Skip to main content

Advertisement

Log in

Pollutant toxicity and detoxification by humic substances: mechanisms and quantitative assessment via luminescent biomonitoring

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The paper considers mechanisms of detoxification of pollutant solutions by water-soluble humic substances (HSs), natural detoxifying agents. The problems and perspectives of bioassay application for toxicity monitoring of complex solutions are discussed from ecological point of view. Bioluminescence assays based on marine bacteria and their enzymes are of special attention here; they were shown to be convenient tools to study the detoxifying effects on cellular and biochemical levels. The advantages of bioluminescent enzymatic assay for monitoring both integral and oxidative toxicities in complex solutions of model pollutants and HS were demonstrated. The efficiencies of detoxification of the solutions of organic oxidizers and salts of metals (including radioactive ones) by HS were analyzed. The dependencies of detoxification efficiency on time of exposure to HS and HS concentrations were demonstrated. Antioxidant properties of HS were considered in detail. The detoxifying effects of HS were shown to be complex and regarded as ‘external’ (binding and redox processes in solutions outside the organisms) and/or ‘internal’ organismal processes. The paper demonstrates that the HS can stimulate a protective response of bacterial cells as a result of (1) changes of rates of biochemical reactions and (2) stabilization of mucous layers outside the cell walls. Acceleration of auto-oxidation of NADH, endogenous reducer, by HS was suggested as a reason for toxicity increase in the presence of HS due to abatement of reduction ability of intracellular media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agrawal A, Kumari S, Sahu KK (2009) Iron and copper recovery/removal from industrial wastes: a review. Ind Eng Chem Res 48:6145–6161

    CAS  Google Scholar 

  • Al-Abri M, Dakheel A, Tizaoui C, Hilal N (2010) Combined humic substance and heavy metals coagulation, and membrane filtration under saline conditions. Desalination 253:46–50

    CAS  Google Scholar 

  • Alexandrova M, Rozhko T, Vydryakova G, Kudryasheva N (2011) Effect of americium-241 on luminous bacteria. Role of peroxides. J Environ Radioact 102:407–411

    CAS  Google Scholar 

  • Antunes MCG, Pereira CCC, Silva JCGE (2007) MCR of the quenching of the EEM of fluorescence of dissolved organic matter by metal ions. Anal Chim Acta 595:9–18

    CAS  Google Scholar 

  • Bironaite D, Anusevic Z, Jacquot JP, Cenas N (1998) Interaction of quinones with Arabidopsis thaliana thioredoxin reductase. Biochem Biophys Acta 1383:82–92

    CAS  Google Scholar 

  • Brunmark A, Cadenas E (1989) Redox and addition chemistry of quinoid compounds and its biological implications. Free Radic Biol Med 7:435–477

    CAS  Google Scholar 

  • Bryantseva NG, Fedorova ES, Sokolova IV, Kudryasheva NS, Khilya VP, Garazd YL (2008) Luminescent analysis of photoinduced detoxification of substituted furocoumarins. J Appl Spectrosc 75:236–240

    CAS  Google Scholar 

  • Bulich AA, Isenberg DL (1981) Use of the luminescent bacterial system for rapid assessment of aquatic toxicity. ISA Trans 20:29–33

    CAS  Google Scholar 

  • Burlakovs J, Kļaviņš M, Osinska L, Purmalis O (2013) The impact of humic substances as remediation agents to the speciation forms of metals in soil. In: APCBEE Procedia. 4th International Conference on Environmental Science and Development–ICESD. 5:192–196

  • Carlosa L, Mártirea DO, Gonzaleza MC, Gomisb J, Bernabeub A, Amatb AM, Arques A (2012) Photochemical fate of a mixture of emerging pollutants in the presence of humic substances. Water Res 46:4732–4740

    Google Scholar 

  • Chaikovskaya ON, Sokolova IV, Sokolova TV, Yudina NV, Mal’tseva EV, Ivanov AA (2008) Effect of humic acids on phototransformation of methylphenols in water. J Appl Spectrosc 75:597–602

    CAS  Google Scholar 

  • Costerton JW (1988) Structure and plasticity at various organization levels in the bacterial cell. Can J Microbiol 34:513–552

    CAS  Google Scholar 

  • Deprezc K, Robbensd J, Nobelsb I, Vanparysb C, Vanermena G, Tireza K, Michielsc L, Weltens R (2012) DISCRISET: a battery of tests for fast waste classification—application of tests on waste extracts. Waste Manag 32:2218–2228

    Google Scholar 

  • Deryabin DG, Karimov IF (2010) Characteristics of the response of natural and recombinant luminescent microorganisms in the presence of Fe(2+) ions. Appl Biochem Microbiol 46:28–32

    CAS  Google Scholar 

  • Deryabin DG, Aleshina ES (2008) Natural and recombinant luminescent microorganisms in biotoxicity testing of mineral waters. Appl Biochem Microbiol 44:378–381

    CAS  Google Scholar 

  • Donnelly K, Chen J, Huebner H, Brown K (1997) Utility of four strains of white-rot fungi for the detoxification of 2,4,6-trinitrotoluene in liquid culture. Environ Toxic Chem 16:1105–1110

    CAS  Google Scholar 

  • El’-Registan GI, Mulyukin AL, Nikolaev YA, Suzina NE, Gal’chenko VF, Duda VI (2006) Adaptogenic functions of extracellular autoregulators of microorganisms. Microbiology (Moscow) (Engl Transl) 75:380–389

    Google Scholar 

  • Esimbekova EN, Kondik AM, Kratasyuk VA (2013) Bioluminescent enzymatic rapid assay of water integral toxicity. Environ Monit Assess 185:5909–5916

    CAS  Google Scholar 

  • Esimbekova EN, Torgashina IG, Kratasyuk VA (2009) Comparative study of immobilized and soluble NADH:FMN-oxidoreductase-luciferase coupled enzyme system. Biochemistry (Mosc) 74:695–700

    CAS  Google Scholar 

  • Esimbekova EN, Kratasyuk VA, Torgashina IG (2007) Disk-shaped immobilized multicomponent reagent for bioluminescent analyses: correlation between activity and composition. Enzyme Microbiol Technol 40:343–346

    CAS  Google Scholar 

  • Fedorova E, Kudryasheva N, Kuznetsov A, Mogil’naya O, Stom D (2007) Bioluminescent monitoring of detoxification processes: activity of humic substances in quinone solutions. J Photochem Photobiol, B 88:131–136

    CAS  Google Scholar 

  • Fedorova ES, Kudryasheva NS, Kuznetsov AM, Stom DI, Belyi AV, Sizykh AG (2005) Detoxication of solutions of organic oxidants by humic substances: bioluminescence monitoring. Doklady Biochem Biophys 403:300–302

    CAS  Google Scholar 

  • Gachter R, Davis JS, Mares A (1978) Regulation of copper availability to phytoplankton by macromolecules in lake water. Environ Sci Technol 12:1416–1421

    Google Scholar 

  • Gerasimova MA, Kudryasheva NS (2002) Effects of potassium halides on bacterial bioluminescence. J Potochem Photobiol B 66:218–222

    CAS  Google Scholar 

  • Girotti S, Ferri EN, Fumo MG, Maiolini E (2008) Monitoring of environmental pollutants by bioluminescent bacteria. Anal Chim Acta 608:2–21

    CAS  Google Scholar 

  • Gitelzon II, Rodicheva EK, Medvedev SE, Primakova GA, Bartsev SI, Kratasyuk GA, Petushkov VN, Mezhevikin VV, Vysotski ES, Zavoruev VV, Kratasyuk VA (1984) Luminous bacteria. Nauka, Novosibirsk (in Russian)

    Google Scholar 

  • Grabert E, Kossler F (1997) About the effects of nutrients on the luminescent bacteria test. In: Hastings JW, Kricka LJ, Stanley PE (eds) Bioluminescence and chemiluminescence. Wiley, Chichester, pp 291–294

    Google Scholar 

  • Granier LK, Lafrance P, Campbell PGC (1999) An experimental design to probe the interactions of dissolved organic matter and xenobiotics: bioavailability of pyrene and 2,2’,5,5’tetrachlorobiphenyl to Daphnia magna. Chemosphere 38:335–350

    CAS  Google Scholar 

  • Gu B, Chen J (2003) Enhanced microbial reduction of Cr(VI) and U(VI) by different natural organic matter fractions. Geochim Cosmochim Acta 67:3575–3582

    CAS  Google Scholar 

  • Hastings JW (2012) Chapter 52—Bioluminescence In: Cell physiology source book. 4th ed. Academic press, pp 925–947

  • Havelcová M, Mizera J, Sýkorová I, Pekař M (2009) Sorption of metal ions on lignite and the derived humic substances. J Hazard Mater 161:559–564

    Google Scholar 

  • Hooda V (2007) Phytoremediation of toxic metals from soil and waste water. J Environ Biol 28:367–376

    CAS  Google Scholar 

  • Ilyin LA, Kutsenko SA, Savateev NV, Sofronov GA, Tiunov LA (1990) Toxicological problems in mitigation strategies of chemical industries. J All-Union Mendeleev Chemical Society 35:440–447

    Google Scholar 

  • Ivask A, Rolova T, Kahru A (2009) A suite of recombinant luminescent bacterial strains for the quantification of bioavailable heavy metals and toxicity testing. BMC Biotechnol 9:1–15

    Google Scholar 

  • Kamnev AA, Dykman RL, Kovács K, Pankratov AN, Tugarova AV, Homonnay Z, Kuzmann E (2014) Redox interactions between structurally different alkylresorcinols and iron(III) in aqueous media: frozen-solution 57Fe Mössbauer spectroscopic studies, redox kinetics and quantum chemical evaluation of the alkylresorcinol reactivities. Struct Chem 25:649–657

    CAS  Google Scholar 

  • Kamnev AA, Tugarova AV, Selivanova MA, Tarantilis PA, Polissiou MG, Kudryasheva NS (2013) Effects of americium-241 and humic substances on Photobacterium phosphoreum: bioluminescence and diffuse reflectance FTIR spectroscopic studies. Spectrochim Acta A Mol Biomol Spectrosc 100:171–175

    CAS  Google Scholar 

  • Katafias A, Impert O, Kita P (2008) Hydrogen peroxide as a reductant of hexacyanoferrate (III) in alkaline solutions: kinetic studies. Transition Met Chem 33:1041–1046

    CAS  Google Scholar 

  • Keepax R, Jones D, Pepper S, Bryan N (2002) The effects of humic substances upon environmental radioactivity. In: Keith-Roach MJ, Livens FR (ed) Radioactivity in the environment. pp. 143–177

  • Kirillova TN, Gerasimova MA, Nemtseva EV, Kudryasheva NS (2011) Effect of halogenated fluorescent compounds on bioluminescent reactions. Anal Bioanal Chem 400:343–351

    CAS  Google Scholar 

  • Kirillova TN, Kudryasheva NS (2007) Effect of heavy atom in bioluminescent reactions. Anal Bioanal Chem 387:2009–2016

    CAS  Google Scholar 

  • Kratasyuk VA, Esimbekova EN, Gladyshev MI, Khromichek EB, Kuznetsov AM, Ivanova EA (2001) The use of bioluminescent biotests for study of natural and laboratory aquatic ecosystems. Chemosphere 42:909–915

    CAS  Google Scholar 

  • Kratasyuk VA (1990) Principle of luciferase biotesting. In: Jezowska-Trzebiatowska B (ed) Biolоgical luminescence. World Scientific, Singapore, pp 550–558

    Google Scholar 

  • Kudryasheva N (2006a) Bioluminescence and exogenous compounds: physicochemical basis for bioluminescence assay. J Photochem Photobiol B 1:77–86

    Google Scholar 

  • Kudryasheva NS (2006b) Nonspecific effects of exogenous compounds on bacterial bioluminescent enzymes: fluorescence study. Curr Enzyme Inhib 2:363–372

    CAS  Google Scholar 

  • Kudryasheva NS, Nemtseva EV, Kirillova TN (2004) Exogenous compounds in studying the mechanism of electron-excited state formation in bioluminescence. Biopolymers 74:100–104

    CAS  Google Scholar 

  • Kudryasheva NS, Esimbekova EN, Remmel NN, Kratasyuk VA, Visser AJWG, van Hoek A (2003a) Effect of quinones and phenols on the triple-enzyme bioluminescent system with protease. Luminescence 4:224–228

    Google Scholar 

  • Kudryasheva NS, Nemtseva EV, Visser AJWG, van Hoek A (2003b) Interaction of aromatic compounds with Photobacterium leiognathi luciferase: fluorescence anisotropy study. Luminescence 18:156–161

    CAS  Google Scholar 

  • Kudryasheva N, Vetrova E, Kuznetsov A, Kratasyuk V, Stom D (2002a) Bioluminescent assays: effects of quinones and phenols. Ecotoxicol Environ Saf 53:221–225

    CAS  Google Scholar 

  • Kudryasheva NS, Nemtseva EV, Sizykh AG, Kratasyuk VA, Visser AJ (2002b) Estimation of energy of the upper electron-excited states of the bacterial bioluminescent emitter. J Photochem Photobiol B 68:88–92

    CAS  Google Scholar 

  • Kudryasheva NS (1999) Mechanisms of the effect of xenobiotics on bacterial bioluminescence. Luminescence 14:199–200

    CAS  Google Scholar 

  • Kudryasheva NS, Kudinova IY, Esimbekova EN, Kratasyuk VA, Stom DI (1999a) Effects of quinones and phenols on the NAD(H)-dependent triple systems. Chemosphere 38:751–758

    CAS  Google Scholar 

  • Kydryasheva NS, Zuzikova EV, Gutnik TV (1999b) Mechanism of action of metal salts on bacterial bioluminescent system in vitro. Biofizika 44:244–250

    CAS  Google Scholar 

  • Kudryasheva NS, Kratasyuk VA, Esimbekova EN, Vetrova EV, Kudinova IY, Nemtseva EV (1998) Development of the bioluminescent bioindicators for analyses of pollutions. Field Anal Chem Technol 5:277–280

    Google Scholar 

  • Kudryasheva NS, Zuzikova EV, Gutnyk TV, Kuznetsov AM (1996) Metallic salts action on bacterial bioluminescent systems of different complexity. Biofizika 41:1264–1269

    CAS  Google Scholar 

  • Kulikova NA, Stepanova EV, Koroleva OV (2005) Mitigating activity of humic substances: direct influence on biota. In: Perminova IV (ed) Use of humic substances to remediate polluted environments: from theory to practice. Springer, The Netherlands, pp 285–309

    Google Scholar 

  • Kuzminov FI, Brown CM, Fadeev VV, Gorbunov MY (2013) Effects of metal toxicity on photosynthetic processes in coral symbionts, Symbiodinium spp. J Exp Mar Biol Ecol 446:216–227

    CAS  Google Scholar 

  • Lenhart JJ, Cabaniss SE, MacCarthy P, Honeyman BD (2000) Uranium (VI) complexation with citric, humic and fulvic acids. Radiochim Acta 88:345–353

    CAS  Google Scholar 

  • Lorenzo JI, Nieto O, Beiras R (2002) Effect of humic acids on speciation and toxicity of copper to Paracentrotus lividus larvae in seawater. Aquat Toxicol 58:27–41

    CAS  Google Scholar 

  • Ma XY, Wang XC, Ngo HH, Guo W, Wu MN, Wang N (2014) Bioassay based luminescent bacteria: interferences, improvements, and applications. Sci Total Environ 468–469:1–11

    Google Scholar 

  • Matthiessen A (1996) Kinetic aspects of the reduction of mercury ions by humic substances. Fresenius J Anal Chem 354:747–749

    CAS  Google Scholar 

  • Medvedeva SE, Tyulkova NA, Kuznetsov AM, Rodicheva EK (2009) Bioluminescent bioassays based on luminous bacteria. J Siberian Federal University Biology 2:418–452

    Google Scholar 

  • Morrisseya R, Hill C, Begley M (2013) Shining light on food microbiology; applications of Lux-tagged microorganisms in the food industry. Trends Food Sci Technol 32:4–15

    Google Scholar 

  • Natecz-Jawecki G, Rudz B, Sawicki J (1997) Evaluation of toxicity of medical devices using Spirotox and Microtox tests: I. Toxicity of selected toxicants in various diluents. J Biomed Mater Res 35:101–105

    Google Scholar 

  • Nemtseva EV, Kudryasheva N (2007) The mechanism of electronic excitation in bacterial bioluminescent reaction. Uspekhi Khimii 76:101–102

    Google Scholar 

  • Oikari A, Kukkonen J, Virtanen V (1992) Acute toxicity of chemicals to Daphnia magna in humic waters. Sci Total Environ 117/118:367–377

    Google Scholar 

  • Orlov DS (1997) Humic substances in the biosphere. Soros Educ J 2:56–63 (in Russian)

    Google Scholar 

  • Osterberg R, Shirshova L (1997) Oscillating, nonequilibrium redox properties of humic acids. Geochim Cosmochim Acta 61:4599–4604

    CAS  Google Scholar 

  • Paisio CE, González PS, Gerbaudo A, Bertuzzi ML, Agostini E (2010) Toxicity of phenol solutions treated with rapeseed and tomato hairy roots. Desalination 263:23–28

    CAS  Google Scholar 

  • Park JS, Brown MT, Han T (2012) Phenol toxicity to the aquatic macrophyte Lemna paucicostata. Aquat Toxicol 106–107:182–188

    Google Scholar 

  • Perminova I, Grechishcheva N, Kovalevskii D, Kudryavtsev A, Petrosyan V, Matorin D (2001) Quantification and prediction of the detoxifying properties of humic substances related to their chemical binding to polycyclic aromatic hydrocarbons. Environ Sci Technol 35:3841–3848

    CAS  Google Scholar 

  • Perminova I, Kovalenko A, Schmitt-Kopplin P, Hatfield K, Hertkorn N, Belyaeva E, Petrosyan V (2005) Design of quinonoid-enriched humic materials with enhanced redox properties. Environ Sci Technol 39:8518–8524

    CAS  Google Scholar 

  • Petukhov VN, Fomchenkov VM, Chugunov VA, Kholodenko VP (2000) Plant biotests for soil and water contaminated with oil and oil products. Appl Biochem Microbiol 36:564–567

    Google Scholar 

  • Piccolo A, Conte P, Cozzolino A (2001) Chromatographic and spectrophotometric properties of dissolved humic substances compared with macromolecular polymers. Soil Science 166:174–185

    CAS  Google Scholar 

  • Piccolo A (2001) The supramolecular structure of humic substances. Soil Sci 166:810–832

    CAS  Google Scholar 

  • Qua R, Wanga X, Liub Z, Yanb Z, Wang Z (2013) Development of a model to predict the effect of water chemistry on the acute toxicity of cadmium to Photobacterium phosphoreum. J Hazard Mater 262:288–296

    Google Scholar 

  • Ranjan R, Rastogi NK, Thakur MS (2012) Development of immobilized biophotonic beads consisting of Photobacterium leiognathi for the detection of heavy metals and pesticide. J Hazard Mater 225–226:114–123

    Google Scholar 

  • Ren S (2003) Phenol mechanism of toxic action classification and prediction: a decision tree approach. Toxicol Lett 144:313–323

    CAS  Google Scholar 

  • Richard C, Guyot G, Trubetskaya O, Trubetskoj O, Grigatti M, Cavan L (2009) Fluorescence analysis of humic-like substances extracted from composts: influence of composting time and fractionation. Environ Chem Lett 7:61–65

    CAS  Google Scholar 

  • Rizzo L (2011) Bioassays as a tool for evaluating advanced oxidation processes in water and wastewater treatment. Water Res 45:4311–4340

    CAS  Google Scholar 

  • Roda A, Guardigli M, Michelini E, Mirasoni M (2009) Bioluminescence in analytical chemistry and in vivo imaging. Trac-Trends Anal Chem 28:307–322

    CAS  Google Scholar 

  • Roda A, Pasini P, Mirasoni M, Michchelini E, Guardigli M (2004) Biotechnological application of bioluminescence and chemiluminescence. Trends Biotechnol 22:295–303

    CAS  Google Scholar 

  • Rodriguez CE, Shinyashiki M, Froines J, Yu RC, Fukuto JM, Cho AK (2004) An examination of quinone toxicity using the yeast Saccharomyces cerevisiae model system. Toxicol 201:185–196

    CAS  Google Scholar 

  • Rozhko TV, Bondareva LG, Mogilnaya OA, Vydryakova GA, Bolsunovsky AY, Stom DI, Kudryasheva NS (2011) Detoxification of AM-241 solutions by humic substances: bioluminescent monitoring. Anal & Bioanal Chem 400:329–333

    CAS  Google Scholar 

  • Rozhko TV, Kudryasheva NS, Kuznetsov AM, Vydryakova GA, Bondareva LG, Bolsunovsky AY (2007) Effect of low-level α-radiation on bioluminescent assay systems of various complexity. Photochem Photobiol Sci 6:67–70

    CAS  Google Scholar 

  • Sachs S, Bernhard G (2011) Humic acid model substances with pronounced redox functionality for the study of environmentally relevant interaction processes of metal ions in the presence of humic acid. Geoderma 162:132–140

    CAS  Google Scholar 

  • Sakuragi T, Sawa S, Sato S, Kozaki T, Mitsugashira T, Hara M, Suzuki Y (2004) Complexation of americium(III) with humic acid by cation exchange and solvent extraction. Radioanal Nucl Chem 26:309–314

    Google Scholar 

  • Sanotskiy IV (1970) Methods for determining the toxicity and hazards of chemicals. Medicine, Moscow

    Google Scholar 

  • Schultz TW, Sinks GD, Cronin MTD (1997) Quinone-induced toxicity to Tetrahymena: structure-activity relationships. Aquat Toxicol 39:267–278

    CAS  Google Scholar 

  • Selivanova MA, Mogilnaya OA, Badun GA, Vydryakova GA, Kuznetsov AM, Kudryasheva NS (2013) Effect of tritium on luminous marine bacteria and enzyme reactions. J Environ Radioact 120:19–25

    CAS  Google Scholar 

  • Shao Y, Wu LL, Gao HW, Wang F (2012) Effect of soluble sulfide on the activity of luminescent bacteria. Molecules 17:6046–6055

    CAS  Google Scholar 

  • Schmeide K, Sachs S, Bernhard G (2012) Np(V) reduction by humic acid: contribution of reduced sulfur functionalities to the redox behavior of humic acid. Sci Total Environ 419:116–123

    CAS  Google Scholar 

  • Shourian M, Noghabi KA, Zahiri HS, Bagheri T, Karballaei G, Mollaei M, Rad I, Ahadi S, Raheb J, Abbasi H (2009) Efficient phenol degradation by a newly characterized Pseudomonas sp. SA01 isolated from pharmaceutical wastewaters. Desalination 246:577–594

    CAS  Google Scholar 

  • Silva JCGE, Machado AASC, Oliveira CJS, Pinto MSSDS (1998) Fluorescence quenching of anthropogenic fulvic acids by Cu(II), Fe(III) and UO2 2+. Talanta 45:1155–1156

  • Silva JCGE, Machado AASC, Oliveira CJS (1996) Study of the interaction of a soil fulvic acid with UO2 2+ by self-modeling mixture analysis of synchronous molecular fluorescence spectra. Analyst 121:373–379

    Google Scholar 

  • Skogerboe R, Wilson A (1981) Reduction of ionic species by fulvic acid. Anal Chem 53:228–232

    CAS  Google Scholar 

  • Stasiuk M, Kozubek A (2010) Biological activity of phenolic lipids. Cell Mol Life Sci 67:841–860

    CAS  Google Scholar 

  • Staunton S, Dumat C, Zsolnay A (2002) Possible role of organic matter in radiocaesium adsorption in soils. J Environ Radioact 58:163–173

    CAS  Google Scholar 

  • Stom D, Dagurov A (2004) Cooperation action petroleum products and humic substances on Daphnia magna. Sib Ecol Zh 1:35–40

    Google Scholar 

  • Stom D (1977) Influence of polyphenols and quinones on aquatic plants and their blocking of SH-groups. J Acta Hydrochim Hydrobiol 5:291–298

    CAS  Google Scholar 

  • Stom DI, Geel TA, Balayan AE, Kuznetsov AM, Medvedeva SE (1992) Bioluminescent method in studying the complex effect of sewage components. Arch Environ Contam Toxicol 22:203–208

    CAS  Google Scholar 

  • Tao S, Liang T, Liu C, Xu S (1999) Uptake of copper by neon tetras (Paracheirodon innesi) in the presence and absence of particulate and humic matter. Ecotoxicoly 8:269–275

    CAS  Google Scholar 

  • Tarasova AS, Kislan SL, Fedorova ES, Kuznetsov AM, Mogilnaya OA, Stom DI, Kudryasheva NS (2012) Bioluminescence as a tool for studying detoxification processes in metal salt solutions involving humic substances. J Photochem Photobiol В 117:164–170

    CAS  Google Scholar 

  • Tarasova AS, Stom DI, Kudryasheva NS (2011) Bioluminescence as a tool for studying detoxification processes in metal salt solutions involving humic substances. Environ Toxicol Chem 30:1013–1017

    CAS  Google Scholar 

  • Tchaikovskaya O, Sokolova I, Svetlichnyi V, Karetnikova E, Fedorova E, Kudryasheva N (2007) Fluorescence and bioluminescence analysis of sequential UV-biological degradation of p-cresol in water. Luminescence 22:29–34

    CAS  Google Scholar 

  • Tchaikovskaya ON, Karetnikova EA, Sokolova IV, Sokolova TV, Fedorova ES, Kudryasheva NS (2008) Luminescence investigations of the degradation of 2-methylphenol and 4-methylphenol in water. Russian Physics Journal 51:1344–1355

    CAS  Google Scholar 

  • Thakur MS, Ragavan KV (2013) Biosensors in food processing. J Food Sci Technol Mysore 50:625–641

    CAS  Google Scholar 

  • Theng BKG (2012) Chapter 12—humic substances. In: developments in clay science. Formation and Properties of Clay-Polymer Complexes. 4: 391–456

  • Thomas DJL, Tyrrel SF, Smith R, Farrow S (2009) Bioassays for the evaluation of landfill leachate toxicity. J Toxicol Environ Health 12:83–105

    Google Scholar 

  • Tigini V, Giansanti P, Mangiavillano A, Pannocchia A, Varese GC (2011) Evaluation of toxicity, genotoxicity and environmental risk of simulated textile and tannery wastewaters with a battery of biotests. Ecotoxicol Environ Saf 74:866–873

    CAS  Google Scholar 

  • Trubetskoj OA, Trubetskaya OE, Richard C (2009) Photochemical activity and fluorescence of electrophoretic fractions of aquatic humic matter. Water Resour 36:518–524

    CAS  Google Scholar 

  • Tyulkova NA, Medvedeva SE, Rodicheva EK, Kuznetsov AM (2009) Bacterial bioluminescence and its application. In: Meyer-Rochow VB (ed) Bioluminescence in focus—a collection of illuminating essays. Research Signpost. Trivandrum, India, pp 27–49

    Google Scholar 

  • Valls M, Lorenzo V (2002) Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiol Rev 26:327–338

    CAS  Google Scholar 

  • Vetrova EV, Kudryasheva NS, Cheng KH (2009) Effect of quinone on the fluorescence decay dynamics of endogenous flavin bound to bacterial luciferase. J Biophys Chem 141:59–65

    CAS  Google Scholar 

  • Vetrova EV, Kudryasheva NS, Kratasyuk VA (2007) Redox compounds influence on the NAD(P)H:FMN-oxidoreductase-luciferase bioluminescent system. Photochem Photobiol Sci 6:35–40

    CAS  Google Scholar 

  • Vetrova EV, Kudryasheva NS, Visser AJ, van Hoek A (2005) Characteristics of enclogenous flavin fluorescence of Photobacterium leiognathi luciferase and Vibrio fischeri NAD(P)H:FMN-oxidoreductase. Luminescence 20:205–209

    CAS  Google Scholar 

  • Wang W, Lampi MA, Huang XD, Gerhardt K, Dixon DG, Greenberg BM (2009a) Assessment of mixture toxicity of copper, cadmium, and phenanthrenequinone to the marine bacterium Vibrio fischeri. Environ Toxicol 24:166–177

    CAS  Google Scholar 

  • Wang W, Nykamp J, Huang XD, Gerhardt K, Dixon DG, Greenberg BM (2009b) Examination of the mechanism of phenanthrenequinone toxicity to Vibrio fischeri: evidence for a reactive oxygen species-mediated toxicity mechanism. Environ Toxicol Chem 28:1655–1662

    CAS  Google Scholar 

  • Williams PL, James RC, Roberts SM (2000) Principles of toxicology: environmental and industrial applications, 2nd edn. Wiley-Interscience, New York

    Google Scholar 

  • Yea Z, Zhao Q, Zhang M, Gao Y (2011) Acute toxicity evaluation of explosive wastewater by bacterial bioluminescence assays using a freshwater luminescent bacterium, Vibrio qinghaiensis sp. nov. J Hazard Mater 186:1351–1354

    Google Scholar 

  • Zhang Y, Zhou J, Lin L, Lin Z (2008) Determination of electrochemical electron-transfer reaction standard rate constants at nanoelectrodes: standard rate constants for ferrocenylmethyltrimethylammonium (III)/(II) and hexacyanoferrate (III)/(II). Electroanal 20:1490–1494

    CAS  Google Scholar 

  • Zhilin D, Schmitt-Kopplin P, Perminova I (2004) Reduction of Cr(VI) by peat and coal humic substances. Environ Chem Lett 2:141–145

    CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the Russian Foundation for Basic Research, Grant No.13-04-98072-sibir-a. Part of the work (analysis of detoxification of radioactive solutions) was supported by the Russian Science Foundation, Grant No. 14-14-00076.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Kudryasheva.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kudryasheva, N.S., Tarasova, A.S. Pollutant toxicity and detoxification by humic substances: mechanisms and quantitative assessment via luminescent biomonitoring. Environ Sci Pollut Res 22, 155–167 (2015). https://doi.org/10.1007/s11356-014-3459-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3459-6

Keywords

Navigation