Skip to main content
Log in

Detection and characterization of cholesteryl ester hydroperoxides in oxidized LDL and oxidized HDL by use of an Orbitrap mass spectrometer

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Oxidation of cholesteryl esters in lipoproteins by reactive oxygen species yields cholesteryl ester hydroperoxides (CEOOH). In this study, we developed a novel method for identification and characterization of CEOOH molecules in human lipoproteins by use of reversed-phase liquid chromatography with an hybrid linear ion trap–Orbitrap mass spectrometer (LC–LTQ Orbitrap). Electrospray ionization tandem mass spectrometric analysis was performed in both positive-ion and negative-ion modes. Identification of CEOOH molecules was completed by use of high-mass-accuracy (MA) mass spectrometric data obtained by using the spectrometer in Fourier-transform (FT) mode. Native low-density lipoproteins (nLDL) and native high-density lipoproteins (nHDL) from a healthy donor were oxidized by CuSO4, furnishing oxidized LDL (oxLDL) and oxidized HDL (oxHDL). No CEOOH molecules were detected in the nLDL and the nHDL, whereas six CEOOH molecules were detected in the oxLDL and the oxHDL. In positive-ion mode, CEOOH was detected as [M + NH4]+ and [M + Na]+ ions. In negative-ion mode, CEOOH was detected as [M + CH3COO] ions. CEOOH were more easily ionized in positive-ion mode than in negative-ion mode. The LC–LTQ Orbitrap method was applied to human plasma and six species of CEOOH were detected. The limit of detection was 0.1 pmol (S/N = 5:1) for synthesized CEOOH.

Detection and characterization of cholesteryl ester hydroperoxides in oxidized LDL and oxidized HDL by Orbitrap mass spectrometer

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CEOOH:

Cholesteryl ester hydroperoxide(s)

Ch18:1-OOH:

Cholesteryl oleate monohydroperoxide(s)

Ch18:2-OOH:

Cholesteryl linoleate monohydroperoxide(s)

Ch18:3-OOH:

Cholesteryl linolenate monohydroperoxide(s)

Ch20:4-OOH:

Cholesteryl arachidonate monohydroperoxide(s)

Ch20:5-OOH:

Cholesteryl eicosapentaenate monohydroperoxide(s)

Ch22:6-OOH:

Cholesteryl docosahexaenate monohydroperoxide(s)

ESI–MS:

Electrospray ionization mass spectrometry

FFA-OOH:

Free fatty hydroperoxide(s)

HPLC:

High-performance liquid chromatography

LC–MS:

Liquid chromatography–mass spectrometry

LOOH:

Lipid hydroperoxides

MA:

Mass accuracy

nHDL:

Native high-density lipoproteins

nLDL:

Native low-density lipoproteins

oxHDL:

Oxidized high-density lipoproteins

oxLDL:

Oxidized low-density lipoproteins

PBS:

Phosphate-buffered saline

RT:

Retention time

TIC:

Total ion current chromatogram

References

  1. Piotrowski JJ, Hunter GC, Eskelson CD, Dubick MA, Bernhard VM (1990) Life Sci 46:715–721

    Article  CAS  Google Scholar 

  2. Ginsberg HN (1998) Endocrinol Metab Clin North Am 27:503–519

    Article  CAS  Google Scholar 

  3. Nofer JR, Kehrel B, Fobker M, Levkau B, Assmann G, von Eckardstein A (2002) Atherosclerosis 161:1–16

    Article  CAS  Google Scholar 

  4. Ferretti G, Bacchetti T, Moroni C, Vignini A, Curatola G (2003) Biochim Biophys Acta 1635:48–54

    CAS  Google Scholar 

  5. Leitinger N (2003) Mol Aspects Med 24:239–250

    Article  CAS  Google Scholar 

  6. Bowry VW, Stanley KK, Stocker R (1992) Proc Natl Acad Sci USA 89:10316–10320

    Article  CAS  Google Scholar 

  7. Kenar JA, Havrilla CM, Porter NA, Guyton JR, Brown SA (1996) Chem Res Toxicol 9:737–744

    Article  CAS  Google Scholar 

  8. Handelman GJ (1999) Methods Enzymol 300:43–50

    Article  CAS  Google Scholar 

  9. Kritharides L, Jessup W, Gifford J, Dean RT (1993) Anal Biochem 213:79–89

    Article  CAS  Google Scholar 

  10. Hui SP, Chiba H, Sakurai T, Asakawa C, Nagasaka H, Murai T, Ide H, Kurosawa T (2007) J Chromatogr B 857:158–163

    Article  CAS  Google Scholar 

  11. Ferretti G, Bacchetti T, Principi F, Di Ludovico F, Viti B, Angeleri VA, Danni M, Provinciali L (2005) Mult Scler 11:677–682

    Article  CAS  Google Scholar 

  12. Kawai Y, Miyoshi M, Moon JH, Terao J (2007) Anal Biochem 360:130–137

    Article  CAS  Google Scholar 

  13. Hui SP, Chiba H, Jin S, Nagasaka H, Kurosawa T (2010) J Chromatogr B 878:1677–1682

    Article  CAS  Google Scholar 

  14. Hutchins PM, Murphy RC (2011) J Am Soc Mass Spectrom 22:867–874

    Article  CAS  Google Scholar 

  15. Koulman A, Woffendin G, Narayana VK, Welchman H, Crone C, Volmer DA (2009) Rapid Comm Mass Spectrom 23:1411–1418

    Article  CAS  Google Scholar 

  16. Ejsing CS, Moehring T, Bahr U, Duchoslav E, Karas M, Simons K, Shevchenko A (2006) J Mass Spectrom 41:372–389

    Article  CAS  Google Scholar 

  17. Taguchi R, Ishikawa M (2010) J Chromatogr A 1217:4229–4239

    Article  CAS  Google Scholar 

  18. Hui SP, Chiba H, Kurosawa T (2011) 400:1923–1931

  19. Hui SP, Yoshimura T, Murai T, Chiba H, Kurosawa T (2000) Anal Sci 16:1023–1028

    Article  CAS  Google Scholar 

  20. Hui SP, Taguchi Y, Takeda S, Ohkawa F, Sakurai T, Yamaki S, Jin S, Fuda H, Kurosawa T, Chiba H (2012) Anal Bioanal Chem 403:1831–1840

    Google Scholar 

  21. Markwell MAK, Hass SZ, Bieber LL, Tobert NE (1978) Anal Biochem 87:206–210

    Article  CAS  Google Scholar 

  22. Hoff HF, O'Neil J (1993) J Lipid Res 34:1209–1217

    CAS  Google Scholar 

  23. Sattler W, Maiorino M, Stocker R (1994) Arch Biochem Biophys 309:214–221

    Article  CAS  Google Scholar 

  24. Ishida M, Yamazaki T, Houjou T, Imagawa M, Harada A, Inoue K, Taguchi R (2004) Rapid Comm Mass Spectrom 18:2486–2494

    Article  CAS  Google Scholar 

  25. Schwudke D, Hannich JT, Surendranath V, Grimard V, Moehring T, Burton L, Kurzchalia T, Shevchenko A (2007) Anal Chem 79:4083–4093

    Article  CAS  Google Scholar 

  26. Hein EM, Bödeker B, Nolte J, Hayen H (2010) Rapid Comm Mass Spectrom 24:2083–2092

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by Sapporo Biocluster “Bio-S”, The Regional Innovation Cluster Program, The Ministry of Education, Culture, Sports, Science and Technology, Japan, and by a grant-in-Aid from the Japan Society for the Promotion of Science, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitoshi Chiba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hui, SP., Sakurai, T., Ohkawa, F. et al. Detection and characterization of cholesteryl ester hydroperoxides in oxidized LDL and oxidized HDL by use of an Orbitrap mass spectrometer. Anal Bioanal Chem 404, 101–112 (2012). https://doi.org/10.1007/s00216-012-6118-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6118-0

Keywords

Navigation