Skip to main content
Log in

Surface-enhanced Raman probe for rapid nanoextraction and detection of erythropoietin in urine

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We present a surface-enhanced Raman probe (SERS) platform for the determination of a prohibited substance, recombinant erythropoietin (rEPO), in urine matrix, using nanoparticles as substrate. Rod-shaped gold nanoparticles (GNR) were modified with a Raman label and an antibody as SERS probe. We developed two SERS-based immunoassays for detection and quantification of rEPO in urine. In the first assay, rEPO was determined by a sandwich assay with gold surfaces and GNR. In the second assay, rEPO was extracted by using core shell-structured magnetic iron oxide gold nanoparticles, and again sandwich assay was performed by using GNR. We also demonstrated the ability of the proposed method to discriminate rEPO and urinary erythropoietin (uEPO). A good linear correlation was obtained between logarithms of rEPO concentrations in urine and Raman intensities within the range of 10−1–103 pg mL−1 rEPO concentrations. Detection limits which are smaller than 0.1 pg mL−1 levels were achieved owing to the high extractive performance of the nanoextraction techniques.

Schematic represantation of surface-enhanced Raman probe for rapid nanoextraction and detection of erythropoietin

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Isreals GL, Isreals ED. In: Molineux G, Foote MA, Elliott SG, editors. Erythpoietins and erythropoiesis. Basel: Birkhäuser Verlag; 2003. p. 3–17.

    Google Scholar 

  2. Elliott S. Erythropoiesis-stimulating agents and other methods to enhance oxygen transport. Br J Pharmacol. 2008;154:529–41.

    Article  CAS  Google Scholar 

  3. Ohana YH, Liron T, Prutchi–Sagiv S, Mittelman M, Souroujon MC, Neumann D. Handbook of biologically active peptides: neurotropic peptides. 2nd ed. San Diego: Academic; 2013.

    Google Scholar 

  4. Cointe D, Béliard R, Jorieux S, Leroy Y, Glacet A, Verbent A, et al. Unusual N-glycosylation of a recombinant human erythropoietin expressed in a human lymphoblastoid cell line does not alter its biological properties. Glycobiology. 2000;10(5):511–9.

    Article  CAS  Google Scholar 

  5. Jiang J, Tian F, Cai Y, Qian X, Costello CE, Ying W. Site-specific qualitative and quantitative analysis of the N- and O-glycoforms in recombinant human erythropoietin. Anal Bioanal Chem. 2014;406:6225–74.

    Article  Google Scholar 

  6. Rush RS, Derby PL, Smith DM, Merry G, Rogers G, Rohde MF, et al. Microheterogeneity of erythropoietin carbohydrate structure. Anal Chem. 1995;67:1442–52.

    Article  CAS  Google Scholar 

  7. Tsitsimpikou C, Kouretas D, Tsarouhas K, Fitch K, Spandidos DA, Tsatsakis A. Applications and biomonitoring issues of recombinant erythropoietins for doping control. Ther Drug Monit. 2011;33:3–13.

    Article  CAS  Google Scholar 

  8. Timms M, Steel R, Vine J. Identification of recombinant human EPO variants in greyhound plasma and urine by ELISA, LC-MS/MS and western blotting: a comparative study. Drug Test Anal. 2016;8(2):164–76.

    Article  CAS  Google Scholar 

  9. Diamanti–Kandarakis E, Konstantinopoulos PA, Papailiou J, Kandarakis SA, Andreopoulos A, Sykiotis GP. Erythropoietin abuse and erythropoietin gene doping detection strategies in the genomic era. Sports Med. 2005;35(10):831–40.

    Article  Google Scholar 

  10. Deligiannis A, Björnstad H, Carre F, Heidbüchel H, Kouidi E, Panhuyzen–Goedkoope NM, et al. ESC Study Group of Sports Cardiology position paper on adverse cardiovascular effects of doping in athletes. Eur J Cardiovasc Prev Rehabil. 2006;13:687–94.

    Article  Google Scholar 

  11. Mottram DR, Chester N. Drugs in sport. 6th ed. Abingdon: Routledge; 2015. p. 26–7.

    Google Scholar 

  12. Lasne F, Martin L, Crepin N, de Ceaurriz J. Detection of isoelectric profiles of erythropoietin in urine: differentiation of natural and administered recombinant hormones. Anal Biochem. 2002;311:119–26.

    Article  CAS  Google Scholar 

  13. Reichel C, Abzieher F, Geisendorfer T. SARCOSYL-PAGE: a new method for the detection of MIRCERA- and EPO-doping in blood. Drug Test Anal. 2009;1:494–504.

    Article  CAS  Google Scholar 

  14. Reichel C, Kulovics R, Jordan V, Watzinger M, Geisendorfer T. SDS-PAGE of recombinant and endogenous erythropoietins: benefits and limitations of the method for application in doping control. Drug Test Anal. 2009;1:43–50.

    Article  CAS  Google Scholar 

  15. WADA EPO Working Group. WADA Technical Document TD2014EPO. 2014;1.

  16. Thorpe R, Swanson SJ. Current methods for detecting antibodies against erythropoietin and other recombinant proteins. Clin Diagn Lab Immunol. 2005;12(1):28–39.

    CAS  Google Scholar 

  17. Ho EN, Kwok WH, Lau MY, Wong AS, Lam KK, Stewart BD, et al. Doping control analysis of filgrastim in equine plasma and its application to a co-administration study of filgrastim and recombinant human erythropoietin in the horse. J Chromatogr A. 2014;1338:92–101.

    Article  CAS  Google Scholar 

  18. Bailly–Chouriberry L, Cormant F, Garcia P, Lönnberg M, Szwandt S, Bondesson U, et al. A new analytical method based on anti-EPO monolith column and LC-FAIMS-MS/MS for the detection of rHuEPOs in horse plasma and urine samples. Analyst. 2012;137:2445–3.

    Article  Google Scholar 

  19. Haselberg R, de Jong GJ, Somsen GW. Low-flow sheathless capillary electrophoresis-mass spectrometry for sensitive glycoform profiling of intact pharmaceutical proteins. Anal Chem. 2013;85:2289–96.

    Article  CAS  Google Scholar 

  20. Kang MJ, Shin SM, Yoo HH, Kwon OS, Jin C. Characteristics of IEF patterns and SDS-PAGE results of Korean EPO biosimilars. Bull Korean Chem Soc. 2010;31:2493–6.

    Article  CAS  Google Scholar 

  21. Dehnes Y, Myrvold L, Ström H, Ericsson M, Hemmersbach P. MAIIA EPO SeLect-a rapid screening kit for the detection of recombinant EPO analogues in doping control: inter-laboratory prevalidation and normative study of athlete urine and plasma samples. Drug Test Anal. 2014;6:1144–50.

    Article  CAS  Google Scholar 

  22. Lönnberg M, Dehnes Y, Drevin M, Garle M, Lamon S, Leuenberger N, et al. Rapid affinity purification of erythropoietin from biological samples using disposable monoliths. J Chromatogr A. 2010;1217:7031–7.

    Article  Google Scholar 

  23. Reihlen P, Völker–Schänzer E, Majer B, Schänzer W. Easy-to-use IEF compatible immunoaffinity purification of erythropoietin from urine retentates. Drug Test Anal. 2012;11:813–7.

    Article  Google Scholar 

  24. Gao J, Gu H, Xu B. Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Acc Chem Res. 2009;42(8):1097–107.

    Article  CAS  Google Scholar 

  25. Gu H, Xu K, Xu C, Xu B. Biofunctional magnetic nanoparticles for protein separation and pathogen detection. Chem Commun. 2006;9:941–9.

    Article  Google Scholar 

  26. Roque ACA, Bispo S, Pinheiro ARN, Antunes JMA, Gonçalves D, Ferreira HA. Antibody immobilization on magnetic particles. J Mol Recognit. 2009;22:77–82.

    Article  CAS  Google Scholar 

  27. Yazgan NN, Boyacı İH, Topcu A, Tamer U. Detection of melamine in milk by surface-enhanced Raman spectroscopy coupled with magnetic and Raman labelled nanoparticles. Anal Bioanal Chem. 2012;403:2009–17.

    Article  CAS  Google Scholar 

  28. Tamer U, Boyacı İH, Temur E, Zengin A, Dinçer İ, Elerman Y. Fabrication of magnetic gold nanorod particles for immunomagnetic separation and SERS application. J Nanopart Res. 2011;13:3167–76.

    Article  CAS  Google Scholar 

  29. Güven B, Dudak FC, Boyacı İH, Tamer U, Ozsoz M. SERS-based direct and sandwich assay methods for mir-21 detection. Analyst. 2014;139:1141–7.

    Article  Google Scholar 

  30. Han XX, Zhao B, Ozaki Y. Surface-enhanced Raman scattering for protein detection. Anal Bioanal Chem. 2009;394:1719–27.

    Article  CAS  Google Scholar 

  31. Albrecht MG, Creighton JA. Anomalously intense Raman spectra of pyridine at a silver electrode. J Am Chem Soc. 1977;99:5215–7.

    Article  CAS  Google Scholar 

  32. Le Ru EC, Etchegoin PG. Single-molecule surface-enhanced Raman spectroscopy. Annu Rev Phys Chem. 2012;63:65–87.

    Article  Google Scholar 

  33. Tamer U, Cetin D, Suludere Z, Boyaci IH, Temiz TH, Yegenoglu H, et al. Gold-coated iron composite nanospheres targeted the detection of Escherichia coli. Int J Mol Sci. 2013;14(3):6223–40.

    Article  CAS  Google Scholar 

  34. Tamer U, Gündoğdu Y, Boyacı IH, Pekmez K. Synthesis of magnetic core-shell Fe3O4-Au nanoparticle for biomolecule immobilization and detection. J Nanopart Res. 2010;12:1187–96.

    Article  CAS  Google Scholar 

  35. Nikoobakht B, El–Sayed MA. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater. 2003;15:1957–62.

    Article  CAS  Google Scholar 

  36. Nikoobakht B, El–Sayed MA. Surface-enhanced Raman scattering studies on aggregated gold nanorods. J Phys Chem A. 2003;107:3372–8.

    Article  CAS  Google Scholar 

  37. Long GL, Winefordner JD. Limit of detection: a closer look at the IUPAC definition. Anal Chem. 1983;55(7):712A–24A.

    CAS  Google Scholar 

  38. Ni J, Lipert RJ, Dawson GB, Porter MD. Immunoassay readout method using extrinsic Raman labels adsorbed on immunogold colloids. Anal Chem. 1999;71:4903–8.

    Article  CAS  Google Scholar 

  39. Temur E, Boyacı IH, Tamer U, Uysal H, Aydogan N. A highly sensitive detection platform based on surface-enhanced Raman scattering for Escherichia coli enumeration. Anal Bioanal Chem. 2010;397:1595–604.

    Article  CAS  Google Scholar 

  40. Abalde–Cela S, Aldeanueva–Potel P, Mateo–Mateo C, Rodríguez–Lorenzo L, Alvarez–Puebla RA, Liz–Marzán LM. Surface-enhanced Raman scattering biomedical applications of plasmonic colloidal particles. J R Soc Interface. 2010;7:435–50.

    Article  Google Scholar 

  41. Tang J, Guo L, Shen R, Yu T, Xu H, Liu H, et al. Quantification of rHuEPO-α by magnetic beads-based aptameric real-time PCR assay. Analyst. 2010;135:2924–9.

    Article  CAS  Google Scholar 

  42. Zhang Z, Guo L, Tang J, Guo X, Xie J. An aptameric molecular beacon-based “Signal-on” approach for rapid determination of rHuEPO-alpha. Talanta. 2009;80:985–90.

    Article  CAS  Google Scholar 

  43. Sun J, Guo A, Zhang Z, Guo L, Xie J. A conjugated aptamer-gold nanoparticle fluorescent probe for highly sensitive detection of rHuEPO-α. Sensors. 2011;11:10490–501.

    Article  CAS  Google Scholar 

  44. Guan F, Uboh CE, Soma LR, Birks E, Chen J, Mitchell J, et al. LC-MS/MS method for confirmation of recombinant human erythropoetin and darbepoetin α in equine plasma. Anal Chem. 2007;79:4627–35.

    Article  CAS  Google Scholar 

  45. Scarth JP, Seibert C, Brown PR, Teale P, Beamon G, Pearce CM, et al. UPLC-MS/MS method for the identification of recombinant human erythropoietin analogues in horse plasma and urine. Chromatographia. 2011;74:593–608.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial supports provided by Gazi University BAP; Project Number: 46/2010-02 and 02/2011-14.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ugur Tamer.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selbes, Y.S., Caglayan, M.G., Eryilmaz, M. et al. Surface-enhanced Raman probe for rapid nanoextraction and detection of erythropoietin in urine. Anal Bioanal Chem 408, 8447–8456 (2016). https://doi.org/10.1007/s00216-016-9966-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9966-1

Keywords

Navigation