Skip to main content
Log in

Fluorescent coelenteramide-containing protein as a color bioindicator for low-dose radiation effects

  • Rapid Communication
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The study addresses the application of fluorescent coelenteramide-containing proteins as color bioindicators for radiotoxicity evaluation. Biological effects of chronic low-dose radiation are under investigation. Tritiated water (200 MBq/L) was used as a model source of low-intensive ionizing radiation of beta type. ‘Discharged obelin,’ product of bioluminescent reaction of marine coelenterate Obelia longissimi, was used as a representative of the coelenteramide-containing proteins. Coelenteramide, fluorophore of discharged obelin, is a photochemically active molecule; it produces fluorescence forms of different color. Contributions of ‘violet’ and ‘blue-green’ forms to the visible fluorescence serve as tested parameters. The contributions depend on the coelenteramide’s microenvironment in the protein, and, hence, evaluate distractive ability and toxicity of radiation. The protein samples were exposed to beta radiation for 18 days, and maximal dose accumulated by the samples was 0.28 Gy, being close to a tentative limit of a low-dose interval. Increase of relative contribution of ‘violet’ fluorescence under exposure to the beta irradiation was revealed. High sensitivity of the protein-based test system to low-dose ionizing radiation (to 0.03 Gy) was demonstrated. The study develops physicochemical understanding of radiotoxic effects.

Coelenteramide-containing protein (discharged obelin) changes fluorescence color under exposure to low-dose ionizing radiation of tritium

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CLM:

Coelenteramide N-[2-benzyl-6-(4-oxocyclohexa-2.5-dien-1-ylidene)-1H–pyrazin-3-yl]-2-(4-hydroxyphenyl) acetamide

CLM-CFP:

Coelenteramide-containing fluorescent protein

References

  1. Belogurova NV, Kudryasheva NS. Discharged photoprotein obelin: fluorescence peculiarities. J Photochem Photobiol B. 2010;101:103–8. doi:10.1016/j.jphotobiol.2010.07.001.

    Article  CAS  Google Scholar 

  2. Belogurova NV, Kudryasheva NS, Alieva RR, Sizykh AG. Spectral components of bioluminescence of aequorin and obelin. J Photochem Photobiol B. 2008;92:117–22. doi:10.1016/j.jphotobiol.2008.05.006.

    Article  CAS  Google Scholar 

  3. Alieva RR, Tomilin FN, Kuzubov AA, Ovchinnikov SG, Kudryasheva NS. Ultraviolet fluorescence of coelenteramide and coelenteramide-containing fluorescent proteins. Experimental and theoretical study. J Photochem Photobiol B. 2016;162:318–23. doi:10.1016/j.jphotobiol.2016.07.004.

    Article  CAS  Google Scholar 

  4. Vysotskiĭ ES, Markova SV, Frank LA. Calcium-regulated photoproteins of marine coelenterates. Mol Biol (Mosk). 2006;40:404–17.

    Google Scholar 

  5. Frank LA. Ca(2+)-regulated photoproteins: effective immunoassay reporters. Sensors. 2010;10:11287–300. doi:10.3390/s101211287.

    Article  CAS  Google Scholar 

  6. Alieva RR, Belogurova NV, Petrova AS, Kudryasheva NS. Effects of alcohols on fluorescence intensity and color of a discharged-obelin-based biomarker. Anal Bioanal Chem. 2014;406:2965–74. doi:10.1007/s00216-014-7685-z.

    Article  CAS  Google Scholar 

  7. Petrova AS, Alieva RR, Belogurova NV, Tirranen LS, Kudryasheva NS. Variation of spectral characteristics of coelenteramide-containing fluorescent protein from Obelia longissima exposed to dimethyl sulfoxide. Russ Phys J. 2016;59:562–7. doi:10.1007/s11182-016-0806-8.

    Article  CAS  Google Scholar 

  8. Alieva RR, Belogurova NV, Petrova AS, Kudryasheva NS. Fluorescence properties of Ca2+−independent discharged obelin and its application prospects. Anal Bioanal Chem. 2013;405:3351–8. doi:10.1007/s00216-013-6757-9.

    Article  CAS  Google Scholar 

  9. Illarionov BA, Frank LA, Illarionova VA, Bondar VS, Vysotski ES, Blinks JR. Recombinant obelin: cloning and expression of cDNA, purification, and characterization as a calcium indicator. In: Methods Enzymol. Academic Press; 2000. p. 223–49.

  10. Yacimirski KB, Malikova TV. Spectroscopic methods in chemistry of complex. Moscow: Khimiya; 1984.

    Google Scholar 

  11. Shimomura O, Teranishi K. Light-emitters involved in the luminescence of coelenterazine. Luminescence. 2000;15:51–8. doi:10.1002/(SICI)1522-7243(200001/02)15:1<51::AID-BIO555>3.0.CO;2-J.

  12. Li Z-S, Zou L-Y, Min C-G, Ren A-M. The effect of micro-environment on luminescence of aequorin: the role of amino acids and explicit water molecules on spectroscopic properties of coelenteramide. J Photochem Photobiol B. 2013;127:94–9. doi:10.1016/j.jphotobiol.2013.07.022.

    Article  CAS  Google Scholar 

  13. Min C, Li Z, Ren A, Zou L, Guo J, Goddard JD. The fluorescent properties of coelenteramide, a substrate of aequorin and obelin. J Photochem Photobiol Chem. 2013;251:182–8. doi:10.1016/j.jphotochem.2012.10.028.

    Article  CAS  Google Scholar 

  14. Tomilin FN, Antipina LY, Vysotski ES, Ovchinnikov SG, Gitelzon II. Fluorescence of calcium-discharged obelin: the structure and molecular mechanism of emitter formation. Dokl Biochem Biophys. 2008;422:279–84. doi:10.1134/S1607672908050086.

    Article  CAS  Google Scholar 

  15. Fedorova GF, Menshov VA, Trofimov AV, Tsaplev YB, Vasil'ev RF, Yablonskaya OI. Chemiluminescence of cigarette smoke: salient features of the phenomenon. Photochem Photobiol. 2017;93:579–89. doi:10.1111/php.12689.

    Article  CAS  Google Scholar 

  16. Roda A, Guardigli M. Analytical chemiluminescence and bioluminescence: latest achievements and new horizons. Anal Bioanal Chem. 2012;402:69–76. doi:10.1007/s00216-011-5455-8.

    Article  CAS  Google Scholar 

  17. Kudryasheva NS, Tarasova AS. Pollutant toxicity and detoxification by humic substances: mechanisms and quantitative assessment via luminescent biomonitoring. Environ Sci Pollut Res. 2015;22:155–67. doi:10.1007/s11356-014-3459-6.

    Article  CAS  Google Scholar 

  18. Kudryasheva NS, Rozhko TV. Effect of low-dose ionizing radiation on luminous marine bacteria: radiation hormesis and toxicity. J Environ Radioact. 2015;142:68–77. doi:10.1016/j.jenvrad.2015.01.012.

    Article  CAS  Google Scholar 

  19. Rozhko TV, Badun GA, Razzhivina IA, Guseynov OA, Guseynova VE, Kudryasheva NS. On the mechanism of biological activation by tritium. J Environ Radioact. 2016;157:131–5. doi:10.1016/j.jenvrad.2016.03.017.

    Article  CAS  Google Scholar 

  20. Selivanova MA, Mogilnaya OA, Badun GA, Vydryakova GA, Kuznetsov AM, Kudryasheva NS. Effect of tritium on luminous marine bacteria and enzyme reactions. J Environ Radioact. 2013;120:19–25. doi:10.1016/j.jenvrad.2013.01.003.

    Article  CAS  Google Scholar 

  21. Kratasyuk VA, Esimbekova EN. Applications of luminous bacteria enzymes in toxicology. Comb Chem High Throughput Screen. 2015;18:952–9. doi:10.2174/1386207318666150917100257.

    Article  CAS  Google Scholar 

  22. Girotti S, Ferri EN, Fumo MG, Maiolini E. Monitoring of environmental pollutants by bioluminescent bacteria. Anal Chim Acta. 2008;608:2–29. doi:10.1016/j.aca.2007.12.008.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the state budget allocated to the fundamental research at the Russian Academy of Sciences (project 01201351504) and by the Russian Foundation for Basic Research, Grant No. 16-34-00695.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadezhda S. Kudryasheva.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrova, A.S., Lukonina, A.A., Badun, G.A. et al. Fluorescent coelenteramide-containing protein as a color bioindicator for low-dose radiation effects. Anal Bioanal Chem 409, 4377–4381 (2017). https://doi.org/10.1007/s00216-017-0404-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0404-9

Keywords

Navigation