Skip to main content
Log in

Structural changes of ultrasonicated bovine serum albumin revealed by hydrogen–deuterium exchange and mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The structural changes of bovine serum albumin (BSA) under high-intensity ultrasonication were investigated by fluorescence spectroscopy and mass spectrometry. Evidence for the ultrasonication-induced conformational changes of BSA was provided by the intensity changes and maximum-wavelength shift in fluorescence spectrometry. Matrix-assisted laser desorption–ionization time-of-flight mass spectroscopy (MALDI-TOF MS) revealed the increased intensity of the peak at the charge state +5 and a newly emerged peak at charge state +6, indicating that the protein became unfolded after ultrasonication. Prevalent unfolding of BSA after ultrasonication was revealed by hydrogen–deuterium exchange coupled with mass spectrometry (HDX-MS). Increased intensity and duration of ultrasonication further promoted the unfolding of the protein. The unfolding induced by ultrasonication goes through an intermediate state similar to that induced by a low concentration of denaturant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pavlovskaya G, McClements D, Povey M (1992) Ultrasonic investigation of aqueous solutions of a globular protein. Food Hydrocoll 6(3):253–262. doi:10.1016/S0268-005X(09)80093-3

    Article  CAS  Google Scholar 

  2. Suslick KS, Didenko Y, Fang MM, Hyeon T, Kolbeck KJ, McNamara WB, Mdleleni MM, Wong M (1999) Acoustic cavitation and its chemical consequences. Philos Trans R Soc London, Ser A 357(1751):335–353. doi:10.1098/rsta.1999.0330

    Article  CAS  Google Scholar 

  3. Militello V, Vetri V, Leone M (2003) Conformational changes involved in thermal aggregation processes of bovine serum albumin. Biophys Chem 105(1):133–141. doi:10.1016/s0301-4622(03)00153-4

    Article  CAS  Google Scholar 

  4. Stathopulos PB, Scholz GA, Hwang YM, Rumfeldt JAO, Lepock JR, Meiering EM (2004) Sonication of proteins causes formation of aggregates that resemble amyloid. Protein Sci 13(11):3017–3027. doi:10.1110/Ps.04831804

    Article  CAS  Google Scholar 

  5. Gulseren I, Guzey D, Bruce BD, Weiss J (2007) Structural and functional changes in ultrasonicated bovine serum albumin solutions. Ultrason Sonochem 14(2):173–183. doi:10.1016/j.ultsonch.2005.07.006

    Article  Google Scholar 

  6. Guzey D, Gulseren I, Bruce B, Weiss J (2006) Interfacial properties and structural conformation of thermosonicated bovine serum albumin. Food Hydrocoll 20(5):669–677. doi:10.1016/j.foodhyd.2005.06.008

    Article  Google Scholar 

  7. Özbek B, Ülgen K Ö. (2000) The stability of enzymes after sonication. Process Biochem 35(9):1037–1043. doi:10.1016/S0032-9592(00)00141-2

  8. Day L, Zhai J, Xu M, Jones NC, Hoffmann SV, Wooster TJ (2014) Conformational changes of globular proteins adsorbed at oil-in-water emulsion interfaces examined by Synchrotron Radiation Circular Dichroism. Food Hydrocoll 34:78–87. doi:10.1016/j.foodhyd.2012.12.015

    Article  CAS  Google Scholar 

  9. Togashi DM, Ryder AG (2006) Time-resolved fluorescence studies on bovine serum albumin denaturation process. J Fluoresc 16(2):153–160. doi:10.1007/s10895-005-0029-9

    Article  CAS  Google Scholar 

  10. Murayama K, Tomida M (2004) Heat-induced secondary structure and conformation change of bovine serum albumin investigated by Fourier transform infrared spectroscopy. Biochemistry-Us 43(36):11526–11532. doi:10.1021/Bi0489154

    Article  CAS  Google Scholar 

  11. Landreh M, Astorga-Wells J, Johansson J, Bergman T, Jornvall H (2011) New developments in protein structure-function analysis by MS and use of hydrogen-deuterium exchange microfluidics. FEBS J 278(20):3815–3821. doi:10.1111/j.1742-4658.2011.08215.x

    Article  CAS  Google Scholar 

  12. Michalski A, Damoc E, Lange O, Denisov E, Nolting D, Muller M, Viner R, Schwartz J, Remes P, Belford M, Dunyach JJ, Cox J, Horning S, Mann M, Makarov A (2012) Ultra high resolution linear ion trap orbitrap mass spectrometer (orbitrap elite) facilitates top down LC MS/MS and versatile peptide fragmentation modes. Mol Cell Proteomics 11(3). doi:10.1074/mcp.O111.013698

  13. Marcsisin SR, Engen JR (2010) Hydrogen exchange mass spectrometry: what is it and what can it tell us? Anal Biol Chem 397(3):967–972. doi:10.1007/s00216-010-3556-4

    Article  CAS  Google Scholar 

  14. Wales TE, Engen JR (2006) Hydrogen exchange mass spectrometry for the analysis of protein dynamics. Mass Spectrom Rev 25(1):158–170. doi:10.1002/mas.20064

    Article  CAS  Google Scholar 

  15. Kan ZY, Mayne L, Chetty PS, Englander SW (2011) ExMS: data analysis for HX-MS experiments. J Am Soc Mass Spectrom 22(11):1906–1915. doi:10.1007/s13361-011-0236-3

    Article  CAS  Google Scholar 

  16. Semisotnov GV, Rodionova NA, Razgulyaev OI, Uversky VN, Gripas AF, Gilmanshin RI (1991) Study of the "molten globule" intermediate state in protein folding by a hydrophobic fluorescent probe. Biopolymers 31(1):119–128. doi:10.1002/bip.360310111

    Article  CAS  Google Scholar 

  17. Sułkowska A (2002) Interaction of drugs with bovine and human serum albumin. J Mol Struct 614(1):227–232. doi:10.1016/S0022-2860(02)00256-9

    Article  Google Scholar 

  18. Peters T Jr (1985) Serum albumin. Adv Protein Chem 37:161–245. doi:10.1016/S0065-3233(08)60065-0

    Article  CAS  Google Scholar 

  19. Papadopoulou A, Green RJ, Frazier RA (2005) Interaction of flavonoids with bovine serum albumin: a fluorescence quenching study. J Agric Food Chem 53(1):158–163. doi:10.1021/jf048693g

    Article  CAS  Google Scholar 

  20. Sułkowska A, Rownicka J, Bojko B, Poźycka J, Zubik-Skupień I, Sułkowski W (2004) Effect of guanidine hydrochloride on bovine serum albumin complex with antithyroid drugs: fluorescence study. J Mol Struct 704(1):291–295. doi:10.1016/j.molstruc.2003.12.065

    Article  Google Scholar 

  21. Flora K, Brennan JD, Baker GA, Doody MA, Bright FV (1998) Unfolding of acrylodan-labeled human serum albumin probed by steady-state and time-resolved fluorescence methods. Biophys J 75(2):1084–1096. doi:10.1016/S0006-3495(98)77598-8

    Article  CAS  Google Scholar 

  22. Togashi DM, Ryder AG, O'Shaughnessy D (2010) Monitoring local unfolding of bovine serum albumin during denaturation using steady-state and time-resolved fluorescence spectroscopy. J Fluoresc 20(2):441–452. doi:10.1007/s10895-009-0566-8

    Article  CAS  Google Scholar 

  23. Loo JA, Loo RR, Udseth HR, Edmonds CG, Smith RD (1991) Solvent-induced conformational changes of polypeptides probed by electrospray-ionization mass spectrometry. Rapid Commun Mass Spectrom: RCM 5(3):101–105. doi:10.1002/rcm.1290050303

    Article  CAS  Google Scholar 

  24. Dobo A, Kaltashov IA (2001) Detection of multiple protein conformational ensembles in solution via deconvolution of charge-state distributions in ESI MS. Anal Chem 73(20):4763–4773. doi:10.1021/ac010713f

    Article  CAS  Google Scholar 

  25. Zhou J, Lee TD (1995) Charge state distribution shifting of protein ions observed in matrix-assisted laser desorption ionization mass spectrometry. J Am Soc Mass Spectrom 6(12):1183–1189. doi:10.1016/1044-0305(95)00578-1

    Article  CAS  Google Scholar 

  26. Sachon E, Clodic G, Blasco T, Bolbach G (2007) Protein desolvation in UV matrix-assisted laser desorption/ionization (MALDI). J Am Soc Mass Spectrom 18(10):1880–1890. doi:10.1016/j.jasms.2007.07.029

    Article  CAS  Google Scholar 

  27. Adrnlnlstratlon MSFC (1994) Structure of serum albumin. Lipoproteins Apolipoproteins Lipases 45:153–203

    Article  Google Scholar 

  28. Huang X, Tu Z, Wang H, Zhang Q, Hu Y, Zhang L, Niu P, Shi Y, Xiao H (2013) Glycation promoted by dynamic high pressure microfluidisation pretreatment revealed by high resolution mass spectrometry. Food Chem 141(3):3250–3259. doi:10.1016/j.foodchem.2013.05.159

    Article  CAS  Google Scholar 

  29. Tanaka N, Nishizawa H, Kunugi S (1997) Structure of pressure-induced denatured state of human serum albumin: a comparison with the intermediate in urea-induced denaturation. Biochim Biophys Acta 1338(1):13–20. doi:10.1016/S0167-4838(96)00175-6

    Article  CAS  Google Scholar 

  30. Ahmad B, Ahmed MZ, Haq SK, Khan RH (2005) Guanidine hydrochloride denaturation of human serum albumin originates by local unfolding of some stable loops in domain III. Biochim Biophys Acta 1750(1):93–102. doi:10.1016/j.bbapap.2005.04.001

    Article  CAS  Google Scholar 

  31. Jambrak AR, Mason TJ, Lelas V, Herceg Z, Herceg IL (2008) Effect of ultrasound treatment on solubility and foaming properties of whey protein suspensions. J Food Eng 86(2):281–287. doi:10.1016/j.jfoodeng.2007.10.004

    Article  CAS  Google Scholar 

  32. Bryant CM, McClements DJ (1998) Molecular basis of protein functionality with special consideration of cold-set gels derived from heat-denatured whey. Trends Food Sci Technol 9(4):143–151. doi:10.1016/S0924-2244(98)00031-4

    Article  CAS  Google Scholar 

  33. Jambrak AR, Mason TJ, Lelas V, Paniwnyk L, Herceg Z (2014) Effect of ultrasound treatment on particle size and molecular weight of whey proteins. J Food Eng 121:15–23. doi:10.1016/j.jfoodeng.2013.08.012

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by National High Technology Research and Development Program of China (863 Program, No. 2013AA102205), National Program on Key Basic Research Project (No.2012CB126314), and Key Project for Science and Technology Innovation of Jiangxi Province (20124ACB00600).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zongcai Tu or Hui Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Tu, Z., Wang, H. et al. Structural changes of ultrasonicated bovine serum albumin revealed by hydrogen–deuterium exchange and mass spectrometry. Anal Bioanal Chem 406, 7243–7251 (2014). https://doi.org/10.1007/s00216-014-8136-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-8136-6

Keywords

Navigation