Skip to main content
Log in

Fluorescence turn-on detection of alkaline phosphatase activity based on controlled release of PEI-capped Cu nanoclusters from MnO2 nanosheets

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A fluorescence turn-on assay for alkaline phosphatase (ALP) activity is developed through the controlled release of polyethyleneimine-capped copper nanoclusters (PEI-capped CuNCs) from the MnO2 nanosheets. In an aqueous solution, the positively charged PEI-capped CuNCs could be adsorbed onto the surface of the negatively charged MnO2 nanosheets. Such adsorption through favorable electrostatic interactions could efficiently quench the nanocluster fluorescence emission via resonance energy transfer from the PEI-capped CuNCs to the MnO2 nanosheets. 2-Phospho-l-ascorbic acid (AAP) could be hydrolyzed to l-ascorbic acid (AA) in the presence of ALP. AA could reduce MnO2 into Mn2+ and trigger the disintegration of the MnO2 nanosheets. As a result, the CuNCs were released and the quenched fluorescence was recovered efficiently. The detection strategy is simple, inexpensive, sensitive, selective, with low toxicity, and has better biocompatibility. The newly fabricated biosensor for ALP activity will potentially make it a robust candidate for numerous biological and biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Coleman JE. Structure and mechanism of alkaline-phosphatase. Annu Rev Bioph Biom Struct. 1992;21:441–83.

    Article  CAS  Google Scholar 

  2. Lalles JP. Intestinal alkaline phosphatase: novel functions and protective effects. Nutr Rev. 2014;72(2):82–94.

    Article  Google Scholar 

  3. Goldberg DM, Martin JV, Knight AH. Elevation of serum alkaline-phosphatase activity and related enzymes in diabetes-mellitus. Clin Biochem. 1977;10(1):8–11.

    Article  CAS  Google Scholar 

  4. Sardiwal S, Magnusson P, Goldsmith DJ, Lamb EJ. Bone alkaline phosphatase in CKD-mineral bone disorder. Am J Kidney Dis. 2013;62(4):810–22.

    Article  CAS  Google Scholar 

  5. Lorente JA, Valenzuela H, Morote J, Gelabert A. Serum bone alkaline phosphatase levels enhance the clinical utility of prostate specific antigen in the staging of newly diagnosed prostate cancer patients. Eur J Nucl Med. 1999;26(6):625–32.

    Article  CAS  Google Scholar 

  6. Colombatto P, Randone A, Civitico G, Gorin JM, Dolci L, Medaina N, et al. Hepatitis G virus RNA in the serum of patients with elevated gamma glutamyl transpeptidase and alkaline phosphatase: a specific liver disease. J Viral Hepatitis. 1996;3(6):301–6.

    Article  CAS  Google Scholar 

  7. Jiao H, Chen J, Li W, Wang F, Zhou H, Li Y, et al. Nucleic acid-regulated perylene probe-induced gold nanoparticle aggregation: a new strategy for colorimetric sensing of alkaline phosphatase activity and inhibitor screening. ACS Appl Mater Interfaces. 2014;6(3):1979–85.

    Article  CAS  Google Scholar 

  8. Yu L, Shi Z, Fang C, Zhang Y, Liu Y, Li C. Disposable lateral flow-through strip for smartphone-camera to quantitatively detect alkaline phosphatase activity in milk. Biosens Bioelectron. 2015;69:307–15.

    Article  CAS  Google Scholar 

  9. Goggins S, Naz C, Marsh BJ, Frost CG. Ratiometric electrochemical detection of alkaline phosphatase. Chem Commun. 2015;51(3):561–4.

    Article  CAS  Google Scholar 

  10. Zhang N, Ma ZY, Ruan YF, Zhao WW, Xu JJ, Chen HY. Simultaneous photoelectrochemical immunoassay of dual cardiac markers using specific enzyme tags: a proof of principle for multiplexed bioanalysis. Anal Chem. 2016;88(4):1990–4.

    Article  CAS  Google Scholar 

  11. Wang W, Ouyang H, Yang S, Wang L, Fu Z. Multiplexed detection of two proteins by a reaction kinetics-resolved chemiluminescence immunoassay strategy. Analyst. 2015;140(4):1215–20.

    Article  CAS  Google Scholar 

  12. Ruan CM, Wang W, Gu BH. Detection of alkaline phosphatase using surface-enhanced Raman spectroscopy. Anal Chem. 2006;78(10):3379–84.

    Article  CAS  Google Scholar 

  13. Deng J, Yu P, Wang Y, Mao L. Real-time ratiometric fluorescent assay for alkaline phosphatase activity with stimulus responsive infinite coordination polymer nanoparticles. Anal Chem. 2015;87(5):3080–6.

    Article  CAS  Google Scholar 

  14. Li Y, Zhou H, Chen J, Shahzad SA, Yu C. Controlled self-assembly of small molecule probes and the related applications in bioanalysis. Biosens Bioelectron. 2016;76:38–53.

    Article  CAS  Google Scholar 

  15. Chen J, Jiao H, Li W, Liao D, Zhou H, Yu C. Real-time fluorescence turn-on detection of alkaline phosphatase activity with a novel perylene probe. Chem Asian J. 2013;8(1):276–81.

    Article  CAS  Google Scholar 

  16. Wu N, Lan J, Yan L, You J. A sensitive colorimetric and fluorescent sensor based on imidazolium-functionalized squaraines for the detection of GTP and alkaline phosphatase in aqueous solution. Chem Commun. 2014;50(34):4438–41.

    Article  CAS  Google Scholar 

  17. Zhu Y, Wang G, Jiang H, Chen L, Zhang X. One-step ultrasonic synthesis of graphene quantum dots with high quantum yield and their application in sensing alkaline phosphatase. Chem Commun. 2015;51(5):948–51.

    Article  CAS  Google Scholar 

  18. Barroso J, Saa L, Grinyte R, Pavlov V. Photoelectrochemical detection of enzymatically generated CdS nanoparticles: application to development of immunoassay. Biosens Bioelectron. 2016;77:323–9.

    Article  CAS  Google Scholar 

  19. Si Y, Sun Z, Zhang N, Qi W, Li S, Chen L, et al. Ultrasensitive electroanalysis of low-level free microRNAs in blood by maximum signal amplification of catalytic silver deposition using alkaline phosphatase-incorporated gold nanoclusters. Anal Chem. 2014;86(20):10406–14.

    Article  CAS  Google Scholar 

  20. Li J, Zhu J-J, Xu K. Fluorescent metal nanoclusters: from synthesis to applications. Trends Anal Chem. 2014;58:90–8.

    Article  CAS  Google Scholar 

  21. Zhang L, Wang E. Metal nanoclusters: new fluorescent probes for sensors and bioimaging. Nano Today. 2014;9(1):132–57.

    Article  CAS  Google Scholar 

  22. Tao Y, Li M, Ren J, Qu X. Metal nanoclusters: novel probes for diagnostic and therapeutic applications. Chem Soc Rev. 2015;44(23):8636–63.

    Article  CAS  Google Scholar 

  23. Jia XF, Li J, Han L, Ren JT, Yang X, Wang EK. DNA-hosted copper nanoclusters for fluorescent identification of single nucleotide polymorphisms. ACS Nano. 2012;6(4):3311–7.

    Article  CAS  Google Scholar 

  24. Gao X, Lu Y, Liu M, He S, Chen W. Sub-nanometer sized Cu6(GSH)3clusters: one-step synthesis and electrochemical detection of glucose. J Mater Chem C. 2015;3(16):4050–6.

    Article  CAS  Google Scholar 

  25. Liu X, Wang F, Aizen R, Yehezkeli O, Willner I. Graphene oxide/nucleic-acid-stabilized silver nanoclusters: functional hybrid materials for optical aptamer sensing and multiplexed analysis of pathogenic DNAs. J Am Chem Soc. 2013;135(32):11832–9.

    Article  CAS  Google Scholar 

  26. Chen Y, Li W, Wang Y, Yang X, Chen J, Jiang Y, et al. Cysteine-directed fluorescent gold nanoclusters for the sensing of pyrophosphate and alkaline phosphatase. J Mater Chem C. 2014;2(20):4080–5.

    Article  CAS  Google Scholar 

  27. Yuan Z, Cai N, Du Y, He Y, Yeung ES. Sensitive and selective detection of copper ions with highly stable polyethyleneimine-protected silver nanoclusters. Anal Chem. 2014;86(1):419–26.

    Article  CAS  Google Scholar 

  28. Wu Z, Liu J, Gao Y, Liu H, Li T, Zou H, et al. Assembly-induced enhancement of Cu nanoclusters luminescence with mechanochromic property. J Am Chem Soc. 2015;137(40):12906–13.

    Article  CAS  Google Scholar 

  29. Wei W, Lu Y, Chen W, Chen S. One-pot synthesis, photoluminescence, and electrocatalytic properties of subnanometer-sized copper clusters. J Am Chem Soc. 2011;133(7):2060–3.

    Article  CAS  Google Scholar 

  30. Hu X, Liu T, Zhuang Y, Wang W, Li Y, Fan W, et al. Recent advances in the analytical applications of copper nanoclusters. Trends Anal Chem. 2016;77:66–75.

    Article  CAS  Google Scholar 

  31. Jin L, Zhang Z, Tang A, Li C, Shen Y. Synthesis of yeast extract-stabilized Cu nanoclusters for sensitive fluorescent detection of sulfide ions in water. Biosens Bioelectron. 2016;79:108–13.

    Article  CAS  Google Scholar 

  32. Zheng X-J, Liang R-P, Li Z-J, Zhang L, Qiu J-D. One-step, stabilizer-free and green synthesis of Cu nanoclusters as fluorescent probes for sensitive and selective detection of nitrite ions. Sens. Actuators. B. 2016;230:314–9.

    CAS  Google Scholar 

  33. Fan H, Yan G, Zhao Z, Hu X, Zhang W, Liu H, et al. A smart photosensitizer-manganese dioxide nanosystem for enhanced photodynamic therapy by reducing glutathione levels in cancer cells. Angew Chem Int Ed. 2016;55(18):5477–82.

    Article  CAS  Google Scholar 

  34. Zhao Z, Fan H, Zhou G, Bai H, Liang H, Wang R, et al. Activatable fluorescence/MRI bimodal platform for tumor cell imaging via MnO2 nanosheet-aptamer nanoprobe. J Am Chem Soc. 2014;136(32):11220–3.

    Article  CAS  Google Scholar 

  35. Lu M, Qu J, Yao Q, Xu C, Zhan Y, Xie J, et al. Exploring metal nanoclusters for lithium-oxygen batteries. ACS Appl Mater Interfaces. 2015;7(9):5488–96.

    Article  CAS  Google Scholar 

  36. Pan L, Wang K-X, Zhu X-D, Xie X-M, Liu Y-T. Hierarchical assembly of SnO2 nanowires on MnO2 nanosheets: a novel 1/2D hybrid architecture for high-capacity, reversible lithium storage. J Mater Chem A. 2015;3(12):6477–83.

    Article  CAS  Google Scholar 

  37. Kai K, Yoshida Y, Kageyama H, Saito G, Ishigaki T, Furukawa Y, et al. Room-temperature synthesis of manganese oxide monosheets. J Am Chem Soc. 2008;130(47):15938–43.

    Article  CAS  Google Scholar 

  38. Chen Y, Ye D, Wu M, Chen H, Zhang L, Shi J, et al. Break-up of two-dimensional MnO2 nanosheets promotes ultrasensitive pH-triggered theranostics of cancer. Adv Mater. 2014;26(41):7019–26.

    Article  CAS  Google Scholar 

  39. Deng R, Xie X, Vendrell M, Chang YT, Liu X. Intracellular glutathione detection using MnO2-nanosheet-modified upconversion nanoparticles. J Am Chem Soc. 2011;133(50):20168–71.

    Article  CAS  Google Scholar 

  40. He D, He X, Wang K, Yang X, Yang X, Li X, et al. Nanometer-sized manganese oxide-quenched fluorescent oligonucleotides: an effective sensing platform for probing biomolecular interactions. Chem Commun. 2014;50(75):11049–52.

    Article  CAS  Google Scholar 

  41. Zhang XL, Zheng C, Guo SS, Li J, Yang HH, Chen G. Turn-on fluorescence sensor for intracellular imaging of glutathione using g-C3N4 nanosheet-MnO2 sandwich nanocomposite. Anal Chem. 2014;86(7):3426–34.

    Article  CAS  Google Scholar 

  42. Yuan Y, Wu S, Shu F, Liu Z. An MnO2 nanosheet as a label-free nanoplatform for homogeneous biosensing. Chem Commun. 2014;50(9):1095–7.

    Article  CAS  Google Scholar 

  43. Wen S, Zheng F, Shen M, Shi X. Synthesis of polyethyleneimine-stabilized gold nanoparticles for colorimetric sensing of heparin. Colloids Surf A Physicochem Eng Asp. 2013;419:80–6.

    Article  CAS  Google Scholar 

  44. Ling Y, Wu JJ, Gao ZF, Li NB, Luo HQ. Enhanced emission of polyethyleneimine-coated copper nanoclusters and their solvent effect. J Phys Chem C. 2015;119(48):27173–7.

    Article  CAS  Google Scholar 

  45. Qu F, Li NB, Luo HQ. Highly sensitive fluorescent and colorimetric pH sensor based on polyethylenimine-capped silver nanoclusters. Langmuir. 2013;29(4):1199–205.

    Article  CAS  Google Scholar 

  46. Li G, Fu H, Chen X, Gong P, Chen G, Xia L, et al. Facile and sensitive fluorescence sensing of alkaline phosphatase activity with photoluminescent carbon dots based on inner filter effect. Anal Chem. 2016;88(5):2720–6.

    Article  CAS  Google Scholar 

  47. Dong L, Miao Q, Hai Z, Yuan Y, Liang G. Enzymatic hydrogelation-induced fluorescence turn-off for sensing alkaline phosphatase in vitro and in living cells. Anal Chem. 2015;87(13):6475–8.

    Article  CAS  Google Scholar 

  48. Lin JH, Yang YC, Shih YC, Hung SY, Lu CY, Tseng WL. Photoinduced electron transfer between Fe(III) and adenosine triphosphate-BODIPY conjugates: application to alkaline-phosphatase-linked immunoassay. Biosens Bioelectron. 2016;77:242–8.

    Article  CAS  Google Scholar 

  49. Qu F, Pei H, Kong R, Zhu S, Xia L. Novel turn-on fluorescent detection of alkaline phosphatase based on green synthesized carbon dots and MnO2 nanosheets. Talanta. 2017;165:136–42.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21561162004, 21550110196, 21374077, and 51573131), the Natural Science Foundation of Jilin Province (20150101183JC), the Hong Kong Research Grants Council and the National Natural Science Foundation of China (N_CityU113/15), and the Science and Technology Development Project of Jilin Province (International Collaboration Program, 20160414040GH).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kenneth Kam-Wing Lo, Cong Yu or Shichun Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights and informed consent

No violation of human and animal rights occurred during this investigation.

Electronic supplementary material

ESM 1

(PDF 587 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Li, Y., Zhang, C. et al. Fluorescence turn-on detection of alkaline phosphatase activity based on controlled release of PEI-capped Cu nanoclusters from MnO2 nanosheets. Anal Bioanal Chem 409, 4771–4778 (2017). https://doi.org/10.1007/s00216-017-0420-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0420-9

Keywords

Navigation