Skip to main content

Advertisement

Log in

Development of fibre-enriched wheat breads: impact of recovered agroindustrial by-products on physicochemical properties of dough and bread characteristics

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Dietary fibre is easily available in plant foods. However, western diet frequently does not meet recommended levels. Fibre supplementation of bread is an opportunity due to its daily consumption. In this work, fibre-enriched extracts were recovered from elderberry (EE), orange (OE), pomegranate (PE), and spent yeast (YE), and their fibre composition was characterized. The impact of wheat flour replacement by different fibre extract amounts on dough properties indicates that (1) optimum water absorption increased with higher concentrations of OE, PE, and YE; (2) development time for EE, PE, and YE was shortened, while the opposite was observed for OE; (3) the onset of starch gelatinization and maximum tanδ increased significantly with 36% EE and 4% PE; (4) protein structure, observed with confocal laser scanning microscopy, was modified by addition of extracts; and (5) maximum and final dough height decreased significantly, except for 4% EE. Wheat flour replacement also had an impact on bread parameters, since (1) volume and specific volume decreased at the highest concentrations in every extract; (2) significant changes were observed in crumb texture and structure, at higher extract concentrations. Multivariate PLS regression highlights the relationships between dough and bread data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

1,31,6BG:

(1-3)(1-6)-β-d-Glucan and (1-3)-β-d-glucan

1,31,4BG:

(1-3)(1-4)-β-d-Glucan

BP:

By-product

CA:

Cell area

DF:

Dietary fibre

DMTA:

Dynamic mechanical thermal analysis

DT:

Development time

EE:

Elderberry extract

G*:

Maximum |G*| (Pa)

G 0*:

|G*| at 30 °C (Pa)

G*onset :

|G*| at the starch gelatinization onset (Pa)

H m :

Maximum dough height

H :

Dough height at the end of measurement

Hm :

Maximum height of gaseous release

IDF:

Insoluble dietary fibre

LV:

Latent variables

OE:

Orange extract

OWA:

Optimum water absorption

PE:

Pomegranate extract

Q 2 :

Cumulative predictive variation from internal cross-validation

R 2 :

Cumulative explained variation of Y explained in terms of sum of squares

RMSE:

Root mean square error

SDF:

Soluble dietary fibre

TDF:

Total dietary fibre

T 1 :

Time to reach H m

T1 :

Time of Hm

tanδ:

Maximum tanδ

tanδ0 :

tanδ at 30 °C

TG*:

Temperature at maximum |G*| (°C)

Ttanδ:

Temperature at maximum tanδ (°C)

T x :

Time of gas release

YE:

Yeast extract

References

  1. European Heart Network (2011) Diet, physical activity and cardiovascular disease prevention in Europe. EHN, Brussels

    Google Scholar 

  2. Kaczmarczyk MM, Miller MJ, Freund GG (2012) The health benefits of dietary fiber: beyond the usual suspects of type 2 diabetes mellitus, cardiovascular disease and colon cancer. Metab Clin Exp 61(8):1058–1066. doi:10.1016/j.metabol.2012.01.017

    Article  CAS  Google Scholar 

  3. World Cancer Research Fund/American Institute for Cancer Research (2007) Food, nutrition, physical activity and the prevention of cancer: a global perspective. AICR, Washington DC

    Google Scholar 

  4. Kendall CWC, Esfahani A, Jenkins DJA (2010) The link between dietary fibre and human health. Food Hydrocolloids 24(1):42–48. doi:10.1016/j.foodhyd.2009.08.002

    Article  CAS  Google Scholar 

  5. Nishida C, Uauy R, Kumanyika S, Shetty P (2004) The joint WHO/FAO expert consultation on diet, nutrition and the prevention of chronic diseases: process, product and policy implications. Public Health Nutrition 7:245–250

    Google Scholar 

  6. Rodríguez R, Jiménez A, Fernández-Bolaños J, Guillén R, Heredia A (2006) Dietary fibre from vegetable products as source of functional ingredients. Trends Food Sci Technol 17(1):3–15. doi:10.1016/j.tifs.2005.10.002

    Article  Google Scholar 

  7. Sudha ML, Vetrimani R, Leelavathi K (2007) Influence of fibre from different cereals on the rheological characteristics of wheat flour dough and on biscuit quality. Food Chem 100(4):1365–1370. doi:10.1016/j.foodchem.2005.12.013

    Article  CAS  Google Scholar 

  8. McRorie JW, Chey WD (2016) Fermented fiber supplements are no better than placebo for a laxative effect. Dig Dis Sci 61(11):3140–3146. doi:10.1007/s10620-016-4304-1

    Article  CAS  Google Scholar 

  9. Kearney J (2010) Food consumption trends and drivers. Philos Trans R Soc B: Biol Sci 365(1554):2793–2807. doi:10.1098/rstb.2010.0149

    Article  Google Scholar 

  10. Fitzgerald C, Gallagher E, Doran L, Auty M, Prieto J, Hayes M (2014) Increasing the health benefits of bread: assessment of the physical and sensory qualities of bread formulated using a renin inhibitory Palmaria palmata protein hydrolysate. LWT Food Sci Technol 56(2):398–405. doi:10.1016/j.lwt.2013.11.031

    Article  CAS  Google Scholar 

  11. Paraskevopoulou A, Chrysanthou A, Koutidou M (2012) Characterisation of volatile compounds of lupin protein isolate-enriched wheat flour bread. Food Res Int 48(2):568–577. doi:10.1016/j.foodres.2012.05.028

    Article  CAS  Google Scholar 

  12. Regulation (EC) No. 1924/2006 European Parliament and of the Council of 20 December 2006 on nutrition and health claims made on foods. Official Journal of the European Union OJL12. 3–18. Corrigendum 18.1.2007

  13. Ferreira IMPLVO, Pinho O, Vieira E, Tavarela JG (2010) Brewer’s Saccharomyces yeast biomass: characteristics and potential applications. Trends Food Sci Technol 21(2):77–84. doi:10.1016/j.tifs.2009.10.008

    Article  CAS  Google Scholar 

  14. Kwiatkowski S, Thielen U, Glenney P, Moran C (2009) A study of Saccharomyces cerevisiae cell wall glucans. J Inst Brew 115(2):151–158. doi:10.1002/j.2050-0416.2009.tb00361.x

    Article  CAS  Google Scholar 

  15. Bchir B, Rabetafika HN, Paquot M, Blecker C (2014) Effect of pear, apple and date fibres from cooked fruit by-products on dough performance and bread quality. Food Bioprocess Technol 7(4):1114–1127. doi:10.1007/s11947-013-1148-y

    Article  CAS  Google Scholar 

  16. Pathak D, Majumdar J, Raychaudhuri U, Chakraborty R (2016) Characterization of physicochemical properties in whole wheat bread after incorporation of ripe mango peel. J Food Meas Charact 10(3):554–561. doi:10.1007/s11694-016-9335-y

    Article  Google Scholar 

  17. Shiau S-Y, Wu M-Y, Liu Y-L (2015) The effect of pineapple core fiber on dough rheology and the quality of mantou. J Food Drug Anal 23(3):493–500. doi:10.1016/j.jfda.2014.10.010

    Article  CAS  Google Scholar 

  18. Wu M-Y, Shiau S-Y (2015) Effect of the amount and particle size of pineapple peel fiber on dough rheology and steam bread quality. J Food Process Preserv 39:549–558

    Article  CAS  Google Scholar 

  19. Sulieman AME, Babiker WAM, Elhardallou SB, Elkhalifa EA, Veettil VN (2016) Influence of enrichment of wheat bread with pomegranate (Punica granatum L) peels by-products. Int J Food Sci Nutr Eng 6:9–13

    Google Scholar 

  20. Belghith Fendri L, Chaari F, Maaloul M, Kallel F, Abdelkafi L, Ellouz Chaabouni S, Ghribi-Aydi D (2016) Wheat bread enrichment by pea and broad bean pods fibers: effect on dough rheology and bread quality. LWT Food Sci Technol 73:584–591. doi:10.1016/j.lwt.2016.06.070

    Article  CAS  Google Scholar 

  21. Chareonthaikij P, Uan-On T, Prinyawiwatkul W (2016) Effects of pineapple pomace fibre on physicochemical properties of composite flour and dough, and consumer acceptance of fibre-enriched wheat bread. Int J Food Sci Technol 51(5):1120–1129. doi:10.1111/ijfs.13072

    Article  CAS  Google Scholar 

  22. ANSES (2016) French food composition table—Table Ciqual 2016. Observatory of food nutritional quality, unit of ANSES (the French Agency for Food, Environmental and Occupational Health Safety)

  23. Czech Centre for Food Composition Database Czech food composition database, Version 6.16. Institute of Agricultural Economics and Information, Prague

  24. USDA (2015) National nutrient database for standard reference release 28. United States Department of Agriculture, Agricultural Research Service, USA

  25. Thammakiti S, Suphantharika M, Phaesuwan T, Verduyn C (2004) Preparation of spent brewer’s yeast β-glucans for potential applications in the food industry. Int J Food Sci Technol 39(1):21–29. doi:10.1111/j.1365-2621.2004.00742.x

    Article  CAS  Google Scholar 

  26. Prosky L, Asp NG, Furda I, DeVries JW, Schweizer TF, Harland BF (1985) Determination of total dietary fibre in foods and food products: collaborative study. J Assoc Official Anal Chem 68:677

    CAS  Google Scholar 

  27. Prosky L, Asp NG, Schweizer TF, DeVries JW, Furda I (1988) Determination of insoluble, soluble, and total dietary fibre in foods and food products. J Assoc Official Anal Chem 71:1017

    CAS  Google Scholar 

  28. Pinto E, Fidalgo F, Teixeira J, Aguiar AA, Ferreira IM (2014) Influence of the temporal and spatial variation of nitrate reductase, glutamine synthetase and soil composition in the N species content in lettuce (Lactuca sativa). Plant Sci 219–220:35–41. doi:10.1016/j.plantsci.2014.01.001

    Article  Google Scholar 

  29. Pinto E, Almeida AA, Aguiar AA, Ferreira IM (2014) Changes in macrominerals, trace elements and pigments content during lettuce (Lactuca sativa L.) growth: influence of soil composition. Food Chem 152:603–611. doi:10.1016/j.foodchem.2013.12.023

    Article  CAS  Google Scholar 

  30. Jekle M, Mühlberger K, Becker T (2016) Starch–gluten interactions during gelatinization and its functionality in dough like model systems. Food Hydrocolloids 54:196–201. doi:10.1016/j.foodhyd.2015.10.005

    Article  CAS  Google Scholar 

  31. Otsu N (1979) A threshold selection method from gray-level histogram. IEEE Trans Syst Man Cybern 9(1):62–66. doi:10.1109/TSMC.1979.4310076

    Article  Google Scholar 

  32. Larrauri JA (1999) New approaches in the preparation of high dietary fibre powders from fruit by-products. Trends Food Sci Technol 10(1):3–8. doi:10.1016/S0924-2244(99)00016-3

    Article  CAS  Google Scholar 

  33. Tańska M, Roszkowska B, Czaplicki S, Borowska EJ, Bojarska J, Dąbrowska A (2016) Effect of fruit pomace addition on shortbread cookies to improve their physical and nutritional values. Plant Foods Hum Nutr 71(3):307–313. doi:10.1007/s11130-016-0561-6

    Article  Google Scholar 

  34. Figuerola F, MaL Hurtado, Estévez AMa, Chiffelle I, Asenjo F (2005) Fibre concentrates from apple pomace and citrus peel as potential fibre sources for food enrichment. Food Chem 91(3):395–401. doi:10.1016/j.foodchem.2004.04.036

    Article  CAS  Google Scholar 

  35. Liu Y, Wang L, Liu F, Pan S (2016) Effect of grinding methods on structural, physicochemical, and functional properties of insoluble dietary fiber from orange peel. Int J Polym Sci 2016:7. doi:10.1155/2016/6269302

    Google Scholar 

  36. Chaud SG, Sgarbieri V, Vicente E, Da Silva N, Alves AB, De Mattos JAR (2007) Influence of yeast (Saccharomyces cerevisiae) cell wall fractions on serum indexes of glucose and lipids, intestinal microbiota and production of short-chain volatile fatty acids (VFA) in growing rats. Ciência e Tecnologia Alimentar, Campinas 27(2):338–348

    Article  CAS  Google Scholar 

  37. Hasnaoui N, Wathelet B, Jiménez-Araujo A (2014) Valorization of pomegranate peel from 12 cultivars: dietary fibre composition, antioxidant capacity and functional properties. Food Chem 160:196–203. doi:10.1016/j.foodchem.2014.03.089

    Article  CAS  Google Scholar 

  38. López-Marcos MC, Bailina C, Viuda-Martos M, Pérez-Alvarez JA, Fernández-López J (2015) Properties of dietary fibers from agroindustrial coproducts as source for fiber-enriched foods. Food Bioprocess Technol 8(12):2400–2408. doi:10.1007/s11947-015-1591-z

    Article  Google Scholar 

  39. Nakamura T, Agata K, Mizutani M, Iino H (2001) Effects of brewer’s yeast cell wall on constipation and defecation in experimentally constipated rats. Biosci Biotechnol Biochem 65(4):774–780. doi:10.1271/bbb.65.774

    Article  CAS  Google Scholar 

  40. Zhu F, Du B, Bian Z, Xu B (2015) Beta-glucans from edible and medicinal mushrooms: characteristics, physicochemical and biological activities. J Food Compos Anal 41:165–173. doi:10.1016/j.jfca.2015.01.019

    Article  CAS  Google Scholar 

  41. Kurek MA, Wyrwisz J, Piwińska M, Wierzbicka A (2015) Influence of the wheat flour extraction degree in the quality of read made with high proportions of β-glucan. Food Sci Technol 35(2):273–278. doi:10.1590/1678-457X.6537

    Google Scholar 

  42. Chiocchetti GdM, Fernandes EADN, Bacchi MA, Pazim RA, Sarriés SRV, Tomé T (2013) Mineral composition of fruit by-products evaluated by neutron activation analysis. J Radioanal Nucl Chem 297:399–404

    Article  Google Scholar 

  43. Sun-Waterhouse D, Jin D, Waterhouse GIN (2013) Effect of adding elderberry juice concentrate on the quality attributes, polyphenol contents and antioxidant activity of three fibre-enriched pastas. Food Res Int 54(1):781–789. doi:10.1016/j.foodres.2013.08.035

    Article  CAS  Google Scholar 

  44. Amorim M, Pereira JO, Gomes D, Pereira CD, Pinheiro H, Pintado M (2016) Nutritional ingredients from spent brewer’s yeast obtained by hydrolysis and selective membrane filtration integrated in a pilot process. J Food Eng 185:42–47. doi:10.1016/j.jfoodeng.2016.03.032

    Article  CAS  Google Scholar 

  45. Jekle M, Becker T (2012) Effects of acidification, sodium chloride, and moisture levels on wheat dough: I. Modeling of rheological and microstructural Properties. Food Biophys 7(3):190–199. doi:10.1007/s11483-012-9257-0

    Article  Google Scholar 

  46. Jekle M, Becker T (2012) Effects of acidification, sodium chloride, and moisture levels on wheat dough: II. Modeling of bread texture and staling kinetics. Food Biophys 7(3):200–208. doi:10.1007/s11483-012-9258-z

    Article  Google Scholar 

  47. Miller RA, Hoseney RC (2008) Role of salt in baking. Cereal Foods World 53:4–6

    CAS  Google Scholar 

  48. Rosell CM, Rojas JA, Benedito de Barber C (2001) Influence of hydrocolloids on dough rheology and bread quality. Food Hydrocolloids 15(1):75–81. doi:10.1016/S0268-005X(00)00054-0

    Article  CAS  Google Scholar 

  49. Thebaudin JY, Lefebvre AC, Harrington M, Bourgeois CM (1997) Dietary fibres: nutritional and technological interest. Trends Food Sci Technol 8(2):41–48. doi:10.1016/S0924-2244(97)01007-8

    Article  CAS  Google Scholar 

  50. Frølich W, Åman P, Tetens I (2013) Whole grain foods and health—a Scandinavian perspective. Food Nutr Res. doi:10.3402/fnr.v3457i3400.18503

    Google Scholar 

  51. Milan AM, Cameron-Smith D (2015) Chapter three—digestion and postprandial metabolism in the elderly. In: Jeyakumar H (ed) Advances in food and nutrition research, vol 76. Elsevier, Waltham, pp 79–124. doi:10.1016/bs.afnr.2015.09.001

  52. Nindjin C, Amani GN, Sindic M (2011) Effect of blend levels on composite wheat doughs performance made from yam and cassava native starches and bread quality. Carbohyd Polym 86(4):1637–1645. doi:10.1016/j.carbpol.2011.06.076

    Article  CAS  Google Scholar 

  53. Rosell CM, Santos E, Collar C (2006) Mixing properties of fibre-enriched wheat bread doughs: a response surface methodology study. Eur Food Res Technol 223(3):333–340. doi:10.1007/s00217-005-0208-6

    Article  CAS  Google Scholar 

  54. Ahmed J, Almusallam AS, Al-Salman F, AbdulRahman MH, Al-Salem E (2013) Rheological properties of water insoluble date fiber incorporated wheat flour dough. LWT Food Sci Technol 51(2):409–416. doi:10.1016/j.lwt.2012.11.018

    Article  CAS  Google Scholar 

  55. Migliori M, Gabriele D (2010) Effect of pentosan addition on dough rheological properties. Food Res Int 43(9):2315–2320. doi:10.1016/j.foodres.2010.08.008

    Article  CAS  Google Scholar 

  56. Wang J, Rosell CM, Benedito de Barber C (2002) Effect of the addition of different fibres on wheat dough performance and bread quality. Food Chem 79(2):221–226. doi:10.1016/S0308-8146(02)00135-8

    Article  CAS  Google Scholar 

  57. Gómez M, Ronda F, Blanco CA, Caballero PA, Apesteguía A (2003) Effect of dietary fibre on dough rheology and bread quality. Eur Food Res Technol 216:51–56. doi:10.1007/s00217-002-0632-9

    Article  Google Scholar 

  58. Roth M, Döring C, Jekle M, Becker T (2015) Mechanisms behind distiller’s grains impact on wheat dough and bread quality. Food Bioprocess Technol 9(2):274–284. doi:10.1007/s11947-015-1620-y

    Article  Google Scholar 

  59. Sidhu JP, Bawa AS (2002) Dough characteristics and baking studies of wheat flour fortified with xanthan gum. Int J Food Prop 5(1):1

    Article  CAS  Google Scholar 

  60. Föste M, Nordlohne SD, Elgeti D, Linden MH, Heinz V, Jekle M, Becker T (2014) Impact of quinoa bran on gluten-free dough and bread characteristics. Eur Food Res Technol 239(5):767–775. doi:10.1007/s00217-014-2269-x

    Article  Google Scholar 

  61. Pomeranz Y, Shogren MD, Finney KF, Bechtel DB (1977) Fiber in breadmaking: effects on functional properties. Cereal Chem 54:25–41

    Google Scholar 

  62. Chen H, Rubenthaler GL, Schanus EG (1988) Effect of apple fiber and cellulose on the physical properties of wheat flour. J Food Sci 53(1):304–305. doi:10.1111/j.1365-2621.1988.tb10242.x

    Article  CAS  Google Scholar 

  63. Skendi A, Biliaderis CG, Papageorgiou M, Izydorczyk MS (2010) Effects of two barley β-glucan isolates on wheat flour dough and bread properties. Food Chem 119(3):1159–1167. doi:10.1016/j.foodchem.2009.08.030

    Article  CAS  Google Scholar 

  64. Cramer RD (1993) Partial least squares (PLS): its strengths and limitations. Perspect Drug Discov Des 1(2):269–278. doi:10.1007/bf02174528

    Article  CAS  Google Scholar 

  65. Nokels L, Fahmy T, Crochemore S (2010) Interpretation of the preferences of automotive customers applied to air conditioning supports by combining GPA and PLS regression. In: Esposito Vinzi V, Chin WW, Henseler J, Wang H (eds) Handbook of partial least squares: concepts, methods and applications. Springer Berlin, pp 775–789. doi:10.1007/978-3-540-32827-8_34

  66. Liu Z, Scanlon MG (2003) Predicting mechanical properties of bread crumb. Food Bioprod Process 81(3):224–238. doi:10.1205/096030803322437992

    Article  Google Scholar 

Download references

Acknowledgements

Zita Martins wishes to thank FCT, Fundação para a Ciência e Tecnologia the Grant FRH/BD/87461/2012. This work received financial support from the European Union (FEDER funds POCI/01/0145/FEDER/007265) and National Funds (FCT/MEC, Fundação para a Ciência e Tecnologia and Ministério da Educação e Ciência) under the Partnership Agreement PT2020 UID/QUI/50006/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel M. P. L. V. O. Ferreira.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martins, Z.E., Pinho, O., Ferreira, I.M.P.L.V.O. et al. Development of fibre-enriched wheat breads: impact of recovered agroindustrial by-products on physicochemical properties of dough and bread characteristics. Eur Food Res Technol 243, 1973–1988 (2017). https://doi.org/10.1007/s00217-017-2903-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-017-2903-5

Keywords

Navigation