, Liu H (2023) Ultrasonic treatment maintains the flavor of the melon juice. Ultrason Sonochem 92:106284. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1350417722003807

  255. Antolini A, Forniti R, Modesti M, Bellincontro A, Catelli C, Mencarelli F (2021) First application of ozone postharvest fumigation to remove smoke taint from grapes. Ozone Sci Eng 43(3):254–262. [Online]. Available: https://doi.org/10.1080/01919512.2020.1796583

  256. Bianchi A, Santini G, Piombino P, Pittari E, Sanmartin C, Moio L, Modesti M, Bellincontro A, Mencarelli F (2023) Nitrogen maceration of wine grape: An alternative and sustainable technique to carbonic maceration. Food Chem 404:134138. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0308814622021008

  257. He J, Wu X, Yu Z (2021) Microwave pretreatment of camellia (camellia oleifera abel.) seeds: Effect on oil flavor. Food Chem 364:130388. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0308814621013947

  258. Chemosensory approach supported-analysis of wintering radishes produced in jeju island by different processing methods. Food Sci Biotechnol 30(8):1033–1049

  259. Nam D-G, Kim M, Choe J-S, Choi A-j (2022) Effects of high-pressure, hydrothermal, and enzyme-assisted treatment on the taste and flavor profile of water-soluble ginger (zingiber officinale) extract. Foods 11(4). [Online]. Available: https://www.mdpi.com/2304-8158/11/4/508

  260. Li Z, Sun X, Xu T, Dai W, Yan Q, Li P, Fang Y, Ding J (2023) Insight into the dynamic variation and retention of major aroma volatile compounds during the milling of suxiang japonica rice. Food Chem 405:134468. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S030881462202430X

  261. Buratti S, Giovanelli G, Benedetti S, Marti A (2022) Impact of gelatinization on common (fagopyrum esculentum) and tartary (fagopyrum tataricum) buckwheat: effect on taste and flavor assessed by e-senses in relation to phenolic compounds. Eur Food Res Technol 248(10):2521–2530

    Article  CAS  Google Scholar 

  262. Cao Z, Liu Y, Zhu H, Li Y, Xiao Q, Yi C (2021) Effect of soy protein isolate on textural properties, cooking properties and flavor of whole-grain flat rice noodles. Foods 10(5). [Online]. Available: https://www.mdpi.com/2304-8158/10/5/1085

  263. Jin Y, Cui H, Yuan X, Liu L, Liu X, Wang Y, Ding J, Xiang H, Zhang X, Liu J, Li H, Zhao G, Wen J (2021) Identification of the main aroma compounds in chinese local chicken high-quality meat. Food Chem 359:129930. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0308814621009365

  264. Wang J, Chen L, Liu Y, Olajide TM, Jiang Y, Cao W (2022) Identification of key aroma-active compounds in beef tallow varieties using flash gc electronic nose and gcgc-tof/ms. Eur Food Res Technol

  265. Shen D-Y, Li Mke, Song H-L, ting Zou T, Zhang L, Xiong J (2021) Characterization of aroma in response surface optimized no-salt bovine bone protein extract by switchable gc/gcgc-olfactometry-mass spectrometry, electronic nose, and sensory evaluation. LWT 147:111559. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S002364382100712X

  266. Da D, Nian Y, Shi J, Li Y, Zhao D, Zhang G, Li C (2021)Characterization of specific volatile components in braised pork with different tastes by spme-gc/ms and electronic nose. J Food Process Preserv 45(5):e15492. [Online]. Available: https://ifst.onlinelibrary.wiley.com/doi/abs/10.1111/jfpp.15492

  267. Li C, Al-Dalali S, Wang Z, Xu B, Zhou H (2022) Investigation of volatile flavor compounds and characterization of aroma-active compounds of water-boiled salted duck using GC-MS-O, GC-IMS, and E-nose. Food Chem 386:132728. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0308814622006902

  268. Yin X, Lv Y, Wen R, Wang Y, Chen Q, Kong B (2021) Characterization of selected harbin red sausages on the basis of their flavour profiles using hs-spme-gc/ms combined with electronic nose and electronic tongue. Meat Sci 172:108345. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0309174020307774

  269. Chen Q, Hu Y, Wen R, Wang Y, Qin L, Kong B (2021) Characterisation of the flavour profile of dry fermented sausages with different nacl substitutes using hs-spme-gc-ms combined with electronic nose and electronic tongue. Meat Sci 172:108338. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0309174020307701

  270. Xiao N, Huang H, Liu J, Jiang X, Chen Q, Chen Q, Shi W (2021) Comparison of different edible parts of bighead carp (aristichthys nobilis) flavor. J Food Biochem 45(11):e13946. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1111/jfbc.13946

  271. Chen YP, Cai D, Li W, Blank I, Liu Y (2022) Application of gas chromatography-ion mobility spectrometry (gc-ims) and ultrafast gas chromatography electronic-nose (uf-gc e-nose) to distinguish four chinese freshwater fishes at both raw and cooked status. J Food Biochem 46(6):e13840. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1111/jfbc.13840

  272. Wu S, Yang J, Dong H, Liu Q, Li X, Zeng X, Bai W (2021) Key aroma compounds of chinese dry-cured spanish mackerel (scomberomorus niphonius) and their potential metabolic mechanisms. Food Chem 342:128381. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0308814620322433

  273. Liu R-C, Li R, Wang Y, Jiang Z-T (2022) Analysis of volatile odor compounds and aroma properties of european vinegar by the ultra-fast gas chromatographic electronic nose. J Food Compos Anal 112:104673. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0889157522002915

  274. Li Y, Fei C, Mao C, Ji D, Gong J, Qin Y, Qu L, Zhang W, Bian Z, Su L, Lu T (2022) Physicochemical parameters combined flash gc e-nose and artificial neural network for quality and volatile characterization of vinegar with different brewing techniques. Food Chem 374:131658. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0308814621026649

  275. Zhai Y, Guo M, Meng Q, Song H (2023) Characterization of key odor-active compounds in high quality high-salt liquid-state soy sauce. J Food Compos Anal 117:105148. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0889157523000224

  276. Chen Y, Fu Y, Li P, Xi H, Zhao W, Wang D, Mao J, Zhang S, Sun S, Xie J (2022) Characterization of traditional chinese sesame oil by using headspace solid-phase microextraction/gas chromatography-mass spectrometry, electronic nose, sensory evaluation, and rapidoxy. Foods 11(22). [Online]. Available: https://www.mdpi.com/2304-8158/11/22/3555

  277. Liu R, Liu Y, Zhu Y, Kortesniemi M, Zhu B, Li H (2022) Aromatic characteristics of passion fruit wines measured by e-nose, gc-quadrupole ms, gc-orbitrap-ms and sensory evaluation. Foods 11(23). [Online]. Available: https://www.mdpi.com/2304-8158/11/23/3789

  278. Lan T, Wang J, Yuan Q, Lei Y, Peng W, Zhang M, Li X, Sun X, Ma T (2022) Evaluation of the color and aroma characteristics of commercially available chinese kiwi wines via intelligent sensory technologies and gas chromatography-mass spectrometry. Food Chem 15:100427. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2590157522002255

  279. Chi X, Shao Y, Pan M, Yang Q, Sun B (2021) Distinction of volatile flavor profiles in various skim milk products via HS-SPME-GC-MS and E-nose. Eur Food Res Technol 6

  280. Lee-Rangel HA, Mendoza-Martinez GD, Diaz de León-Martínez L, Relling AE, Vazquez-Valladolid A, Palacios-Martínez M, Hernández-García PA, Chay-Canul AJ, Flores-Ramirez R, Roque-Jiménez JA (2022) Application of an electronic nose and hs-spme/gc-ms to determine volatile organic compounds in fresh mexican cheese. Foods 11(13). [Online]. Available: https://www.mdpi.com/2304-8158/11/13/1887

  281. Guo Q, Adelina NM, Hu J, Zhang L, Zhao Y (2022) Comparative analysis of volatile profiles in four pine-mushrooms using hs-spme/gc-ms and e-nose. Food Control 134:108711. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0956713521008495

  282. Huang T, Sun Y, Guo Y, Wang W, He T, Cao J (2023) Application of hs-spme-gc-ms combined with electronic nose technology in the odor recognition of pseudostellariae radix. Nat Prod Res 37(14):2457–2460, pMID: 35220849. [Online]. Available: https://doi.org/10.1080/14786419.2022.2045488

  283. Rong Y, Gu X, Li D, Chen L, Zhang Y, Wang Z (2021) Characterization of aroma, sensory and taste properties of angelica keiskei tea. Eur Food Res Technol 247:1665–1677

    Article  CAS  Google Scholar 

  284. Yang Y, Zhu H, Chen J, Xie J, Shen S, Deng Y, Zhu J, Yuan H, Jiang Y (2022) Characterization of the key aroma compounds in black teas with different aroma types by using gas chromatography electronic nose, gas chromatography-ion mobility spectrometry, and odor activity value analysis. LWT 163:113492. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0023643822004273

  285. Yan T, Lin J, Zhu J, Ye N, Huang J, Wang P, Jin S, Zheng D, Yang J (2022) Aroma analysis of fuyun 6 and jinguanyin black tea in the fu’an area based on E-nose and GC-MS. Eur Food Res Technol 248:947–961

    Article  CAS  Google Scholar 

  286. He C, Li Y, Zhou J, Yu X, Zhang D, Chen Y, Ni D, Yu Z (2022) Study on the suitability of tea cultivars for processing oolong tea from the perspective of aroma based on olfactory sensory, electronic nose, and gc-ms data correlation analysis. Foods 11(18). [Online]. Available: https://www.mdpi.com/2304-8158/11/18/2880

  287. Qiao Y, Chen Q, Bi J, Wu X, Jin X, Gou M, Yang X, Purcaro G (2022) Investigation of the volatile profile of red jujube by using gc-ims, multivariate data analysis, and descriptive sensory analysis. Foods 11(3). [Online]. Available: https://www.mdpi.com/2304-8158/11/3/421

  288. Wang H, Xiao H, Wu Y, Zhou F, Hua C, Ba L, Shamim S, Zhang W (2022) Characterization of volatile compounds and microstructure in different tissues of ’Eureka’ lemon (Citrus limon). Int J Food Proper 25(1): 404–421. [Online]. Available: https://doi.org/10.1080/10942912.2022.2046600

  289. Lan T, Gao C, Yuan Q, Wang J, Zhang H, Sun X, Lei Y, Ma T (2021) Analysis of the aroma chemical composition of commonly planted kiwifruit cultivars in china. Foods 10(7). [Online]. Available: https://www.mdpi.com/2304-8158/10/7/1645

  290. Matsuo Y, Akita K, Taguchi H, Fujii S, Yoshie-Stark Y, Araki T (2022) Utilization and evaluation of citrus natsudaidai peel waste as a source of natural food additives. Food Chem 373:131464. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0308814621024705

  291. Sengar AS, Sunil CK, Rawson A, Venkatachalapathy N (2022) Identification of volatile compounds, physicochemical and techno-functional properties of pineapple processing waste (ppw). J Food Meas Character 16:1146–1158

    Article  Google Scholar 

  292. Junxing L, Aiqing M, Gangjun Z, Xiaoxi L, Haibin W, Jianning L, Hao G, Xiaoming Z, Liting D, Chengying M (2022) Assessment of the ’taro-like’ aroma of pumpkin fruit (Cucurbita moschata D.) via E-nose, GC-MS and GC-O analysis. Food Chem 15:100435. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2590157522002334

  293. Wang C, Fu C, Li Y, Zhang Y, Zhang B, Zhang J (2023) Integrated volatilomic profiles and chemometrics provide new insights into the spatial distribution and aroma differences of volatile compounds in seven toona sinensis cultivars. Food Chem 407:135116. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0308814622030783

  294. Valcárcel M, Ibáñez G, Martí R, Beltrán J, Cebolla-Cornejo J, Roselló S (2021) Optimization of electronic nose drift correction applied to tomato volatile profiling. Anal Bioanal Chem 413:3893–3907

    Article  PubMed  Google Scholar 

  295. Yu J, Lu K, Zi J, Yang X, Xie W (2022) Characterization of aroma profiles and aroma-active compounds in high-salt and low-salt shrimp paste by molecular sensory science. Food Biosci 45:101470. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2212429221005952

  296. Cai W, Wang Y, Hou Q, Zhang Z, Tang F, Shan C, Yang X, Guo Z (2021) Pacbio sequencing combined with metagenomic shotgun sequencing provides insight into the microbial diversity of zha-chili. Food Biosci 40:100884. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2212429221000092

  297. Cai W, Tang F, Wang Y, Zhang Z, Xue Y, Zhao X, Guo Z, Shan C (2021) Bacterial diversity and flavor profile of zha-chili, a traditional fermented food in China. Food Res Int 141:110112. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0963996921000090

  298. Zhang X, Wei J, Zhao S, Jia H, Guo C, Wang Z, Gao Z, Yue T, Yuan Y (2021) Flavor differences between commercial and traditional soybean paste. LWT 142:111052. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S002364382100205X

  299. Yu S, Huang X, Wang L, Ren Y, Zhang X, Wang Y (2022) Characterization of selected chinese soybean paste based on flavor profiles using hs-spme-gc/ms, e-nose and e-tongue combined with chemometrics. Food Chem 375:131840. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0308814621028466

  300. Yu S, Huang X, Wang L, Chang X, Ren Y, Zhang X, Wang Y (2023) Qualitative and quantitative assessment of flavor quality of chinese soybean paste using multiple sensor technologies combined with chemometrics and a data fusion strategy. Food Chem 405:134859. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0308814622028217

  301. Lin Y, Zhang F, Li L, Shi L, Zhu Y, Wang J (2022) Identification of panax notoginseng powder in different parts based on the electronic nose and time-domain feature extraction. J Electrochem Soc 169(4):047510, apr. [Online]. Available: https://dx.doi.org/10.1149/1945-7111/ac62bf

  302. Lei K, Yuan M, Li S, Zhou Q, Li M, Zeng D, Guo Y, Guo L (2023) Performance evaluation of e-nose and e-tongue combined with machine learning for qualitative and quantitative assessment of bear bile powder. Anal Bioanal Chem 415:3503–3513

    Article  CAS  PubMed  Google Scholar 

  303. Huang C, Gu Y (2022) A machine learning method for the quantitative detection of adulterated meat using a mos-based e-nose. Foods 11(4). [Online]. Available: https://www.mdpi.com/2304-8158/11/4/602

  304. Wakhid S, Sarno R, Sabilla SI (2022) The effect of gas concentration on detection and classification of beef and pork mixtures using e-nose. Comput Electron Agric 195:106838. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0168169922001557

  305. Han F, Huang X, Aheto JH, Zhang X, Rashed MMA (2022) Fusion of a low-cost electronic nose and fourier transform near-infrared spectroscopy for qualitative and quantitative detection of beef adulterated with duck. Anal Methods 14:417–426. [Online]. Available: http://dx.doi.org/10.1039/D1AY01949J

  306. Oates MJ, González-Teruel JD, Ruiz-Abellon MC, Guillamon-Frutos A, Ramos JA, Torres-Sánchez R (2022) Using a low-cost components e-nose for basic detection of different foodstuffs. IEEE Sensors J 22(14):13872–13881

    Article  Google Scholar 

  307. Chen J, Yan W, Fu Y, Wang L, Lv X, Dai R, Li X, Jia F (2022) The use of electronic nose in the quality evaluation and adulteration identification of beijing-you chicken. Foods 11(6). [Online]. Available: https://www.mdpi.com/2304-8158/11/6/782

  308. Putri LA, Rahman I, Puspita M, Hidayat SN, Dharmawan AB, Rianjanu A, Wibirama S, Roto R, Triyana K, Wasisto HS (2023) Rapid analysis of meat floss origin using a supervised machine learning-based electronic nose towards food authentication. NPJ Sci Food 7(31)

  309. Qiao J, Su G, Liu C, Zou Y, Chang Z, Yu H, Wang L, Guo R (2022) Study on the application of electronic nose technology in the detection for the artificial ripening of crab apples. Horticulturae 8(5). [Online]. Available: https://www.mdpi.com/2311-7524/8/5/386

  310. Rasekh M, Karami H, Fuentes S, Kaveh M, Rusinek R, Gancarz M (2022) Preliminary study non-destructive sorting techniques for pepper (capsicum annuum l.) using odor parameter. LWT 164:113667. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0023643822006028

  311. Rasekh M, Karami H (2021) E-nose coupled with an artificial neural network to detection of fraud in pure and industrial fruit juices. Int J Food Proper 24(1):592–602. [Online]. Available: https://doi.org/10.1080/10942912.2021.1908354

  312. Gómez I, Lavega González R, Tejedor-Calvo E, Pérez Clavijo M, Carrasco J (2022) Odor profile of four cultivated and freeze-dried edible mushrooms by using sensory panel, electronic nose and gc-ms. J Fungi 8(9). [Online]. Available: https://www.mdpi.com/2309-608X/8/9/953

  313. Cervellieri S, Lippolis V, Mancini E, Pascale M, Logrieco AF, De Girolamo A (2022) Mass spectrometry-based electronic nose to authenticate 100 italian durum wheat pasta and characterization of volatile compounds. Food Chem 383:132548. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0308814622005106

  314. Zhang W, Liu T, Brown A, Ueland M, Forbes SL, Su SW (2022) The use of electronic nose for the classification of blended and single malt scotch whisky. IEEE Sensors J 22(7):7015–7021

    Article  CAS  Google Scholar 

  315. Zhang S, Cheng Y, Luo D, He J, Wong AKY, Hung K (2021) Channel attention convolutional neural network for Chinese baijiu detection with e-nose. IEEE Sensors J 21(14):16170–16182

    Article  Google Scholar 

  316. Aghili NS, Rasekh M, Karami H, Azizi V, Gancarz M (2022) Detection of fraud in sesame oil with the help of artificial intelligence combined with chemometrics methods and chemical compounds characterization by gas chromatography-mass spectrometry. LWT 167:113863. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0023643822007988

  317. Tata A, Massaro A, Damiani T, Piro R, Dall’Asta C, Suman M (2022) Detection of soft-refined oils in extra virgin olive oil using data fusion approaches for lc-ms, gc-ims and fgc-enose techniques: The winning synergy of gc-ims and fgc-enose. Food Control 133:108645. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0956713521007830

  318. Roy M, Doddappa M, Yadav BK, Jaganmohan R, Sinija VR, Manickam L, Sarvanan S (2022) Detection of soybean oil adulteration in cow ghee (clarified milk fat): an ultrafast study using flash gas chromatography electronic nose coupled with multivariate chemometrics. J Sci Food Agric 102(10):4097–4108. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/jsfa.11759

  319. Zarezadeh MR, Aboonajmi M, Varnamkhasti MG, Azarikia F (2021) Olive oil classification and fraud detection using e-nose and ultrasonic system. Food Anal Methods 14:2199–2210

    Article  Google Scholar 

  320. Tian H, Chen B, Lou X, Yu H, Yuan H, Huang J, Chen C (2022) Rapid detection of acid neutralizers adulteration in raw milk using fgc e-nose and chemometrics. J Food Meas Character 16:2978–2988

    Article  Google Scholar 

  321. Tian H, Wu D, Chen B, Yuan H, Yu H, Lou X, Chen C (2023) Rapid identification and quantification of vegetable oil adulteration in raw milk using a flash gas chromatography electronic nose combined with machine learning. Food Control 150:109758. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0956713523001585

  322. Tian H, Xiong J, Chen S, Yu H, Chen C, Huang J, Yuan H, Lou X (2023) Rapid identification of adulteration in raw bovine milk with soymilk by electronic nose and headspace-gas chromatography ion-mobility spectrometry. Food Chem 18:100696. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2590157523001396

  323. Wang S, Hu X-Z, Liu Y-Y, Tao N-P, Lu Y, Wang X-C, Lam W, Lin L, Xu C-H (2022) Direct authentication and composition quantitation of red wines based on tri-step infrared spectroscopy and multivariate data fusion. Food Chemi 372:131259. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0308814621022652

  324. Li B, Gu Y (2023) A machine learning method for the quality detection of base liquor and commercial liquor using multidimensional signals from an electronic nose. Foods 12(7) [Online]. Available: https://www.mdpi.com/2304-8158/12/7/1508

  325. Sánchez R, Pérez-Nevado F, Martillanes S, Montero-Fernández I, Lozano J, Martín-Vertedor D (2023) Machine olfaction discrimination of spanish-style green olives inoculated with spoilage mold species. Food Control 147:109600. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0956713522007939

  326. Conrado JAM, Sequinel R, Dias BC, Silvestre M, Batista AD, da Petruci JF (2021) Chemical qr code: A simple and disposable paper-based optoelectronic nose for the identification of olive oil odor. Food Chem 350:129243. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0308814621002478

  327. Gila DMM, Sanmartin C, Soto JN, Mencarelli F, Ortega JG, García JG (2021) Classification of olive fruits and oils based on their fatty acid ethyl esters content using electronic nose technology. J Food Meas Character 15:5427–5438

    Article  Google Scholar 

  328. Teixeira GG, Dias LG, Rodrigues N, Ítala M.G. Marx, Veloso AC, Pereira JA, Peres AM (2021) Application of a lab-made electronic nose for extra virgin olive oils commercial classification according to the perceived fruitiness intensity. Talanta 226:122122. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0039914021000436

  329. Rasekh M, Karami H (2021) Application of electronic nose with chemometrics methods to the detection of juices fraud. J Food Process Preserv 45(5):e15432. [Online]. Available: https://ifst.onlinelibrary.wiley.com/doi/abs/10.1111/jfpp.15432

  330. Bahati P, Zeng X, Uzizerimana F, Tsoggerel A, Awais M, Qi G, Cai R, Yue T, Yuan Y (2021)Adsorption mechanism of patulin from apple juice by inactivated lactic acid bacteria isolated from kefir grains. Toxins 13(7). [Online]. Available: https://www.mdpi.com/2072-6651/13/7/434

  331. Wang L, Huang X, Wang C, Aheto JH, Chang X, Yu S, Zhang X, Wang Y (2021) Coupling electronic nose with GC-MS improves flavor recognition and grade differentiation of zhenjiang aromatic vinegar. J Food Process Eng 44(10):e13806. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1111/jfpe.13806

  332. Yang Y, Rong Y, Liu F, Jiang Y, Deng Y, Dong C, Yuan H (2021) Rapid characterization of the volatile profiles in pu-erh tea by gas phase electronic nose and microchamber/thermal extractor combined with td-gc-ms. J Food Sci 86(6):2358–2373. [Online]. Available: https://ift.onlinelibrary.wiley.com/doi/abs/10.1111/1750-3841.15723

  333. Xu M, Wang J, Zhu L (2021) Tea quality evaluation by applying e-nose combined with chemometrics methods. J Food Sci Technol 58:1549–1561

    Article  CAS  PubMed  Google Scholar 

  334. Govari M, Tryfinopoulou P, Panagou EZ, Nychas G-JE (2022) Application of fourier transform infrared (ft-ir) spectroscopy, multispectral imaging (msi) and electronic nose (e-nose) for the rapid evaluation of the microbiological quality of gilthead sea bream fillets. Foods 11(15). [Online]. Available: https://www.mdpi.com/2304-8158/11/15/2356

  335. Yavuzer E (2021) Determination of fish quality parameters with low cost electronic nose. Food Biosci 41:100948. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2212429221000730

  336. Yi Z, Xie J (2021) Prediction in the dynamics and spoilage of shewanella putrefaciens in bigeye tuna (thunnus obesus) by gas sensors stored at different refrigeration temperatures. Foods 10(9). [Online]. Available: https://www.mdpi.com/2304-8158/10/9/2132

  337. Wijaya DR, Sarno R, Zulaika E (2021) Dwtlstm for electronic nose signal processing in beef quality monitoring. Sensors Actuators B Chem 326:128931. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0925400520312788

  338. Pulluri KK, Kumar VN (2022) Development of an integrated soft e-nose for food quality assessment. IEEE Sensors J 22(15):15111–15122

    Article  Google Scholar 

  339. Gu X, Feng L, Zhu J, Li Y, Tu K, Dong Q, Pan L (2021) Application of gas sensors for modelling the dynamic growth of pseudomonas in pork stored at different temperatures. Meat Sci 171:108282. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0309174020307142

  340. Bonah E, Huang X, Hongying Y, Aheto JH, Yi R, Yu S, Tu H (2021) Detection of salmonella typhimurium contamination levels in fresh pork samples using electronic nose smellprints in tandem with support vector machine regression and metaheuristic optimization algorithms. J Food Sci Technol 58:3861–3870

    Article  CAS  PubMed  Google Scholar 

  341. Bonah E, Huang X, Hongying Y, Harrington Aheto J, Yi R, Yu S, Tu H (2021) Nondestructive monitoring, kinetics and antimicrobial properties of ultrasound technology applied for surface decontamination of bacterial foodborne pathogen in pork. Ultrasonics Sonochemistry 70:105344. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1350417720306908

  342. Wang X, Wang Z, Sun Z, Wang D, Liu F, Lin L (2023) In vitro and in situ characterization of psychrotrophic spoilage bacteria recovered from chilled chicken. Foods 12(1). [Online]. Available: https://www.mdpi.com/2304-8158/12/1/95

  343. Zhang Q, Kang S, Yin C, Li Z, Shi Y (2022) An adaptive learning method for the fusion information of electronic nose and hyperspectral system to identify the egg quality. Sensors Actuators A Phys 346: 113824. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0924424722004599

  344. Qian K, Bao Y, Zhu J, Wang J, Wei Z (2021) Development of a portable electronic nose based on a hybrid filter-wrapper method for identifying the chinese dry-cured ham of different grades. J Food Eng 290:110250. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0260877420303411

  345. Liu X, Huo D, Li J, Ma Y, Liu H, Luo H, Zhang S, Luo X, Hou C (2023) Pattern-recognizing-assisted detection of mildewed wheat by dyes/dyes-cu-mof paper-based colorimetric sensor array. Food Chem 415:135525. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0308814623001413

  346. Zhang J, Zhang B, Dong J, Tian Y, Lin Y, Fang G, Wang S (2022) Identification of mouldy rice using an electronic nose combined with spme-gc/ms. J Stored Prod Res 95:101921. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0022474X21001600

  347. Camardo Leggieri M, Mazzoni M, Fodil S, Moschini M, Bertuzzi T, Prandini A, Battilani P (2021) An electronic nose supported by an artificial neural network for the rapid detection of aflatoxin b1 and fumonisins in maize. Food Control 123:107722. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0956713520306381

  348. Machungo C, Berna AZ, McNevin D, Wang R, Trowell S (2022) Comparison of the performance of metal oxide and conducting polymer electronic noses for detection of aflatoxin using artificially contaminated maize. Sensors Actuators B Chem 360:131681. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0925400522003239

  349. Makarichian A, Chayjan RA, Ahmadi E, Zafari D (2022) Early detection and classification of fungal infection in garlic (a. sativum) using electronic nose. Comput Electron Agric 192:106575. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0168169921005925

  350. Wu J, Pang L, Zhang X, Lu X, Yin L, Lu G, Cheng J (2022) Early discrimination and prediction of c. fimbriata-infected sweetpotatoes during the asymptomatic period using electronic nose. Foods 11(13). [Online]. Available: https://www.mdpi.com/2304-8158/11/13/1919

  351. Shi Y, Liu M, Sun A, Liu J, Men H (2021) A fast pearson graph convolutional network combined with electronic nose to identify the origin of rice. IEEE Sensors J 21(19):21175–21183

    Article  CAS  Google Scholar 

  352. Shi Y, Yuan H, Xiong C, Zhang Q, Jia S, Liu J, Men H (2021) Improving performance: a collaborative strategy for the multi-data fusion of electronic nose and hyperspectral to track the quality difference of rice. Sensors Actuators B Chem 333:129546. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0925400521001143

  353. Lin H, Chen H, Yin C, Zhang Q, Li Z, Shi Y, Men H (2022) Lightweight residual convolutional neural network for soybean classification combined with electronic nose. IEEE Sensors J 22(12):11463–11473

    Article  Google Scholar 

  354. Kang S, Zhang Q, Li Z, Yin C, Feng N, Shi Y (2023) Determination of the quality of tea from different picking periods: An adaptive pooling attention mechanism coupled with an electronic nose. Postharv Biol Technol 197:112214. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0925521422003829

  355. Yan C, Lu A (2022) A deep learning method combined with electronic nose to identify the rice origin. J Instr 17(08):P08016, aug. [Online]. Available: https://dx.doi.org/10.1088/1748-0221/17/08/P08016

  356. Yu D, Gu Y (2021) A machine learning method for the fine-grained classification of green tea with geographical indication using a mos-based electronic nose. Foods 10(4). [Online]. Available: https://www.mdpi.com/2304-8158/10/4/795

  357. Fu J, Liu R, Chen Y, Xing J (2023) Discrimination of geographical indication of chinese green teas using an electronic nose combined with quantum neural networks: a portable strategy. Sensors Actuators B Chem 375:132946. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0925400522015891

  358. Wang X, Gu Y, Liu H (2021) A transfer learning method for the protection of geographical indication in china using an electronic nose for the identification of xihu longjing tea. IEEE Sens J 21(6):8065–8077

    Article  Google Scholar 

  359. Wu X, Fauconnier M-L, Bi J (2022) Characterization and discrimination of apples by flash gc e-nose: geographical regions and botanical origins studies in china. Foods 11(11). [Online]. Available: https://www.mdpi.com/2304-8158/11/11/1631

  360. He X, Yangming H, Górska-Horczyczak E, Wierzbicka A, Jeleń HH (2021) Rapid analysis of baijiu volatile compounds fingerprint for their aroma and regional origin authenticity assessment. Food Chem 337:128002. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0308814620318641

  361. xin Yu D, Zhang X, Guo S, Yan H, mei Wang J, qi Zhou J, Yang J, Duan J-A (2022) Headspace gc/ms and fast gc e-nose combined with chemometric analysis to identify the varieties and geographical origins of ginger (zingiber officinale roscoe). Food Chem 396:133672. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S030881462201634X

  362. Duan Z, Dong S, Dong Y, Gao Q (2021) Geographical origin identification of two salmonid species via flavor compound analysis using headspace-gas chromatography-ion mobility spectrometry combined with electronic nose and tongue. Food Res Int vol. 145:110385. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0963996921002842

  363. Shao Y, Liu X, Zhang Z, Wang P, Li K, Li C (2023) Comparison and discrimination of the terpenoids in 48 species of huajiao according to variety and geographical origin by e-nose coupled with hs-spme-gc-ms. Food Res Int 167:112629. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0963996923001746

  364. Feng X, Wang H, Wang Z, Huang P, Kan J (2022) Discrimination and characterization of the volatile organic compounds in eight kinds of huajiao with geographical indication of China using electronic nose, HS-GC-IMS and HS-SPME-GC-MS. Food Chem 375:131671. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0308814621026777

  365. Nategh NA, Dalvand MJ, Anvar A (2021) Detection of toxic and non-toxic sweet cherries at different degrees of maturity using an electronic nose. J Food Meas Character 15:1213–1224

    Article  Google Scholar 

  366. Sanaeifar A, Li X, He Y, Huang Z, Zhan Z (2021) A data fusion approach on confocal raman microspectroscopy and electronic nose for quantitative evaluation of pesticide residue in tea. Biosyst Eng 210:206–222. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1537511021002002

  367. Amkor A, Barbri NE (2021) A measurement prototype based on gas sensors for detection of pesticide residues in edible mint. J Food Meas Character 15:170–180

    Article  Google Scholar 

  368. Amkor A, El Barbri N (2023) Artificial intelligence methods for classification and prediction of potatoes harvested from fertilized soil based on a sensor array response. Sensors Actuators A Phys 349:114106. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0924424722007415

Download references

Funding

This work was supported by the University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province [2020188]; the China Postdoctoral Science Foundation [2020M670920]; the National Natural Science Foundation of China [No. 61803128]; and Heilongjiang Postdoctoral Foundation [LBH-Z19167].

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, MW and YC; writing—original draft preparation, MW; writing—review and editing, YC; supervision, YC. All the authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Yinsheng Chen.

Ethics declarations

Conflict of interest

The authors do not have any possible conflicts of interest.

Ethical approval

This article does not contain any studies with human or animal subjects.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Chen, Y. Electronic nose and its application in the food industry: a review. Eur Food Res Technol 250, 21–67 (2024). https://doi.org/10.1007/s00217-023-04381-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-023-04381-z

Keywords

Navigation