Skip to main content

Advertisement

Log in

Profiling of cardiolipins and their hydroperoxides in HepG2 cells by LC/MS

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Cardiolipin (CL) exists as crucial functional phospholipid in mitochondria. The oxidation of CL is concerned with mitochondrial dysfunction and various diseases. As main oxidation products, CL hydroperoxide (CL-OOH) plays a key role in intermediating oxidative reaction. Thus, direct analysis of CL-OOH is of great interest. In the present study, CL and CL-OOH profiles were analyzed in oxidized HepG2 cell lipid via HPLC-Orbitrap MS/MS. Furthermore, the contents of individual molecular species were compared between intact and AAPH-oxidized HepG2 cells. In total, 46 CL and 18 CL-OOH were identified from oxidized cell lipids, while 21 CL and 9 CL-OOH were detected in AAPH-treated cells. Most CL depleted significantly after AAPH inducement, with percentages varying from 8.3% (CL70:7) to 73.7% (CL72:4), depending on fatty acyl composition. While almost all the CL-OOH remarkably increased, among them 68:6-, 72:6-, and 72:7-OOHs were only detected in AAPH-treated cells. CL68:5- and CL68:4-OOH were the most abundant species, while CL70:5-OOH among all the species expressed the highest oxidation percentage of the corresponding CL. Our results showed practical separation, identification, and semi-quantitation of CL-OOH species, which could contribute to approaches to lipidomic analysis of CL and CL-OOH, as well as tracing biomarkers in mitochondrial oxidative stress diagnosis.

Illustration represents cardiolipin hydroperoxide structure and its content increasing in AAPH-treated HepG2 cells by LC/MS analysis

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhang M, Mileykovskaya E, Dowhan W. Cardiolipin is essential for organization of complexes III and IV into a supercomplex in intact yeast mitochondria. J Biol Chem. 2005;280:29403–8. doi:10.1074/jbc.M504955200.

    Article  CAS  Google Scholar 

  2. Horvath SE, Daum G. Lipids of mitochondria. Prog Lipid Res. 2013;52:590–614. doi:10.1016/j.plipres.2013.07.002.

    Article  CAS  Google Scholar 

  3. Chicco AJ, Sparagna GC. Role of cardiolipin alterations in mitochondrial dysfunction and disease. Am J Physiol Cell Physiol. 2007;292:C33–44. doi:10.1152/ajpcell.00243.2006.

    Article  CAS  Google Scholar 

  4. Samhan-Arias AK, Ji J, Demidova OM, Sparvero LJ, Feng W, Tyurin V, et al. Oxidized phospholipids as biomarkers of tissue and cell damage with a focus on cardiolipin. Biochim Biophys Acta Biomembr. 2012;1818:2413–23. doi:10.1016/j.bbamem.2012.03.014.

    Article  CAS  Google Scholar 

  5. Pope S, Land JM, Heales SJR. Oxidative stress and mitochondrial dysfunction in neurodegeneration; cardiolipin a critical target? Biochim Biophys Acta Bioenerg. 2008;1777:794–9. doi:10.1016/j.bbabio.2008.03.011.

    Article  CAS  Google Scholar 

  6. Li X-X, Tsoi B, Li Y-F, Kurihara H, He R-R. Cardiolipin and its different properties in mitophagy and apoptosis. J Histochem Cytochem. 2015;63:301–11. doi:10.1369/0022155415574818.

    Article  CAS  Google Scholar 

  7. Wortmann SB, Vaz FM, Gardeitchik T, Vissers LELM, Renkema GH, Schuurs-Hoeijmakers JHM, et al. Mutations in the phospholipid remodeling gene SERAC1 impair mitochondrial function and intracellular cholesterol trafficking and cause dystonia and deafness. Nat Genet. 2012;44:797–802. doi:10.1038/ng.2325.

    Article  CAS  Google Scholar 

  8. Ott M, Gogvadze V, Orrenius S, Zhivotovsky B. Mitochondria, oxidative stress and cell death. Apoptosis. 2007;12:913–22. doi:10.1007/s10495-007-0756-2.

    Article  CAS  Google Scholar 

  9. Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 2006;443:787–95. doi:10.1038/nature05292.

    Article  CAS  Google Scholar 

  10. Yu EPK, Bennett MR. The role of mitochondrial DNA damage in the development of atherosclerosis. Free Radic Biol Med. 2016;100:223–30. doi:10.1016/j.freeradbiomed.2016.06.011.

    Article  CAS  Google Scholar 

  11. Madamanchi NR, Vendrov A, Runge MS. Oxidative stress and vascular disease. Arterioscler Thromb Vasc Biol. 2005;25:29–38. doi:10.1161/01.ATV.0000150649.39934.13.

    Article  CAS  Google Scholar 

  12. Girotti AW. Lipid hydroperoxide generation, turnover, and effector action in biological systems. J Lipid Res. 1998;39:1529–42.

    CAS  Google Scholar 

  13. Niki E. Biomarkers of lipid peroxidation in clinical material. Biochim Biophys Acta - Gen Subj. 2014;1840:809–17. doi:10.1016/j.bbagen.2013.03.020.

    Article  CAS  Google Scholar 

  14. Tyurina YY, Tyurin VA, Kapralova VI, Wasserloos K, Mosher M, Epperly MW, et al. Oxidative lipidomics of γ-radiation-induced lung injury: mass spectrometric characterization of cardiolipin and phosphatidylserine peroxidation. Radiat Res. 2011;175:610–21. doi:10.1667/RR2297.1.

    Article  CAS  Google Scholar 

  15. Hui SP, Taguchi Y, Takeda S, Ohkawa F, Sakurai T, Yamaki S, et al. Quantitative determination of phosphatidylcholine hydroperoxides during copper oxidation of LDL and HDL by liquid chromatography/mass spectrometry. Anal Bioanal Chem. 2012;403:1831–40. doi:10.1007/s00216-012-5833-x.

    Article  CAS  Google Scholar 

  16. Shrestha R, Hui S-P, Sakurai T, Yagi A, Takahashi Y, Takeda S, et al. Identification of molecular species of cholesteryl ester hydroperoxides in very low-density and intermediate-density lipoproteins. Ann Clin Biochem. 2014;51:662–71. doi:10.1177/0004563213516093.

    Article  Google Scholar 

  17. Hui S-P, Chiba H, Jin S, Nagasaka H, Kurosawa T. Analyses for phosphatidylcholine hydroperoxides by LC/MS. J Chromatogr B. 2010;878:1677–82. doi:10.1016/j.jchromb.2010.04.011.

    Article  CAS  Google Scholar 

  18. Hui S-P, Sakurai T, Takeda S, Jin S, Fuda H, Kurosawa T, et al. Analysis of triacylglycerol hydroperoxides in human lipoproteins by Orbitrap mass spectrometer. Anal Bioanal Chem. 2013;405:4981–7. doi:10.1007/s00216-013-6903-4.

    Article  CAS  Google Scholar 

  19. Ji J, Kline AE, Amoscato A, Samhan-Arias AK, Sparvero LJ, Tyurin VA, et al. Lipidomics identifies cardiolipin oxidation as a mitochondrial target for redox therapy of brain injury. Nat Neurosci. 2012;15:1407–13. doi:10.1038/nn.3195.

    Article  CAS  Google Scholar 

  20. Zhong H, Lu J, Xia L, Zhu M, Yin H. Formation of electrophilic oxidation products from mitochondrial cardiolipin in vitro and in vivo in the context of apoptosis and atherosclerosis. Redox Biol. 2014;2:878–83. doi:10.1016/j.redox.2014.04.003.

    Article  CAS  Google Scholar 

  21. Hui SP, Sakurai T, Ohkawa F, Furumaki H, Jin S, Fuda H, et al. Detection and characterization of cholesteryl ester hydroperoxides in oxidized LDL and oxidized HDL by use of an Orbitrap mass spectrometer. Anal Bioanal Chem. 2012;404:101–12. doi:10.1007/s00216-012-6118-0.

    Article  CAS  Google Scholar 

  22. Hara A, Radin NS. Lipid extraction of tissues with a low-toxicity solvent. Anal Biochem. 1978;90:420–6. doi:10.1016/0003-2697(78)90046-5.

    Article  CAS  Google Scholar 

  23. Suzuki E, Sano A, Kuriki T, Miki T. Improved separation and determination of phospholipids in animal tissues employing solid phase extraction. Biol Pharm Bull. 1997;20:299–303. doi:10.1248/bpb.20.299.

    Article  CAS  Google Scholar 

  24. Fauland A, Trötzmüller M, Eberl A, Afiuni-Zadeh S, Köfeler H, Guo X, et al. An improved SPE method for fractionation and identification of phospholipids. J Sep Sci. 2013;36:744–51. doi:10.1002/jssc.201200708.

    Article  CAS  Google Scholar 

  25. MacIel E, Domingues P, Domingues MRM. Liquid chromatography/tandem mass spectrometry analysis of long-chain oxidation products of cardiolipin induced by the hydroxyl radical. Rapid Commun Mass Spectrom. 2011;25:316–26. doi:10.1002/rcm.4866.

    Article  CAS  Google Scholar 

  26. Domingues MRM, Reis A, Domingues P. Mass spectrometry analysis of oxidized phospholipids. Chem Phys Lipids. 2008;156:1–12. doi:10.1016/j.chemphyslip.2008.07.003.

    Article  CAS  Google Scholar 

  27. Kim J, Minkler PE, Salomon RG, Anderson VE, Hoppel CL. Cardiolipin: characterization of distinct oxidized molecular species. J Lipid Res. 2011;52:125–35. doi:10.1194/jlr.M010520.

    Article  Google Scholar 

  28. Bird SS, Marur VR, Sniatynski MJ, Greenberg HK, Kristal BS (2011) Lipidomics profiling by high-resolution LC-MS and high-energy collisional dissociation fragmentation: focus on characterization of mitochondrial cardiolipins and monolysocardiolipins. Anal Chem 83:940–949. doi: 10.1021/ac102598u

  29. Minkler PE, Hoppel CL. Separation and characterization of cardiolipin molecular species by reverse-phase ion pair high-performance liquid chromatography-mass spectrometry. J Lipid Res. 2010;51:856–65. doi:10.1194/jlr.D002857.

    Article  CAS  Google Scholar 

  30. Sullivan EM, Fix A, Crouch MJ, Sparagna GC, Zeczycki TN, Brown DA, et al. Murine diet-induced obesity remodels cardiac and liver mitochondrial phospholipid acyl chains with differential effects on respiratory enzyme activity. J Nutr Biochem. 2017;45:94–103. doi:10.1016/j.jnutbio.2017.04.004.

    Article  CAS  Google Scholar 

  31. Zhong H, Xiao M, Zarkovic K, Zhu M, Sa R, Lu J, et al. Mitochondrial control of apoptosis through modulation of cardiolipin oxidation in hepatocellular carcinoma: a novel link between oxidative stress and cancer. Free Radic Biol Med. 2017;102:67–76. doi:10.1016/j.freeradbiomed.2016.10.494.

    Article  CAS  Google Scholar 

  32. Ostrander DB, Sparagna GC, Amoscato AA, McMillin JB, Dowhan W. Decreased cardiolipin synthesis corresponds with cytochrome c release in palmitate-induced cardiomyocyte apoptosis. J Biol Chem. 2001;276:38061–7. doi:10.1074/jbc.M107067200.

    Article  CAS  Google Scholar 

  33. HAYASAKA T, FUDA H, S-P HUI, CHIBA H. Imaging mass spectrometry reveals a decrease of Cardiolipin in the kidney of NASH model mice. Anal Sci. 2016;32:473–6. doi:10.2116/analsci.32.473.

    Article  CAS  Google Scholar 

  34. Prado FM, Oliveira MCB, Miyamoto S, Martinez GR, Medeiros MHG, Ronsein GE, et al. Thymine hydroperoxide as a potential source of singlet molecular oxygen in DNA. Free Radic Biol Med. 2009;47:401–9. doi:10.1016/j.freeradbiomed.2009.05.001.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science, by the Regional Innovation Strategy Support Program, Sapporo Health Innovation “Smart-H”, of the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Ping Hui.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Electronic supplementary material

ESM 1

(PDF 509 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Wu, Y., Ma, YS. et al. Profiling of cardiolipins and their hydroperoxides in HepG2 cells by LC/MS. Anal Bioanal Chem 409, 5735–5745 (2017). https://doi.org/10.1007/s00216-017-0515-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0515-3

Keywords

Navigation